Grundlegende Begriffe und Technologien der Maschinellen Übersetzung

Basic Concepts and Technologies of Machine Translation

Walther v. Hahn, Cristina Vertan

University of Hamburg • Informatics Department
Natural Language Systems Group

WWW: http://nats-www.informatik.uni-hamburg.de/~cri/

E-Mail: {vhahn,vertan}@informatik.uni-hamburg.de

Machine Interpretation

- New research and technology domain with applications in
 - Consecutive interpreting
 - Simultaneous interpretation
 - Dialogue interpretation
- Interesting because of the connection between
 - Signal level ⇔ Phonetics and
 - Text level ⇔ Linguistics
- High Relevance for cognitive linguistics
 - Interpreting strategy
 - Understanding
 - Time behaviour
 - Mapping of speaker- and language features

Lexical differences between languages

- One word in a source language can be replaced (translated) through more words or multi-word expressions in the target language
- One word can be unambiguous in the target language, but not from the perspective of the source language
- Ambiguity can be found: in one language and across languages
- Lexical differences across languages have their source in
 - Difference between notions
 - Grammatical differences
 - Stylistic differences

Translation and understanding

Example: English \Rightarrow Spanish

While driving down route 72, John swerved and hit a tree

Problem:

In Spanish "hit" can be translated with:

- 1. *pear* to move with intention
- 2. *chocar* accidentally due to a moving object
- 3. *acertar* guessing
- 4. *golpear* (other possibilities) etc.

How can an MT system choose the right alternative? It is hopeless without (at least lexical) semantics.

The MT-Triangle

Transfer-System with 3 Languages

Interlingua-System with 3 Languages

Interlingua- vs. Transfer-Systems

- Each module is independent from all other analysis and generation modules
- Target languages have no influence on the analysis process.
- For a new language only 2 new modules have to be added
- "back-translation" possible (useful for system evaluation)
- Complicated representation even for languages belonging to the same family

- Language-dependent
- For each new language a high number of new modules must be implemented (for n languages: n×(n-1) modules)
- Straight-forward representation
- Local definition of similarities among languages.

Direct System Architecture

MT-specific Pre-editing

- Checking source texts for foreseeable problems for the system and trying to eradicate them
- It can include:
 - Identification of names (proper nouns)
 - Marking of grammatical categories of homographs
 - Indication of embedded clauses
 - Bracketing of coordinate structures
 - Flagging or substitution of unknown words
 - Extreme form: Reformulation of the text using a "controlled language" and a corresponding editor

Pre-editing - Controlled Language

- Adaptation of source texts to the vocabulary such constructions which the system can translate
- The writers of texts for translation are restricted to
 - particular types of constructions
 - the use of terminology,
 - predefined meanings of every-day words
- E.g the sentence: *Loosen main motor and drive shaft and slide back until touching back plate* must be rewritten into:

Loosen the main motor. Loosen the drive shaft. Slide both parts until they touch the back plate.

Post-Editing -1-

- Correction of the output from the MT-System to an agreed standard:
 - Minimal for assimilation purposes
 - Thoroughly for dissemination purposes
- E.g. Spanish \Rightarrow English output of an MT system:

En este studio se buscará contestar dos preguntas fundamentales In this study it will be sought to answer two fundamental questions

• The best post-edition may be:

This study will seek to answer two fundamental questions

Post-Editing -2-

- Interactive post-editing:
 - The system alerts the editor of sentences or phrases which may be incorrectly translated (e.g. which contain an unresolved ambiguity, or a construction which could not be analysed
 - It provides the option of correcting similar errors automatically throughout the text ,once the editor has replaced a mistranslation
- Linguistically intelligent word processors:
 - Can spot some types of structural ambiguities
 - Can generate alternative structures
 - change automatically gender agreement in a whole phrase
 - Insert automatically appropriate prepositions (e.g if discuss is changed to talk then about is inserted before the direct object)

Evaluation of MT-Systems

- In contrast to other software there is no "best solution" by human translators, which can be compared with the output of the system
- I.e., for one input sentence there are many different correct translations
- Quality measurement of an MT System depends on its purposes and on the requirements of potential users.
- Possible participants in evaluation :
 - Researchers
 - Research sponsors
 - Purchasers
 - Translators

Evaluation strategies Black Box vs. Glass Box

- MT system is seen as a black box, whose operation is treated purely in terms of its input-output behaviour
- Should not be conducted by the developers
- Tests: functionality, volume of data handled, recovery situations

- Components of the system are inspected as well a their effect in the system
- Relevant to researchers and developers
- Static analysis: checking the system without running it (automatic syntax and type checking by a compiler, manual inspection of the system, symbolic execution, data flow analysis)
- Dynamic glass box requires running the program (e.g. trying the program on many logical paths and ensuring that every logical branch is executed at least once).

Evaluation strategies Test Suite vs. Test corpus

- Carefully constructed set of examples, each testing a particular linguistic or translation problem (e.g. different lexical and structural differences)
- Problem: it is assumed that the behaviour of a system can be projected from carefully constructed examples to real texts
- Test suite evaluations are difficult to compare

- An adequate corpus (for the domain of the system) is used as input
- Problem: it does not test systematically all possible sources of incorrect translations, but considers the most frequent constructions
- It is difficult to estimate the behaviour of the system for other types of text

Evaluation - Linguistic Quality measures

- Intelligibility measures the fluency and grammaticality of the TL text, with concern for wether it faithfully conveys the meaning of the SL
- Accuracy indicates how the translated text preserves the content of the source text. (a high intelligible sentence may not convey the meaning of the source text because of incorrect disambiguation)
- Error analysis: e.g. count the number of words inserted, modified, deleted and moved by a post-editor. However, deciding hat is an acceptable translation is subjective.

Evaluation - Software criteria

- Functionality determines the degree to which it fulfills the stated or implied needs of a user
- Reliability if the system maintains its level of performance under specified conditions and for a specified period of time
- Usability indicates the effort needed to use the software by a stated or implied set of users
- Efficiency relationship between the level of performance of the software and the amount of resources used to achieve that level of performance under specified conditions
- Maintainabiltiy effort needed to make specified modifications to the software
- Portability indicates the ability of the software to be transferred from one environment to another.

Different Approaches to MT

- Rule-based MT
- Knowledge-based MT
- Statistical-based -MT
- Example-based MT

Other approaches to computer assisted translation

- Machine Aided Translation
- Translation Memories

