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Abstract
This paper presents an audio-visual speech recognition frame-
work based on articulatory features, which tries to combine the
advantages of both areas, and shows a better recognition accu-
racy compared to a phone-based recognizer. In our approach,
we use HMMs to model abstract articulatory classes, which are
extracted in parallel from both the speech signal and the video
frames. The N-best outputs of these independent classifiers
are combined to decide on the best articulatory feature tuples.
By mapping these tuples to phones, a phone stream can be
generated. A lexical search finally maps this phone stream to
meaningful word transcriptions. We demonstrate the potential
of our approach by a preliminary experiment on the GRID
database, which contains continuous English voice commands
for a small vocabulary task.

Index Terms: audio-visual speech recognition, articulatory fea-
tures, N-best decision schema

1. Introduction
After almost 30 years of research in Automated Speech Recog-
nition (ASR), scientists have covered applications ranging
from speaker dependent, isolated word recognition, to speaker
independent, large vocabulary, continuous speech recognition
[1] and [2]. The technology has reached a level of performance
which seems difficult to be improved further, if only acoustic
evidence is considered. On the other hand, most of the
currently available systems require proper acoustic conditions,
including a quiet environment, good quality microphones,
a suitable distance to the microphone, etc. There is a clear
necessity to overcome these limitations by including additional
speech-related information into the decision procedure of the
recognizer.

Visual speech is a natural candidate here, because it is
independent of the acoustic environment. Also, evidence from
human speech perception convincingly shows that visual cues
might considerably contribute to speech comprehension. Not
surprisingly, since the first attempt by Petajan in 1984 [3], a
range of Audio Visual Speech Recognition (AVSR) systems has
been developed, which confirmed the initial assumption that
lip reading information is particularly helpful for recognizing
noisy speech. Although there are clear differences in how these
systems process audio and visual information and combine
them together, they all share a quite similar system architecture
based on a state-of-the-art approach to word recognition using
phones as a subword modeling unit.

As an alternative, the use of articulatory features (AF)
for ASR has been proposed [4], [5] and [6]. Articulatory
features are usually described as abstract classes, which capture
relevant characteristics of the speech signal in terms of articula-
tory information. These classes can be used as an intermediate
representation, leading to a two-stage classification procedure
with a remarkable degree of robustness under noisy conditions.
Moreover, compared to purely acoustic features (like MFCC),
AFs can also be used to represent properties of the speech
production process, such as lip rounding, tongue position,
manner of articulation, etc.

Although a number of ideas have been proposed for us-
ing AFs in conventional ASR systems, as far as we know,
only few of them [7] and [8], have addressed the question of
representing visual cues as AFs. Since there is an apparent
correlation between some of the articulatory features and the
visual shape of the lips during speaking, namely for labial
consonants which are pronounced with closed lips and the
roundedness feature which provides important cues to distin-
guish different kinds of vowels, articulatory features might lend
themselves as an appropriate interface to integrate visual cues
into the recognition procedure. This motivates us to investigate
the possibility of combining these two lines of research in order
to build a more robust speech recognition system.

We propose a two-stage architecture (see Figure 1), where
abstract articulatory classes are extracted in parallel from both
the speech signal and the video frames by means of statistical
classifiers. The second stage then combines their outputs into
AF-tuples and maps them to a corresponding phone stream.
Finally, a lexical search maps this stream to words sequences
as output. Such an architecture will not only facilitate the
use of articulatory information within the speech recognition
system, but also allows us to investigate to which degree the
acoustic and visual contributions to phone classification are
complementary. In this paper, we first provide a background
review of previous work on AVSR in section 2. In section 3 we
introduce the AF-based AVSR system and our N-best decision
approach. Experimental results and conclusion are finally given
in section 4 and 5 respectively.

2. Previous Work in AVSR

In AVSR, knowledge from diverse areas has to be brought
together in a single decision procedure to successfully integrate
the available evidence from the two input channels. In general,



Figure 1: AF-based two-stage AVSR architecture.

five major design issues can be identified for such a system: 1)
the design of the audio feature front-end, 2) the design of the
visual feature front-end, 3) the choice of audio-visual speech
classes, 4) the audio-visual speech classification, and 5) the
fusion of audio-visual information. Many publications have
addressed issues concerning the visual feature front-end, and
the problem of audio-visual information fusion.

Opposed to the audio feature front-end, the visual one
has to deal with extracting informative visual speech features
in a robust manner. For that purpose, the raw video data of the
speaker are firstly preprocessed to detect and extract the region
of interest (ROI), namely the mouth region. Then, different
algorithms can be employed for converting the ROI into feature
vectors for further computing. To obtain useful visual features,
three different approaches are available: the appearance-based,
the shape-based and the hybrid method. Appearance-based
features make use of all pixel level intensity and color values
within the ROI. To reduce the extremely high dimensionality
of these feature vectors various algorithms, like DCT, PCA,
LDA, etc. can be used. Shape-based methods, on the other
hand, are based on a model of the lip contour. The visual
features are then chosen from the parameters of these models.
Well known approaches in this category are models based on
simple parameters as mouth height and width, snake models,
and Active Shape Models (ASM) [9]. Finally, the hybrid
method combines the two approaches by considering both pixel
and shape evidence. In particular, approaches like the Active
Appearance Model (AAM) have been shown to considerably
improve the performance of shape-based features [10].

For integrating the different contributions from the two
channels of an AVSR system two fundamentally different types
of fusion techniques, namely feature-level and decision-level
fusion, can be used. The feature-level fusion combines audio
and visual features into a single feature vector [11]. Then,
one classifier is trained based on those vectors. Decision-level
fusion, on the other hand, trains two individual classifiers
based on audio and visual feature data. The integration of their
results is attempted in a subsequent step and can be achieved

at different representational levels (sub-phonetic, phone, word,
or utterance) [12]. In our paper, we employ the decision-level
fusion idea to integrate the AFs from audio and visual speech
signal.

3. AF-based AVSR framework
3.1. Articulatory Features

The basic idea of the AF approach is to use an additional speech
signal representation situated between the acoustic signal pre-
processing level and the subword unit probability estimation
level. This representation is composed of articulatory features,
i.e. abstract classes describing articulation-related information
which is deemed relevant for the distinction between speech
sounds.

Several reasons make AFs attractive for ASR. Firstly,
they can provide a rather detailed description of coarticulation
phenomena, since they are related to both, the acoustic signal
and the higher level of linguistic information. In particular, they
are able to accommodate the kind of asynchronous transitions
between subsequent segments that can be observed with
articulatory movements. Secondly, compared to a phone-based
classification system, the parallel independent AF-based classi-
fication system makes use of fewer classes, which therefore are
better suited to be used in case of sparse training data. Table 1
lists the articulatory features used for our experiments.

Table 1: AFs used in AVSR framework.

Features Values Num. Classes

Voicing voiced, voiceless 2
Rounding round, nil, flat 3
Manner vowel, nasal, lateral, 5

approximant, fricative
Place dental, labial, retroflex, 7

velar, high, mid, low
Front-Back front, nil, back 3

Visual opening open, close 2
Visual rounding round, nil, flat 3

3.2. AF Recognition

Previous work for recognizing articulatory features from the
speech signal has used Artificial Neural Networks, Hidden
Markov Models, linear dynamic models and dynamic Bayesian
networks. In our experiments we have concentrated on the
use of Hidden Markov Models. In contrast to [4] we do not
attempt to detect the articulatory features in a pure bottom-up
fashion, but train a number of independent word recognizers,
where the words are defined in terms of AFs instead, as usual,
in terms of phones. These word recognizers are then applied in
parallel to the audio or video data and their outcomes are word
sequences which can also be interpreted in terms of sequences
of articulatory features. This approach has the advantage that it
allows us to integrate higher level information from a language
model already during the AF-detection phase.

Seven AF-based models (5 from the audio signal and 2
from the video stream) have been trained by Baum-Welch
reestimation. Instead of selecting the single best decoding



result, we determine the N-best hypotheses for all the AF-based
classifiers. For recognition the Token Passing algorithm [13]
is used. Token Passing saves the best tokens at each word
boundary, which gives the potential for generating a lattice of
hypotheses rather than only a single best hypothesis. Since
the tokens are saved at the word level, the output is actually
a sequence of loosely synchronized hidden words. They
are emphasized as loose synchronization, since the HMM
embedded training cannot guarantee a strict synchronization
of the AFs within a word. However, thanks to the short pause
models, which are usually easy to train, word boundaries can
be rather reliably detected during recognition. In accordance
with this observation, we are able to represent the recognized
words as AF sequences, which are force aligned according to
the word boundaries.

3.3. N-best Decision

The output of the AF-based recognizers will be processed in the
second stage with the goal to combine the various channels into
a single sequence of AF representations for which a meaningful
phone representation exists. For this purpose, we propose an
N-best decision scheme which computes the results of the first
stage classifiers into a number of coherent AF tuples, which
can be mapped to the phones contained in a code book. This
approach is similar to the mixture of experts (ME) architecture
proposed by [14]. Having available, however, the N-best output
from the first stage, it seems more likely that the optimal results
will be taken and a more reliable mapping between articulatory
features and phone representations can be established. In our
experiments, we have always chosen the five best hypotheses.

The N-best decision schema is invoked after the decoding
stage of the AF-based classifiers. It consists of five procedures,
namely 1) Synchronization, 2) AF tuple generation, 3) Best
output selection, 4) Weighting and 5) Lexical Search. The
input of the N-best decision schema is taken from the first
stage N-best outputs, which are decoded word level sentences.
Based on the idea of “loose synchronization”, the best sentence
decision problem is converted into a best word decision
scenario. For that purpose word sequences are synchronized
by normalizing the word length according to a majority vote
among all the available output candidates of the AF-based
classifiers. The length of a word defined here refers to the
number of AF segments within that word. The normalization
becomes necessary since the output of the first stage might be
incoherent between alternative recognition hypotheses of the
same classifier and across the different articulatory channels.
It is carried out as a greedy search and assumes that (1) word
boundaries can be reliably detected and (2) the word length
is roughly comparable, two conditions which are fulfilled for
the data in the GRID corpus. By selecting the optimal length,
actually those word hypotheses are excluded, which are only
supported by a minority of AF-based recognizers.

3.4. AF tuple Generation

AF classes can be combined into AF tuples where each
component of the arity tuple of the tuple corresponds to the
number of AF-based recognizers of the first stage. While
some AF tuples can be mapped to phones, others can not.
E.g. the tuple [voiceless, fricative, labial,

Figure 2: The flow chart of N-Best Decision Schema

nil, nil] can be mapped to the phone [f]. We maintain
the possible mappings in a manually created AF-to-phone table.

AF tuples are generated according to the scores from the
first classifiers. The first AF tuple, for example, is generated
by combining the topmost candidate decision from all the
classifiers. The second one will replace the topmost candidate
of the most unreliable classifier by its second best choice,
etc. Since we have only chosen the five best candidates of the
AF-based word recognizers and in many cases they agree in
the proposed recognition results, we are able to consider all
combination possibilities when generating AF tuples.

Ideally, the AF tuple derived from the best decision of each
classifier is the most likely one in all candidates. However,
since the combined results are based on inaccurate first stage
classifiers, it might not always be possible to map the parallel
feature assignments into phones. Therefore, we need to exclude
such combinations from consideration. Figure 2 shows the flow
chart of N-best decision schema. The right part indicates the
logic of best output selection. If the first output from the N-best
list cannot be found in this table, it is replaced by another
one from the list. If none of these tuples can be mapped into
phones, a recognition error will be generated. The generated
AF tuples are ranked based on the accumulated confidence
score.

A phone stream is then defined as a sequence of phones
which are admissible according to the AF-to-phone table.
Eventually, this phone stream will be mapped into words
according to phone-to-word table. For this purpose, a pronunci-
ation dictionary including some pronunciation variants is used.
For instance, “five” is transcribed both as [f ai v] and [f ai f].

Weighting is used in both, the synchronization and the
AF tuple generation step. In order to vote for the optimal
length of a word in the synchronization step, the decision
could be weighted according to the recognition accuracy of
the AF-based classifiers. A similar weighting scheme can be
applied for generating the AF tuples. In our experiments the
audio-based manner and place features have been assigned



Figure 3: Example for the N-best decision schema. AF-classes
are coded as numbers

a higher weight as compared to the other AF classification
results.

The example shown in Figure 3 illustrates the data flow within
the N-best decision schema. The testing data is the sentence
“bin red by t one please”. Since the word boundary is reliably
detected by all first level AF-based word recognizers, the
synchronization can be achieved word by word. When the
word “one” is processed, the five best decisions of the rounding
classifier have a different length of words. Voting determines
the ”optimal” length among all word candidates from all AF
classifiers to three segments and all candidates with another
length are no longer considered. After this synchronization
step, we select the AFs from all classifiers and combine them
into AF tuples. Their number is limited in our example,
because all the AF-tuples have the same value in this example,
which can be mapped to the phone [n]. Together with the two
neighboring phones eventually the word “one” is decoded.

4. Experiments and Results
We performed an initial experiment on the GRID corpus
[15], which is a continuous audio-visual speech corpus for
an English small vocabulary task. It contains 1000 sentences
spoken by each of 34 speakers. The original audio and video
data were recorded under clean acoustic conditions, and the
video shows only a frontal view of each subject’s face. The
sentences in GRID are speech commands according to a very
simple grammar. The total of 51 words within the vocabulary
consist of 4 command words, 4 words representing color, 4
prepositions, 26 letters, 10 digits and 4 adverbs.

In the audio channel, the raw speech signal was con-
verted into a sequence of vector parameters with a fixed 25ms
frame and a frame rate of 10ms. The 12 dimensional MFCCs
were then obtained and one extra dimension was added as
normalized log energy. Finally, the 13 dimensions parameters
are expanded to 39 dimensions by adding first and second order
derivations. On the visual processing side, the mouth region
within a rectangular window was detected as ROI. This was
done by applying a classifier trained by the rapid and robust
Viola-Jones object detection algorithm [16]. The video was
recorded as a sequence of images with a frame rate of 40ms.
These colored images are further transformed into gray-scale
ones. By using appearance (pixel) based method, every pixel
inside the detected ROI images was considered as a feature.

To make classification feasible, we decrease the number
of dimensions using the DCT transform. The final visual
feature vectors contain 26 of the highest energy components.
In order to compensate for the frame rate difference, the
visual features were further interpolated from 25Hz to 100Hz.
The final visual features can be trained either individually or
combined with MFCC features.

In order to determine the articulatory information, we
then classify the low level features into articulatory classes
using left-right HMMs with 3 emitting states. The models
are initialized with the flat start method [17] according to the
features in each channel and the HMM parameters are trained
with maximum likelihood estimation. After ten iterations,
the models were finally expanded to 16 mixtures except for
the manner tier where the models are expanded to only 8
mixtures. For the recognition, the token passing algorithm is
used without any pruning factor. We take the five best outputs
from each individual channel and apply the N-best decision
scheme described in Figure 3 to them.

Figure 4 shows a comparison of three AF-based recogni-
tion systems with respect to their accuracy. Compared to the
results of [5], where the articulatory features are also trained
by HMMs, our system obtained better results in all individual
classifiers. This performance is comparable to the one reported
in [4], where Kirchhoff trained MLPs as AF classifiers.
Since the first stage of our system actually are AF-based
word recognizers, the figure also presents the corresponding
word recognition accuracy in the different channels. It is
considerably lower than AF accuracy because certain words
can hardly be decoded using only AF classes.

For comparison to a conventional ASR, we trained a baseline
phone-based classifier by means of HTK. This baseline ASR
is using left-right HMMs with 3 emitting states single mixture
models. The monophone HMM models were further extended
to context dependent triphone models. The test data is then
recognized with the Viterbi algorithm using a simple language
model. Table 2 shows the word recognition accuracy results for
different versions of the second stage. As expected, the word
recognition accuracy of the individual first stage AF-classifiers
is considerably lower than that of the baseline triphone-based
recognizer. After applying the N-best decision schema to
combine the AF-decoding results, however, the overall word
recognition accuracy rises even above that of the phone-based
approach.



Figure 4: The first stage feature accuracy rates comparison on
three AF-based recognition systems

Table 2: AF-based word recognition accuracy after N-best de-
cision

Audio AFs only Audio-Visual AFs Phone-based

93.57 93.71 90.34

5. Conclusions
In this paper, we have proposed an audio visual speech recog-
nition framework based on articulatory features. Within such
a two-stage architecture, the multi-channel AF-classifiers are
trained and tested with either audio or video data. Their results
are combined in a second stage, using an N-best decision
schema. Although the individual multi-channel AF-classifiers
have a word-level performance far below the phone-based
accuracy, their combination by the N-best decision schema
is able to outperform the phone-based approach. When com-
paring the audio-only and audio-visual AF-based systems, the
latter one gives slightly better results even under clean acoustic
conditions and by further fine tuning the visual preprocessing
algorithms a further improvement can be expected.

The experiment scarries out so far, confirm the potential
of the approach for combining acoustic and visual cues for
speech recognition purposes. So far, however, the algorithms
for AF stream synchronization, best tuple selection and lexical
search are rather simple ones. In addition to improving the vi-
sual components, more sophisticated solutions will be needed,
if the approach is to be ported to more ambitions application
domains. Possible candidates are statistical approaches like
SVM or HMM, respectively.
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