
Towards an Evaluation Methodology of
Diagnostic Accuracy for Ill-defined Domains

Nguyen-Thinh Le and Wolfgang Menzel
Department of Informatics, University of Hamburg, Germany

{le, menzel}@informatik.uni-hamburg.de

Abstract: Researchers agree that error diagnosis is one of the most important components
of an Intelligent Tutoring System (ITS). Therefore, the diagnostic accuracy of an ITS
within an ill-defined domain should attract attention. In this paper we introduce our
constraint-based error diagnosis approach for logic programming and demonstrate an
evaluation methodology which measures diagnostic accuracy and is comprised of two
parts: evaluation of intention analysis and evaluation of diagnostic reliability.

Keywords: Evaluation, constraint-based diagnosis, ill-defined domains.

Introduction

Researchers agree that error diagnosis is one of the most important components of an
Intelligent Tutoring System (ITS). This focus is motivated by the following observations:

1. The diagnosis component provides diagnostic information about student solutions
and serves to build an appropriate student model. Especially, in ill-defined domains,
the diagnosis of erroneous solutions is uncertain because for an error there might be
many conflicting explanations ([1]). For example, the student is requested to write a
subgoal to check whether a person is an adult. An erroneous student solution might
be Age>18. The student has either made an mistake at the operator or the operand
(18). If we want to give a feedback to the student, we have to choose between two
correction proposals: Age>=18 or Age>17.

2. Subsequent pedagogical interactions, which are dependent on the correct
interpretation and diagnosis of student errors ([3]), might mislead students. For
example, to compute the result of an investment of amount of money X with an
interest rate Y after N years, we can apply the analytic strategy
Result=X*(Y+1)^N or we can apply the strategy of recursive computation.
Even recursive computation can be distinguished between accumulative and naive
recursion. If we would not identify the student’s intention correctly, all feedback is
useless and force the student to follow another strategy which does not agree with
his/her intention.

Therefore, the diagnostic accuracy of ITSs of an ill-defined domains should attract
more attention than other ITS components as Littman ([6]) predicted: “It appears that
progress in evaluation will go hand in hand with progress in diagnosing students and
identifying appropriate student models”.

In this paper we introduce our constraint-based error diagnosis approach for logic
programming which has characteristics of an ill-defined domain ([5]). Furthermore, we
demonstrate an evaluation methodology which measures diagnostic accuracy and is
comprised of two parts: evaluation of intention analysis and evaluation of diagnostic

reliability. In the first section, a coaching system for logic programming (INCOM) is briefly
described. Then, we review methodologies for the evaluation of diagnostic accuracy of ITS
in the second section. Next, we describe our evaluation and present its result. The
advantages and limitations of this evaluation methodology are discussed in the last section.

1. INCOM: a Constraint-based Coaching System for Logic Programming

1.1 Training Scenario

INCOM is intended to help students of a logic programming course overcoming difficulties
when doing their homeworks. The system prompts the student with a programming problem
and provides feedback to coach her/him composing a correct solution. Given a task, the
student is guided to go through two phases: 1) the task analysis and 2) the design and
implementation. In the first phase, the student is requested to input an adequate signature for
the predicate to be implemented. A predicate signature consists of information about: 1) the
number of argument positions, 2) type for each argument position, 3) mode of intended
usage of the predicate (input, output or indeterminate). If the signature is not appropriate,
INCOM helps her/him to understand the task. This way, the student's ability to analyze a
problem is determined. In the second phase, the student is invited to compose a solution for
the given exercise in an unrestricted form. The user interface neither requires the student to
adhere to an anticipated solution strategy nor does it specify the arrangement of solution
elements (i.e. no input templates are used).

The student is allowed to create programs using pure Prolog, a logic programming
language. Cuts, disjunctions or if-then-else operators are currently not supported. Similarly,
no assert, retract, abolish or other database-altering predicates can be used. The set of built-
in predicates which can be employed by the students are: =, =.=, =\=, ==, \==, >, >=, <, =<,
=.., +, -, *, /, ^ and 'is'. Helper predicates are provided explicitly in the problem statement or
must be defined by the student.

Under these conditions, the student has a free choice of variable and predicate names,
can arrange the parameters within a subgoal or a clause head freely and define helper
predicates as needed. Due to this degree of freedom, solving a programming task required
the student to make numerous decisions to compose a solution. Thus, composing a program
freely is an instance of a design problem which is usually considered ill-defined.

1.2 Knowledge Representation and Error Diagnosis

In order to cover the solution space for a logic programming problem under the conditions
above, we need techniques to represent the semantics imposed by the problem description
without the necessity to enumerate individual solutions. For this purpose, we specify an
appropriate predicate signature, develop a so-called semantic table and extend the
constraint-based modeling (CBM) approach ([8]) with constraint weights. We clarify our
approach by using the problem task Salary described in Appendix.

The specification of a predicate signature describes the meaning, type and modus of
argument positions which are required in the problem statement. For instance, Table 1
specifies the signature for a predicate Salary/2. The information in this table is used for the
declaration diagnosis.

Argument Type Mode Description

Arg1 list input This argument stands for the old salary list

Arg2 list output This argument stands for the new salary list

Table 1: Signature for the predicate Salary

The semantic table contains necessary information for the implementation of a given
task. It is specified by means of generalized sample solutions which describe the framework
of a predicate definition in relational form. That is, clauses, subgoals and argument positions
are not restricted to a particular sequential arrangement. In addition, all unification
conditions are expressed explicitly and clause heads as well as subgoals are represented in
normal form. The normal form representation reveals the underlying programming
techniques. Thereby, the diagnosis becomes more adequate on the conceptual level and the
resulting feedback becomes more useful. If there are several solution strategies for a
problem, each of them is specified by a separate entry in the semantic table. Table 2
specifies the required characteristics of solutions which implement the predicate Salary/2.
The information in this table is used for the implementation diagnosis.

Strategy Clause Head Body Description
naive

recursion
1

salary(OldL,NewL)
OldL=[]
NewL=[]

Old list is empty
New list is empty

naive
recursion

2 salary(OldL,NewL) OldL=[N,S|T]
NewL=[N,Snew|Tnew]
S=<5000
Snew is S+S*0.03
salary(T,Tnew)

N, S: name, salary
build a new salary list
Salary less than 5000
Salary is increased
Decompose old salary list recursively

Table 2: Semantic Table for the predicate Salary

Constraint weights can be conceived of as a measure of importance for a constraint.
For example, a clause is composed of a clause head and a set of subgoals, each of which
contains a functor and its arguments. A subgoal contributes more information to the overall
correctness of the solution compared to an argument or a functor. Hence, a constraint which
examines an argument should be specified as being less important compared to a constraint
checking a subgoal. We use weighted constraints in order to measure the plausibility of
different correction proposals for an error. The reason is, for a programming problem, which
has characteristics of ill-definedness, there are many or even uncountably many solutions.

According to the two-phase design of the training scenario, the diagnosis procedure is
separated into two steps: declaration and implementation diagnosis. In principle, the
diagnosis is carried out as an interaction of hypothesis generation and hypothesis evaluation.
Hypotheses are interpretation possibilities for the student solution1. Once the student
solution is submitted for evaluation, the diagnosis is carried out as follows: 1) Hypothesis
generation: structural elements the student solution are mapped to the ones in the semantic
table (or the specification of predicate signature) and the created mappings are hypotheses
about the intention of the student; 2) Hypothesis evaluation: for each mapping, the
plausibility of selected hypotheses is computed based on violated constraints using a
multiplicative model. The mapping which has the highest plausibility score represents the
best hypothesis. Diagnostic information about shortcomings in the student solution is
gathered from constraint violations. Superfluous and missing elements in the student
solution are detected based on the hypothesis mapping. A detailed description of INCOM
can be found in ([4]).

2. Evaluation Methodology for Diagnostic Accuracy: State of Art

Diagnostic accuracy is a particular performance metrics which is used to explore individual
factors or features of an ITS ([1]). According to [6], it falls into the category of internal
evaluations because it concerns the inner workings of an ITS, here, the diagnosis
component. Diagnostic accuracy is rarely considered in the literature about evaluations of

1 The term “student solution” means both student’s input for signature declaration and implementation.

ITS. Instead, we can find evaluation methodologies which are based on comparing the
learning effectiveness between a control and an experimental group or on the difference
between the results of a pre- and a post-test. The reason might be that most existing ITSs
provide structured interfaces, i.e. solution templates, slots or selection menus for which the
evaluation of diagnostic accuracy is not necessary. Using such an environment, the student
inputs unambiguous solutions and the student’s intention is identified uniquely. If the
location of an error is identified, it is evident that the structural element at that location is the
source of the error. Therefore, diagnostic accuracy is normally not a crucial issue for ITSs
with such structured interfaces. Several constraint-based tutors have been developed using
structured interfaces for instance SQLTutor tutors SQL (??), NORMIT for database
normalization (??) and KERMIT for database design (??). Although those domains are ill-
defined pertaining to tutoring, those systems undertake the design decisions which actually
should be make by the student as Kodaganallur and colleagues have commented “These
tutors deliberately reduce task complexity to the point where they are not design tasks
anymore.” (??, p.308).

Yet several ITSs emphasize the diagnostic accuracy in their evaluations, for example
PROUST ([2]) which performs intention-based diagnosis of errors in novice PASCAL
programs, PITS (??) and Hong’s Prolog Tutor (??) which diagnose errors in Prolog
programs. These system have been evaluated based on the following measures: 1) the
percentage of programs whose solution strategy is identified correctly, 2) the percentage of
correctly recognized bugs, and 3) number of false alarms which are bugs detected by the
systems but not expected by a human tutor.

3. Evaluation for the Diagnosis Component

The measures described above can be categorized into two groups based on different goals:
1. The evaluation of intention analysis: a student solution is correctly analyzed if the

system detects the implemented strategy in that solution and interprets it correctly.
2. The evaluation of diagnostic reliability: a system’s diagnosis is reliable if it is

assessed to be close to a defined gold standard.
For the evaluation of diagnostic reliability, we will not apply the measures of the

second category. Instead, we adopt evaluation measures (Recall, Precision) from the
Information Retrieval (IR) field because of two reasons: 1) The measures of the second
group reflect the diagnostic reliability on a very low level; and 2) IR and constraint-based
diagnosis are selection tasks: find a subset from a set of possible results and the measures
(Recall, Precesion) conveys a more general conclusion about the reliability of a diagnosis.

3.1 Evaluation of Intention Analysis

To conduct the evaluation of intention analysis we selected appropriate exercises and
solutions from past written examinations. The participants were students who had chosen
their major in different branches of Informatics. The examination candidates had attended a
course in logic programming which was offered as a part of the first semester curriculum in
Informatics. This evaluation has been described in [5] and it is reported that INCOM is able
to analyze 87.9% (sd=17.1%) of 221 collected student solutions correctly.

3.2 Evaluation of Diagnostic Reliability

3.2.1 Recall and Precision

According to [9] Recall and Precision are defined with respect to Table 3 as follows:

• Recall=
A

A+C
 and Precision=

A
A+B

Should-be bugs Should-not bugs

Retrieved bugs A B

Not-retrieved bugs C

Table 3: Categories for Precision and Recall

Should-be and should-not bugs are derived from relevant constraints which should be
violated and should not, respectively. Since a constraint can be relevant and applied to
different structural elements of a solution, several bugs might stem from the same constraint.
Whereas should-be and should-not bugs are determined by the human judge which is called
a gold-standard, retrieved and not-retrieved bugs are decided by the system’s diagnosis. The
measures introduced above can be understood as follows:
• A high precision means that the model is based on fairly reliable constraints, which have

a low risk of producing false alarms, i.e. the developer was careful to avoid risky
constraints.

• A high recall means that the diagnosis considers a broad set of relevant constraints.

3.2.2 Gold Standard

In order to apply the measures introduced in 3.2.1, it is necessary to develop a gold standard.
For our system, the gold standard is specified in two parts: a list of should-be bugs and a list
of should-not bugs for a given student solution.

For this purpose, we requested a Prolog expert. His task was to check every bug
returned by INCOM for a given student solution. In order to facilitate his work, we
developed an assessment tool (Figure 1). For each student solution, the expert is shown the
exercise description, a manually added hypothesis about the predicate declaration used by
the student, and a list of bugs which is the result of the system’s diagnosis. The expert
assesses the list of bugs iteratively by choosing the options OK or NotOK if he thought that a
bug is appropriate or not, respectively. In addition, the expert had the possibility to write his
comment into the text field associated to each bug. At the bottom of the interface, the expert
had the option to add general comments which are not specific to the presented bugs, for
example, he/she thought that crucial bugs have been missed.

The gold standard, that means the amount of should-be and should-not bugs, is
established based on two sources of information: 1) the system’s diagnosis and 2) the
information extracted from the expert’s assessment. The former amount consists of bugs
approved by the expert together with the bugs indicated as missing. The latter amount is the
difference between the number of relevant constraints for the solution being investigated and
the amount of should-be bugs.

3.2.3 Evaluation Results

For the evaluation of diagnostic reliability we applied the diagnosis to student solutions
which have been classified as understandable during the evaluation of intention analysis.
The result of the system’s diagnosis was then forwarded to the assessment tool of our Prolog
expert. After a gold standard has been specified, Precision and Recall are calculated for each
student solution according to the formulas introduced above. Table 2 summarizes the results
for all understandable student solutions to each problem task.

The result of our evaluation of diagnostic reliability shows that the Recall measure is
high. It ranges between 0.9010 and 1.0000. It indicates that the system’s diagnosis takes a
wide range of relevant constraints into account. We notice that the Precision is always lower
than the Recall for each task. That means the diagnosis emphasizes the importance more on
the quantity than the quality. The Task 1 has the lowest Precision (0.8426) which alerts us
that the system has some weaknesses at diagnosing solutions for this problem task. Our
expert, who has assessed the system’s diagnosis, found out that if a solution is erroneous
because of a swapped argument position. For that problem, the system detects many bugs
which are correct, however, not necessary. Instead, a bug considering argument position is
enough, according to our expert. It seems that the precision of system’s diagnosis is too
high, (0.9266 in overall). This might be caused by the method we used to determine the gold
standard which is strongly biased by the result of the system’s diagnosis. The underlying
data of our evaluation are available on the homepage of our project (https://nats-
www.informatik.uni-hamburg.de/view/INCOM/Dokumentation)

Task Recall Precision

1 0.9479 0.8426

2 1.0000 0.8750

3 1.0000 1.0000

Figure 1: A tool using to assess the system's diagnosis

4 0.9010 0.8906

5 1.0000 0.9737

6 0.9811 0.9528

7 0.9517 0.9517

Overall 0.9688 0.9266

Table 4: Evaluation of diagnostic reliability

4. Discussion

We compare the systems PROUST, PITS and Hong’s Prolog tutor with respect to the
intention analysis and diagnostic reliability because they provide problem tasks which are
similar difficult as ours. In the following we demonstrate how Recall and Precision of
PROUST is calculated. The results for systems are calculated similarly.

Fully analyzed Partially analyzed Categories for Recall & Precision

Bugs recognized 562 61 A=562+61=623

Bugs not recognized 36 106 C=36+106=142

False alarms 66 20 B=66+20=86

Table 5: A part of evaluation statistics of PROUST on the Rainfall problem

The categories for Recall and Precision are retrieved by summing up the results of
completely and partially analyzed programs as shown in Table 3.

• Recall =
A

A+C
=
623
623142

= 0.81 and Precision =
A

A+B
=
623
62386

= 0.88

System Intention
Analysis

Precision Recall

INCOM 87.9% 0.93 0.97

PROUST 96% 0.88 0.81

The comparison is conducted based on reported evaluation statistics reported in the
corresponding literature and under the assumption that the gold standard of those systems
has been specified comparatively as ours.

5. Conclusions and Future Works

The combination of the evaluation of analysis ability and diagnostic reliability to assess the
diagnostic accuracy has the following advantages:

1. From the perspective of a system developer, the two steps evaluation of diagnostic
accuracy helps him/her to detect easily which part of the system should be improved.
The result of the first evaluation step, the system is able to analyze 87.9% of 221
student solutions correctly, motivates us to enhance the ability of intention analysis
of the system. This can be done by taking helper predicates into consideration when
diagnosing errors. That means, if a student solution uses a helper predicate, it can be
categorized as understandable for error diagnosis. Improving the system, this way

corresponds to the intention of the evaluation of diagnostic accuracy because it is a
type of internal evaluation ([1]).

2. From the perspective of an evaluator, the result of the second evaluation step, the
diagnostic reliability, confirms the result of the first one, the intention analysis. If the
result of the first evaluation step were low whereas the second one were high, this
would raise a question: “How is a solution which cannot correctly be analyzed can
yield a reliable diagnosis?” and we need to recheck our evaluation.

3. The measures Recall and Precision help us to suit the diagnosis according to our
requirement. In our opinion, a coaching system would be more useful if it could
provide as much diagnostic information as possible. That means, Recall should be
maximized. However, if Recall increases, Precision will decreases because the
diagnosis becomes less accurate if a wider range of bugs is considered. The Recall
value of our system is higher than the Precision. This agrees with our intention.

Beside the advantages, our methodology of evaluating the diagnostic accuracy has a
shortcoming. “An important limitation to all diagnostic accuracy procedures is the
assumption that the correctness of diagnoses can be unambiguously determined.” ([3]).
Unfortunately, this assumption is not realizable for the error diagnosis in an ill-defined
domain like logic programming. If an erroneous solution is diagnosed by several human
experts, we expect different diagnostic results. While defining the gold standard for our
evaluation of diagnostic reliability, the system developer did not agree with 3 of 535
comments which the Prolog expert made for the system’s diagnosis. To solve the problem of
disagreement between the system developer and the Prolog expert, they had to communicate
and negotiated the gold standard.

In addition to off-line evaluations, we are planing to conduct an on-line evaluation for
two purposes: 1) to confirm the ability of intention analysis and 2) to evaluate the
educational impact of the system on students.

Acknowledgments

We would like to thank Thomas Kopinski for assessing the system’s diagnosis.

References

[1] Iqbal, A.; Oppermann, R.; Patel, A. & Kinshuk (1999). A classification of evaluation methods for
Intelligent Tutoring Systems. In Software-Ergonomie '99, Design von Informationswelten, Gemeinsame
Fachtagung des German Chapter of the ACM, der Gesellschaft füf Informatik (GI) und der SAP AG (pp.
169-181). Teubner.

[2] Johnson, W. L. (1990). Understanding and debugging novice programs. International Journal of
Artificial Intelligence, 42, 51-97.

[3] Legree, P.; Gillis, P. & Orey, M. (1993). The quantitative evaluation of intelligent tutoring systems
applications: product and process criteria. International Journal of Artificial Intelligence in Education,
4(2/3), 209-226.

[4] Le, N. T. (2007). Diagnosing errors in logic programming - The case of an ill-defined domain.
Technical Report, University of Hamburg, Department of Informatics. FBI-HH-B-280/07.

[5] Le, N. T. & Menzel, W. (2008). The Coverage of Error Diagnosis in Logic Programming Using
Weighted Constraints - The Case of an Ill-defined Domain. To be published in the Proceedings of 21st

International FLAIRS Conference, Special Track on Intelligent Tutoring Systems.
[6] Littman, D. & Soloway, E. (1988). Evaluating ITSs: The Cognitive Science Perspective. In Polson, M.

C. & Richardson, J. J. (Eds), Foundations of Intelligent Tutoring Systems (pp. 209-242). Lawrence
Earlbaum Associate.

[7] Menzel, W. (2006). Constraint-based Modeling and Ambiguity. International Journal of Artificial
Intelligence in Education, 16, 29-63.

[8] Ohlsson, S. (1994). Constraint-based student modelling. In Greer, J. E. & McCalla, G. I. (Eds), Student
Modelling: The Key to Individualized Knowledge-based Instruction (pp. 167-189). Springer Verlag.

[9] Rijsbergen, C. J. van (1979). Information retrieval. Butterworths.

Appendix

A sample task for evaluation:
A salary database is implemented as a list whose odd elements represent names and even
elements represent salaries measured in Euro. For example: [meier, 3600, schulze, 5400,
mueller, 6300, ..., bauer, 4200]. Define a predicate which computes a new salary list based
on the given one according to following rules: 1) a salary below or equal 5000 Euro will be
raised by 3%; 2) a salary above 5000 Euro will be raised by 2%.

