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Abstract: Researchers agree that error diagnosis is one of the most important components 
of  an Intelligent  Tutoring System (ITS).  Therefore,  the  diagnostic  accuracy of  an ITS 
within  an  ill-defined  domain  should  attract  attention.  In  this  paper  we  introduce  our 
constraint-based  error  diagnosis  approach  for  logic  programming  and  demonstrate  an 
evaluation methodology which measures  diagnostic  accuracy and is  comprised  of  two 
parts: evaluation of intention analysis and evaluation of diagnostic reliability.
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Introduction

Researchers agree that error diagnosis is  one of the most important  components  of  an 
Intelligent Tutoring System (ITS). This focus is motivated by the following observations: 

1. The diagnosis component provides diagnostic information about student solutions 
and serves to build an appropriate student model. Especially, in ill-defined domains, 
the diagnosis of erroneous solutions is uncertain because for an error there might be 
many conflicting explanations ([1]). For example, the student is requested to write a 
subgoal to check whether a person is an adult. An erroneous student solution might 
be Age>18. The student has either made an mistake at the operator or the operand 
(18). If we want to give a feedback to the student, we have to choose between two 
correction proposals: Age>=18 or Age>17.

2. Subsequent  pedagogical  interactions,  which  are  dependent  on  the  correct 
interpretation and diagnosis  of  student  errors ([3]),  might  mislead students.  For 
example, to compute the result of an investment of amount of money X with an 
interest  rate  Y  after  N  years,  we  can  apply  the  analytic  strategy 
Result=X*(Y+1)^N  or we can apply the strategy of recursive computation. 
Even recursive computation can be distinguished between accumulative and naive 
recursion. If we would not identify the student’s intention correctly, all feedback is 
useless and force the student to follow another strategy which does not agree with 
his/her intention.

Therefore, the diagnostic accuracy of ITSs of an ill-defined domains should attract 
more attention than other ITS components  as Littman ([6]) predicted:  “It  appears that 
progress in  evaluation will  go hand in hand with progress in  diagnosing students and 
identifying appropriate student models”.

In this paper we introduce our constraint-based error diagnosis approach for logic 
programming which has characteristics of an ill-defined domain ([5]).  Furthermore,  we 
demonstrate  an  evaluation  methodology  which  measures  diagnostic  accuracy  and  is 
comprised of  two  parts:  evaluation  of  intention  analysis  and  evaluation of  diagnostic 



reliability. In the first section, a coaching system for logic programming (INCOM) is briefly 
described. Then, we review methodologies for the evaluation of diagnostic accuracy of ITS 
in  the  second  section.  Next,  we  describe  our  evaluation  and  present  its  result.  The 
advantages and limitations of this evaluation methodology are discussed in the last section.

1. INCOM: a Constraint-based Coaching System for Logic Programming

1.1 Training Scenario

INCOM is intended to help students of a logic programming course overcoming difficulties 
when doing their homeworks. The system prompts the student with a programming problem 
and provides feedback to coach her/him composing a correct solution. Given a task, the 
student is guided to go through two phases: 1) the task analysis and 2) the design and 
implementation. In the first phase, the student is requested to input an adequate signature for 
the predicate to be implemented. A predicate signature consists of information about: 1) the 
number of argument positions, 2) type for each argument position, 3) mode of intended 
usage of the predicate (input, output or indeterminate). If the signature is not appropriate, 
INCOM helps her/him to understand the task. This way, the student's ability to analyze a 
problem is determined. In the second phase, the student is invited to compose a solution for 
the given exercise in an unrestricted form. The user interface neither requires the student to 
adhere to an anticipated solution strategy nor does it specify the arrangement of solution 
elements (i.e. no input templates are used). 

The student is allowed to create programs using pure Prolog, a logic programming 
language. Cuts, disjunctions or if-then-else operators are currently not supported. Similarly, 
no assert, retract, abolish or other database-altering predicates can be used. The set of built-
in predicates which can be employed by the students are: =, =.=, =\=, ==, \==, >, >=, <, =<, 
=.., +, -, *, /, ^ and 'is'. Helper predicates are provided explicitly in the problem statement or 
must be defined by the student.

Under these conditions, the student has a free choice of variable and predicate names, 
can arrange the parameters within a  subgoal or a  clause head freely and define helper 
predicates as needed. Due to this degree of freedom, solving a programming task required 
the student to make numerous decisions to compose a solution. Thus, composing a program 
freely is an instance of a design problem which is usually considered ill-defined.

1.2 Knowledge Representation and Error Diagnosis

In order to cover the solution space for a logic programming problem under the conditions 
above, we need techniques to represent the semantics imposed by the problem description 
without the necessity to enumerate individual solutions. For this purpose, we specify an 
appropriate  predicate  signature,  develop  a  so-called  semantic  table  and  extend  the 
constraint-based modeling (CBM) approach ([8]) with constraint weights. We clarify our 
approach by using the problem task Salary described in Appendix. 

The specification of a predicate signature describes the meaning, type and modus of 
argument positions which are required in  the problem statement. For instance, Table 1 
specifies the signature for a predicate Salary/2. The information in this table is used for the 
declaration diagnosis. 

Argument Type Mode Description

Arg1 list input This argument stands for the old salary list

Arg2 list output This argument stands for the new salary list

Table 1: Signature for the predicate Salary



The semantic table contains necessary information for the implementation of a given 
task. It is specified by means of generalized sample solutions which describe the framework 
of a predicate definition in relational form. That is, clauses, subgoals and argument positions 
are  not  restricted  to  a  particular  sequential  arrangement.  In  addition,  all  unification 
conditions are expressed explicitly and clause heads as well as subgoals are represented in 
normal  form.  The  normal  form  representation  reveals  the  underlying  programming 
techniques. Thereby, the diagnosis becomes more adequate on the conceptual level and the 
resulting  feedback becomes more  useful.  If  there  are  several solution  strategies  for  a 
problem, each of  them is  specified by  a  separate entry in  the semantic table.  Table  2 
specifies the required characteristics of solutions which implement the predicate Salary/2. 
The information in this table is used for the implementation diagnosis.

Strategy Clause Head Body Description
naive 

recursion
1

salary(OldL,NewL)
OldL=[]
NewL=[]  

Old list is empty
New list is empty

naive 
recursion

2 salary(OldL,NewL) OldL=[N,S|T]
NewL=[N,Snew|Tnew]
S=<5000
Snew is S+S*0.03
salary(T,Tnew)

N, S: name, salary
build a new salary list
Salary less than 5000
Salary is increased
Decompose old salary list recursively

Table 2: Semantic Table for the predicate Salary 

Constraint weights can be conceived of as a measure of importance for a constraint. 
For example, a clause is composed of a clause head and a set of subgoals, each of which 
contains a functor and its arguments. A subgoal contributes more information to the overall 
correctness of the solution compared to an argument or a functor. Hence, a constraint which 
examines an argument should be specified as being less important compared to a constraint 
checking a subgoal. We use weighted constraints in order to measure the plausibility of 
different correction proposals for an error. The reason is, for a programming problem, which 
has characteristics of ill-definedness, there are many or even uncountably many solutions.

According to the two-phase design of the training scenario, the diagnosis procedure is 
separated into  two  steps:  declaration  and  implementation  diagnosis.  In  principle,  the 
diagnosis is carried out as an interaction of hypothesis generation and hypothesis evaluation. 
Hypotheses  are  interpretation  possibilities  for  the  student  solution1.  Once  the  student 
solution is submitted for evaluation, the diagnosis is carried out as follows: 1) Hypothesis 
generation: structural elements the student solution are mapped to the ones in the semantic 
table (or the specification of predicate signature) and the created mappings are hypotheses 
about  the  intention  of  the  student;  2)  Hypothesis  evaluation:  for  each  mapping,  the 
plausibility  of  selected hypotheses is  computed based  on  violated constraints  using  a 
multiplicative model. The mapping which has the highest plausibility score represents the 
best  hypothesis.  Diagnostic  information  about  shortcomings  in  the  student  solution  is 
gathered from constraint  violations.  Superfluous  and  missing  elements  in  the  student 
solution are detected based on the hypothesis mapping. A detailed description of INCOM 
can be found in ([4]).

2. Evaluation Methodology for Diagnostic Accuracy: State of Art

Diagnostic accuracy is a particular performance metrics which is used to explore individual 
factors or features of an ITS ([1]). According to  [6], it falls into the category of internal 
evaluations  because  it  concerns  the  inner  workings  of  an  ITS,  here,  the  diagnosis 
component. Diagnostic accuracy is rarely considered in the literature about evaluations of 

1 The term “student solution” means both student’s input for signature declaration and implementation.



ITS.  Instead,  we can find evaluation methodologies which are based on comparing the 
learning effectiveness between a control and an experimental group or on the difference 
between the results of a pre- and a post-test. The reason might be that most existing ITSs 
provide structured interfaces, i.e. solution templates, slots or selection menus for which the 
evaluation of diagnostic accuracy is not necessary. Using such an environment, the student 
inputs  unambiguous  solutions  and the  student’s  intention  is  identified uniquely.  If  the 
location of an error is identified, it is evident that the structural element at that location is the 
source of the error. Therefore, diagnostic accuracy is normally not a crucial issue for ITSs 
with such structured interfaces. Several constraint-based tutors have been developed using 
structured  interfaces  for  instance  SQLTutor  tutors  SQL  (??),  NORMIT for  database 
normalization (??) and KERMIT for database design (??). Although those domains are ill-
defined pertaining to tutoring, those systems undertake the design decisions which actually 
should be make by the student as Kodaganallur and colleagues have commented “These 
tutors deliberately reduce task complexity to the point where they are not design tasks  
anymore.” (??, p.308). 

Yet several ITSs emphasize the diagnostic accuracy in their evaluations, for example 
PROUST ([2])  which performs intention-based  diagnosis  of  errors in  novice PASCAL 
programs, PITS  (??)  and  Hong’s  Prolog  Tutor  (??)  which  diagnose  errors  in  Prolog 
programs. These system have been evaluated based on the following measures: 1)  the 
percentage of programs whose solution strategy is identified correctly, 2) the percentage of 
correctly recognized bugs, and 3) number of false alarms which are bugs detected by the 
systems but not expected by a human tutor.

3. Evaluation for the Diagnosis Component

The measures described above can be categorized into two groups based on different goals:
1. The evaluation of intention analysis: a student solution is correctly analyzed if the 

system detects the implemented strategy in that solution and interprets it correctly.
2. The evaluation of diagnostic  reliability:  a  system’s  diagnosis  is  reliable if  it  is 

assessed to be close to a defined gold standard.
For the evaluation of diagnostic reliability,  we will  not apply the measures of the 

second  category.  Instead,  we  adopt  evaluation  measures  (Recall,  Precision)  from  the 
Information Retrieval (IR) field because of two reasons: 1) The measures of the second 
group reflect the diagnostic reliability on a very low level; and 2) IR and constraint-based 
diagnosis are selection tasks: find a subset from a set of possible results and the measures 
(Recall, Precesion) conveys a more general conclusion about the reliability of a diagnosis.

3.1 Evaluation of Intention Analysis

To  conduct the  evaluation  of  intention  analysis  we  selected appropriate exercises and 
solutions from past written examinations. The participants were students who had chosen 
their major in different branches of Informatics. The examination candidates had attended a 
course in logic programming which was offered as a part of the first semester curriculum in 
Informatics. This evaluation has been described in [5] and it is reported that INCOM is able 
to analyze 87.9% (sd=17.1%) of 221 collected student solutions correctly.



3.2 Evaluation of Diagnostic Reliability

3.2.1 Recall and Precision

According to [9] Recall and Precision are defined with respect to Table 3 as follows:

• Recall=
A

A+C
  and Precision=

A
A+B

Should-be bugs Should-not bugs

Retrieved bugs A B

Not-retrieved bugs C

Table 3: Categories for Precision and Recall

Should-be and should-not bugs are derived from relevant constraints which should be 
violated and should not,  respectively.  Since a constraint  can be relevant  and applied to 
different structural elements of a solution, several bugs might stem from the same constraint. 
Whereas should-be and should-not bugs are determined by the human judge which is called 
a gold-standard, retrieved and not-retrieved bugs are decided by the system’s diagnosis. The 
measures introduced above can be understood as follows:
• A high precision means that the model is based on fairly reliable constraints, which have 

a  low risk  of producing false alarms, i.e.  the developer was careful to  avoid  risky 
constraints.

• A high recall means that the diagnosis considers a broad set of relevant constraints.

3.2.2 Gold Standard

In order to apply the measures introduced in 3.2.1, it is necessary to develop a gold standard. 
For our system, the gold standard is specified in two parts: a list of should-be bugs and a list 
of should-not bugs for a given student solution.

For this purpose, we requested a Prolog expert. His task was to check every bug 
returned by  INCOM for  a  given student  solution.  In  order  to  facilitate  his  work,  we 
developed an assessment tool (Figure 1). For each student solution, the expert is shown the 
exercise description, a manually added hypothesis about the predicate declaration used by 
the student, and a list of bugs which is the result of the system’s diagnosis. The expert 
assesses the list of bugs iteratively by choosing the options OK or NotOK if he thought that a 
bug is appropriate or not, respectively. In addition, the expert had the possibility to write his 
comment into the text field associated to each bug. At the bottom of the interface, the expert 
had the option to add general comments which are not specific to the presented bugs, for 
example, he/she thought that crucial bugs have been missed.

The  gold  standard, that  means the  amount  of  should-be and  should-not bugs,  is 
established based on two sources of information: 1) the system’s  diagnosis  and 2) the 
information extracted from the expert’s assessment. The former amount consists of bugs 
approved by the expert together with the bugs indicated as missing. The latter amount is the 
difference between the number of relevant constraints for the solution being investigated and 
the amount of should-be bugs. 



3.2.3 Evaluation Results

For the evaluation of diagnostic reliability we applied the diagnosis to student solutions 
which have been classified as  understandable  during the evaluation of intention analysis. 
The result of the system’s diagnosis was then forwarded to the assessment tool of our Prolog 
expert. After a gold standard has been specified, Precision and Recall are calculated for each 
student solution according to the formulas introduced above. Table 2 summarizes the results 
for all understandable student solutions to each problem task.

The result of our evaluation of diagnostic reliability shows that the Recall measure is 
high. It ranges between 0.9010 and 1.0000. It indicates that the system’s diagnosis takes a 
wide range of relevant constraints into account. We notice that the Precision is always lower 
than the Recall for each task. That means the diagnosis emphasizes the importance more on 
the quantity than the quality. The Task 1 has the lowest Precision (0.8426) which alerts us 
that the system has some weaknesses at diagnosing solutions for this problem task. Our 
expert, who has assessed the system’s diagnosis, found out that if a solution is erroneous 
because of a swapped argument position. For that problem, the system detects many bugs 
which are correct, however, not necessary. Instead, a bug considering argument position is 
enough, according to our expert. It seems that the precision of system’s diagnosis is too 
high, (0.9266 in overall). This might be caused by the method we used to determine the gold 
standard which is strongly biased by the result of the system’s diagnosis. The underlying 
data  of  our  evaluation  are  available  on  the  homepage  of  our  project  (https://nats-
www.informatik.uni-hamburg.de/view/INCOM/Dokumentation)

Task Recall Precision

1 0.9479 0.8426

2 1.0000 0.8750

3 1.0000 1.0000

Figure 1: A tool using to assess the system's diagnosis



4 0.9010 0.8906

5 1.0000 0.9737

6 0.9811 0.9528

7 0.9517 0.9517

Overall 0.9688 0.9266

Table 4: Evaluation of diagnostic reliability

4. Discussion

We compare the systems PROUST,  PITS and Hong’s  Prolog tutor  with  respect to  the 
intention analysis and diagnostic reliability because they provide problem tasks which are 
similar difficult  as ours.  In the following we demonstrate how Recall and Precision of 
PROUST is calculated. The results for systems are calculated similarly.

Fully analyzed Partially analyzed Categories for Recall & Precision

Bugs recognized 562 61 A=562+61=623

Bugs not recognized 36 106 C=36+106=142

False alarms 66 20 B=66+20=86

Table 5: A part of evaluation statistics of PROUST on the Rainfall problem

The categories for Recall and Precision are retrieved by summing up the results of 
completely and partially analyzed programs as shown in Table 3. 

• Recall =
A

A+C
=
623
623142

= 0.81 and Precision =
A

A+B
=
623
62386

= 0.88

System Intention
Analysis

Precision Recall

INCOM 87.9% 0.93 0.97

PROUST 96% 0.88 0.81

The  comparison  is  conducted  based  on  reported  evaluation  statistics  reported  in  the 
corresponding literature and under the assumption that the gold standard of those systems 
has been specified comparatively as ours.

5. Conclusions and Future Works

The combination of the evaluation of analysis ability and diagnostic reliability to assess the 
diagnostic accuracy has the following advantages:

1. From the perspective of a system developer, the two steps evaluation of diagnostic 
accuracy helps him/her to detect easily which part of the system should be improved. 
The result of the first evaluation step, the system is able to analyze 87.9% of 221 
student solutions correctly, motivates us to enhance the ability of intention analysis 
of the system. This can be done by taking helper predicates into consideration when 
diagnosing errors. That means, if a student solution uses a helper predicate, it can be 
categorized as  understandable for error diagnosis.  Improving the system, this way 



corresponds to the intention of the evaluation of diagnostic accuracy because it is a 
type of internal evaluation ([1]).

2. From the perspective of an evaluator, the result of the second evaluation step, the 
diagnostic reliability, confirms the result of the first one, the intention analysis. If the 
result of the first evaluation step were low whereas the second one were high, this 
would raise a question: “How is a solution which cannot correctly be analyzed can 
yield a reliable diagnosis?” and we need to recheck our evaluation.

3. The measures Recall and Precision help us to suit the diagnosis according to our 
requirement. In our opinion, a coaching system would be more useful if it  could 
provide as much diagnostic information as possible. That means, Recall should be 
maximized.  However,  if  Recall  increases, Precision  will  decreases because the 
diagnosis becomes less accurate if a wider range of bugs is considered. The Recall 
value of our system is higher than the Precision. This agrees with our intention.

Beside the advantages, our methodology of evaluating the diagnostic accuracy has a 
shortcoming.  “An  important  limitation  to  all  diagnostic  accuracy  procedures  is  the 
assumption that the correctness of  diagnoses can be unambiguously determined.”  ([3]). 
Unfortunately,  this  assumption is  not realizable for the error diagnosis in an ill-defined 
domain like logic programming. If an erroneous solution is diagnosed by several human 
experts, we expect different diagnostic results. While defining the gold standard for our 
evaluation  of  diagnostic  reliability,  the  system developer  did  not  agree with  3  of  535 
comments which the Prolog expert made for the system’s diagnosis. To solve the problem of 
disagreement between the system developer and the Prolog expert, they had to communicate 
and negotiated the gold standard. 

In addition to off-line evaluations, we are planing to conduct an on-line evaluation for 
two  purposes:  1)  to  confirm  the  ability  of  intention  analysis  and  2)  to  evaluate  the 
educational impact of the system on students.
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Appendix

A sample task for evaluation:
A salary database is implemented as a list whose odd elements represent names and even 
elements represent salaries measured in Euro. For example: [meier, 3600, schulze, 5400, 
mueller, 6300, ..., bauer, 4200]. Define a predicate which computes a new salary list based 
on the given one according to following rules: 1) a salary below or equal 5000 Euro will be 
raised by 3%; 2) a salary above 5000 Euro will be raised by 2%. 


