
Natural Language Processing

Wolfgang Menzel

Department für Informatik
Universität Hamburg

Natural Language Processing: 1

Natural Language Processing

NLP is ...

... engineering + science

... linguistics + technology

Natural Language Processing: Natural Language Processing 2

Natural Language Processing

• Engineering:
• How to build a system?
• How to select a suitable approache/tool/data source?
• How to combine different approaches/tools/data sources?
• How to optimize the performance with respect to quality and

resource requirements?
• time, space, data, wo-/manpower

• Science:
• Why an approach/tool/data source works/fails?
• Why an approach/tool/data source A works better than B?

Natural Language Processing: Natural Language Processing 3

Natural Language Processing

• Linguistics:
• What are suitable description levels for language?
• What are the rules of a language?
• How meaning is etsablished and communicated?
• What have languages in common? How do they differ?
• How languages can be learnt?

• Technology:
• How an application problem can be solved?

• Machine translation
• Information retrieval
• Information extraction
• Speech recognition

• Does linguistic knowledge help or hinder?

Natural Language Processing: Natural Language Processing 4

Examples

• ... are important to illustrate concepts and models

• but: The language problem

• Common ground: English

• me:
• German
• (Russian)
• ((Polish))

• you:
• Amharic
• ...
• ...

Natural Language Processing: Natural Language Processing 5

Doing research in NLP

• Motivation

• Problem definition

• Modelling/Implementation

• Evaluation

• Discussion

Natural Language Processing: Natural Language Processing 6

Doing research in NLP

• Motivation:
• Why is the task important?
• Has the task been addressed before? For other/similar

languages?
• Is it realistic to solve the task?

• Problem definition:
• What kind of input data?
• What kind of processing results are expected?
• What level of quality (process/results) is needed?

Natural Language Processing: Natural Language Processing 7

Doing research in NLP

• Modelling/Implementation:
• Which information needs to be captured by the model?
• Which information is actually captured and how good?
• Which variants of the approach can be devised? Which

parameters need to be tuned?
• Which information sources are available/need to be

developed
• corpora, annotated corpora, dictionaries, grammars, ...

• Which algorithms are available to apply the model to a task?
• What are their computational properties?

Natural Language Processing: Natural Language Processing 8

Doing research in NLP

• Evaluation:
• How to measure the performance of a solution?

• metrics, data, procedure
• How good is the solution (compared to a baseline)?
• What’s the contribution of the different model components?
• Which are the most promising system versions?

• Discussion:
• Why the approach is superior/inferior to previous ones/to

other versions of the system?
• Which are the particular strengths of the approach, where

are its limitations?

Natural Language Processing: Natural Language Processing 9

Doing research in NLP

• Applying a cyclic approach
• redefine the task
• choose another modelling approach
• modify the solution / choose other parameter settings

Natural Language Processing: Natural Language Processing 10

Content of the course

Part 1: Non-deterministic procedures

• search spaces

• search strategies and their resource requirements

• recombination (graph search)

• heuristic search (Viterbi, A*)

• relationship between NLP and non-deterministic procedures

Natural Language Processing: Natural Language Processing 11

Content of the course

Part 2: Dealing with sequences

• Finite state techniques

• Finite state morphology

• String-to-string matching

• Speech recognition 1: DTW

• Speech recognition 2: Hidden-Markov-Models

• Tagging

Natural Language Processing: Natural Language Processing 12

Content of the course

Part 3: Dealing with structures

• Dependency parsing

• Phrase-structure parsing

• Unification-based grammars

• Constraint-based models (HPSG)

Natural Language Processing: Natural Language Processing 13

Part 1: Non-deterministic procedures

• non-determinism

• search spaces

• search strategies and their resource requirements

• recombination (graph search)

• heuristic search (Viterbi, A*)

• non-determinism and NLP

Natural Language Processing: Non-determinism 14

Non-determinism

An algorithm is swaid to be non-deteministic if local decisions cannot
be uniquely made and alternatives have to be considered instead.

• (route) planning

• scheduling

• diagnosis

Natural Language Processing: Non-determinism 15

Search spaces

• a non-deterministic algorith spans a search space

• a search space can be represented as a directed graph
• states (e.g. crossroads)
• state transitions (e.g. streets)
• initial state(s) (e.g. starting point)
• final state(s), goal state(s) (e.g. destination)

• choice points: Branchings of the graph

Natural Language Processing: Non-determinism 16

Search spaces

• many different variants of search problems
• one initial state / many initial states
• one final state / many final states

• one search result suffices vs. all of them need to be
found (exhaustive search, computationally complete)

• acyclic vs. cyclic graphs
• final state is known vs. only properties of the final state are

known
• ...

Natural Language Processing: Non-determinism 17

Search strategies

• simplest case: the search space is unfolded into a tree during
search

• the search space can be traversed in different orders → different
unfoldings

• forward search vs. backward search

• depth-first vs. breadth-first

Natural Language Processing: Non-determinism 18

Search strategies

• resource requirements for tree search

• simplifying assumption: uniform branching factor at choice points

• time vs. space
• depth-first vs. breadth-first
• best case vs. worst case vs. mean case

• termination conditions

Natural Language Processing: Non-determinism 19

Search strategies

• recombination: search paths which lead to the same state can
be recombined (graph search)

• requires identification of search states

• simple, if unique identifiers available

• more complex, if startes are described by structures

• base-level effort vs. meta-level effort

Natural Language Processing: Non-determinism 20

Heuristic search

• so far important simplifying assumptions made
• all transitions at a choice point are equally good
• all final states are equally good

• usually not valid. e.g.
• different street conditions (e.g. slope), different street

lengths
• differently distant/acceptable goal states (e.g. shops)

• search becomes an optimization problem, e.g.
• find the shortest path
• find the best goal state

Natural Language Processing: Non-determinism 21

Heuristic search

• computational approaches for optimum path problems:
A*-search, Viterbi-search

• A*-search
• requires the existence of a residual cost estimation (how far

I am probably still away from the goal state?)
• guarantees to find the optimum
• well suited for metrical spaces

• Viterbi-search
• recombination search which only considers promising state

transitions
• can be easily combined with additional pruning heuristics

(beam search)

Natural Language Processing: Non-determinism 22

Non-determinism and NLP

• Why is non-determinism so important for natural language
processing?

• ambiguity on all levels:
• acoustic ambiguity
• lexical ambiguity

• homographs, homonyms, polysemie
• morphological ambiguity

• segmentation, syntactic function of morphs
• syntactic ambiguity

• segmentation, attachment, functional roles
• semantic ambiguity

• scopus
• pragmatic ambiguity

• question vs. answer

Natural Language Processing: Non-determinism 23

Part 2: Dealing with sequences

• Finite state techniques

• String-to-string matching

• Speech recognition 1: DTW

• Speech recognition 2: Hidden-Markov-Models

• POS-Tagging

Natural Language Processing: Dealing with sequences 24

Finite state techniques

• regular expressions
• symbols: a b ...

• sequences of symbols: ab xyz ...

• sets of alternative symbols [ab℄ [a-zA-Z℄ ...

• complementation of symbols [�a℄ [�ab℄ [�a-z℄

• wildcard (any symbol): .

• counter for symbols or expressions
• none or arbitrary many: a* [0-9℄* .* ...

• at least one: a+ [0-9℄+ .+ ...

• none or one: a? [0-9℄? .? ...

• alternatives of expressions: (a*|b*|c*)

Natural Language Processing: Dealing with sequences 25

Finite state techniques

• Finite state automata
• finite alphabet of symbols
• states
• start state
• final state(s)
• labelled (or unlabelled) transitions

• an input string is consumed symbol by symbol by traversing the
automaton at transitions labelled with the current input symbol

• declarative model can be used for analysis and generation

• two alternative representations
• graph
• transition table

Natural Language Processing: Dealing with sequences 26

Finite state techniques

• Mapping between regular expressions and finite state automata
• symbol → transition labeled with the symbol
• sequence → sequence of transitions connected at a state

(node)
• alternative → parallel transitions or subgraphs connecting

the same states
• counter → transition back to the initial state of the subgraph

or skipping the subgraph
• wildcard: parallel transitions labelled with all the symbols

from the alphabet
• complementation: parallel transitions labelled with all but the

specified symbols

Natural Language Processing: Dealing with sequences 27

Finite state techniques

• regular grammars
• substitution rules of the type

• NT1 → NT2 T
• NT → NT T
• NT → T

with NT is a non-terminal symbol and T is a terminal symbol

Natural Language Processing: Dealing with sequences 28

Finite state techniques

• regular expressions, finite state machines and regular grammars
are three formalisms to describe regular languages

• they are equivalent, i.e. they can be transformed into each other
without loss of model information

Natural Language Processing: Dealing with sequences 29

Finite state techniques

• deterministic FSA: each transition leaving a state carries another
symbol

• non-deterministic FSA: else

• each FSA with an unlabelled transition is a non-deterministic one

• each FSA with unlabelled transitions can be transformed into an
equivalent one without

• each non-deterministic FSA can be transformed into an
equivalent deterministic one

• additional states might become necessary

Natural Language Processing: Dealing with sequences 30

Finite state techniques

• composition of FSAs
• concatenation: sequential coupling
• disjunction/union: parallel coupling
• repetition
• intersection: containing only states/transitions which are in

both FSAs
• difference: contains all states/transitions which are in one

but not the other FSA
• complementation: FSA accepting all strings not accepted by

the original one
• reversal: FSA accepting all the reversed sequences

accepted by the original one

• the results of these composition operators are FSAs again

• → algebra for computing with FSA

Natural Language Processing: Dealing with sequences 31

Finite state techniques

• Information extraction with FSAs
• date and time expressions
• named entity recognition

Natural Language Processing: Dealing with sequences 32

Finite state techniques

• Morphology with FSAs
• concatenative morphology

• inflection, derivation, compounding, clitization
• prefixation, suffixation:(re-)?emerg(e|es|ed|ing|er)(re)?load(s?|ed|ing|er)(re)?toss(es?|ed|ing|er)ompl(y|ies|ied|ying|yer)enjoy(s?|ed|ing|er)

• linguistically unsatisfactory
• non-concatenative morphology: reduplication, root-pattern

phenomenon

Natural Language Processing: Dealing with sequences 33

Finite state techniques

• finite state transducers
• transitions are labelled with pairs of symbols
• sequences on different representation levels can be

translatetd into each other
• declarative formalism: translation can be in both directions
• morphological processes can be separated from

phonological ones

Natural Language Processing: Dealing with sequences 34

Finite state techniques

• two representational levels
• lexical representation (concatenation of morphs)emergeStossSloadSomplySenjoyS

• phonological mapping (transformation to surface form)S → s+ / [�ys℄ _ . emerges, loadsS → (es)+ / s _ . tossesyS → (ies|y) / [�ao℄ _ . compliesyS → (ys|y) / [ao℄ _ . enjoys
• similar models for other suffixes/prefixes

Natural Language Processing: Dealing with sequences 35

Finite state techniques

• FSTs can be non-deterministic: one input symbol can translate
into alternative output symbols

• search required → expensive

• transformation of non-deterministic FSAs to deterministic ones?
• only for special cases possible

Natural Language Processing: Dealing with sequences 36

Finite state techniques

• composition of FSTs
• disjunction/union
• inversion: exchange input and output
• composition: cascading FSTs
• intersection: only for ǫ-free FSTs (input and output has the

same length)

• cascaded FSTs: multiple representation levels

• input string may also contain morpho-syntactic features (3sg, pl,
...)

• transformed to an intermediate representation

• phonologically spelled out

Natural Language Processing: Dealing with sequences 37

Finite state techniques

• root-pattern-phenomena

Natural Language Processing: Dealing with sequences 38

Finite state techniques

• limitations of finite state techniques
• no languages with infinitely deeply nested brackets: anbn

• only segmentation of strings; no structural description can
be generated

• advantages of finite state techniques
• simple
• formally well understood
• efficient for typical problems of language processing
• declarative (reverseable)

Natural Language Processing: Dealing with sequences 39

String-to-string matching
• measure for string similarity: minimum edit distance,

Levenshtein-metric
• edit operations: substitution, insertion and deletion of symbols
• applications: spelling error correction, evaluation of word

recognition results
• combines two tasks: alignment and error counting
• alignment: pairwise, order preserving mapping between the

elements of the two strings
• alternative alignments with same distance possible

c h e a t

c o a s t

Natural Language Processing: Dealing with sequences 40

String-to-string matching

• string edit distance is a non-deterministic, recursive function

d(x0:0, y0:0) = 0

d(x1:m, y1:n) = min

d(x2:m, y2:n) + c(x1, y1)
d(x1:m, y2:n) + c(ǫ, y1)
d(x2:m, y1:n) + c(x1, ǫ)

• Levenshtein metric: uniform cost function c(., .)

Natural Language Processing: Dealing with sequences 41

String-to-string matching

• finding the minimum distance is an optimization problem
→ dynamic programming

• The locally optimal path to a state will be part of the global
optimum if that state is part of the global optimum.

• all pairs of alignments need to be checked

• inverse formulation of the scoring function

d(x0:0, y0:0) = 0

d(x1:m, y1:n) = min

d(x1:m−1, y1:n−1) + c(xm, yn)
d(x1:m, y1:n−1) + c(ǫ, yn)
d(x1:m−1, y1:n) + c(xm, ǫ)

Natural Language Processing: Dealing with sequences 42

String-to-string matching
• local distances global distances

c h e a t

0 1 1 1 1 1
c 1 0 1 1 1 1
o 1 1 1 1 1 1
a 1 1 1 1 0 1
s 1 1 1 1 1 1
t 1 1 1 1 1 0

c h e a t

0 1 2 3 4 5
c 1
o 2
a 3
s 4
t 5

c h e a t

0 1 2 3 4 5
c 1 0 1 2 3 4
o 2 1 1 2 3 4
a 3 2 2 2 2 3
s 4 3 3 3 3 3
t 5 4 4 4 4 3

• space and time requirements O(m · n)Natural Language Processing: Dealing with sequences 43

String-to-string matching

• string-to-string matching with Levenshtein metric is quite similar
to searching a non-deterministic FSA

• the search space is dynamically generated from one of the
two strings

• the other string is identified in the search space

• additional functionality
• the number of ”error” transitions is counted
• the minimum is selected

Natural Language Processing: Dealing with sequences 44

String-to-string matching

• limitation of the Levenshtein metric
• uniform cost assignment

• but sometimes different costs for different error types desirable
(keyboard layout, phonetic confusion)

• consequence: alternative error sequences lead to different
similarity values (SI vs. IS, SD vs DS)

• sometimes even special error types required: e.g. transposition
of neighboring characters

Natural Language Processing: Dealing with sequences 45

Speech recognition 1: DTW

• Signal processing

• Dynamic time warping

Natural Language Processing: Dealing with sequences 46

Signal processing

• digitized speech signal is a sequence of numerical values (time
domain)

• assumption: most relevant information about phones is in the
frequency domain

• transformation becomes necessary

• spectral transformations are only defined for infinite (stationary)
signals

• but speech signal is a highly dynamic process

• windowing: transforming short segments of the signal

• transformed signal is a sequence of feature vectors

Natural Language Processing: Dealing with sequences 47

Signal processing

• Cepstral-coefficients

• speech signal is convolution of the glottal exitation and the
vocal tract shape

• phone distictions are only depending on dynamics of the
vocal tract

• convolution is multiplication of the spectra

• multiplication is the addition of the logarithms

C(m) = F−1(X̂ (k)) = F−1(log(F(x(n))))

Natural Language Processing: Dealing with sequences 48

Signal processing

• liftering: separation of the transfer function (spectral envelope)
from the excitation signal

Brian
van

Osdol

Natural Language Processing: Dealing with sequences 49

Dynamic time warping

• simplest case of speech recognition: isolated words

• simplest method: dynamic time warping (DTW)

• first success story of speech recognition

• DTW is an instance based classifier:
• compares the input signal to a list of stored pattern

pronunciations
• chooses the class of the sample which is closest to the input

sequence
• usually several sample sequences per word recorded

Natural Language Processing: Dealing with sequences 50

Dynamic time warping

• nearest-neighbor classifier

k(x [1:M]) = k(xi [1:Ni])

with i = arg min
i

d(x [1:M], xi [1:Ni])

• two tasks:
• alignment and distance measuring

Natural Language Processing: Dealing with sequences 51

Dynamic time warping

• distance of a pair of feature vectors: e.g. Euclidean metric

d(~x, ~y) =

I
∑

i=1

(xi − yi)
2

• distance of two sequences of feature vectors: sum of the
pairwise distance

• but length of spoken words varies
• two instances of one and the same word are usually of

different length
• need to be squeezed or stretched to become comparable

• but dynamic variation is different for different phones
• consonants are more stable than vowels

Natural Language Processing: Dealing with sequences 52

Dynamic time warping

• non-linear time warping required

input

pattern B
B

B
B

BB

B
B

B
B
BB

�
�
�
�
��

�
�

�
�

��
x [1 : M]

xk [1 : N]

Natural Language Processing: Dealing with sequences 53

Dynamic time warping
• warping function

V = v1 . . . vI with vi = (mi , ni)

d(vi) = d(x [mi], xk [ni])

r�
�
��
r���

r���* r���* r���* r���
r���

r���* r

(1,1)

(2,3)
(3,4)

(5,5)
(7,6)

(9,7)
(10,8)

(11,9)
(13,10)

xk [1 : N]

x [1 : M]

Natural Language Processing: Dealing with sequences 54

Dynamic time warping

TELESCA (2005)

Natural Language Processing: Dealing with sequences 55

Dynamic time warping

• not arbitrary warping functions are allowed
• need to be monotonous

/b/

/e/

/s/

/t/

/b/ /e/ /t/ /s/

r���
r���

r

6
r���

r

?
r���

r

6
r

Natural Language Processing: Dealing with sequences 56

Dynamic time warping

• slope constraint for the warping function

• e.g. SAKOE-CHIBA with deletions

vi−1 =

(mi − 1, ni − 1)
(mi − 2, ni − 1)
(mi − 1, ni − 2)

r�
�
���

�������*
r

r

r

r

r

r

r r

• symmetrical slope constraint

Natural Language Processing: Dealing with sequences 57

Dynamic time warping

• trellis

r�
�
��

�����r�
�
�

�����r����
�
�

���

r�
�
�

�����r�
�
�

�����r���*
��
r���

r�
�
�

�����r�
�
�

�����r�����

r�
�
�

�����r�
�
�

�����r���*
��
r���

r�
�
�

�����r�
�
�

�����r�����

r�
�
�

�����r�
�
�

�����r���*
��
r���

r�
�
�

�����r�
�
�

�����r�����

r�
�
�

�����r�
�
�

�����r������r���

r�
�
�

��
r�
�
�

�����r������

r�
�
�

r�
�
�

��
r��
r���*

r�
�
�

r��
r

xk [1 : N]

x [1 : M]

Natural Language Processing: Dealing with sequences 58

Dynamic time warping

• distance between two vector sequences

d(x [1:M], xk [1:N]) = min
∀V

I
∑

i=1

d(vi)

V : warping functions

Natural Language Processing: Dealing with sequences 59

Dynamic time warping

• alternative slope constraints
• SAKOE-CHIBA without deletions

vi−1 =

(mi − 1, ni − 1)
(mi , ni − 1)
(mi − 1, ni)

r -���6
r

r

r

r

r

r

r r

• ITAKURA (asymmetric)

vi−1 =

(mi − 1, ni)
(mi − 1, ni − 1)
(mi − 1, ni − 2) r -����

�
���

r

r

r

r

r

r

r r

• requires additional global constraints
• advantage: time synchroneous processing

Natural Language Processing: Dealing with sequences 60

Dynamic time warping

• algorithmic realisation: dynamic programming
• search space is a graph defined by alternative alignment

variants
• search space is limited by the slope constraint
• transitions are weighted (feature vector distance at the

nodes)
• task: finding the optimum path in the graph

Natural Language Processing: Dealing with sequences 61

Dynamic time warping

• redefining the global optimization problem in terms of local
optimality decisions

• for ITAKURA constraint:

d(x [1:i], xk [1:j])

= min

d(x [1:i − 1], xk [1:j])
d(x [1:i − 1], xk [1:j − 1])
d(x [1:i − 1], xk [1:j − 2])

+ d(x [i], xk [j])

Natural Language Processing: Dealing with sequences 62

Dynamic time warping

• advantages:
• simple training
• simple recognition

• drawbacks:
• highly speaker dependent

Natural Language Processing: Dealing with sequences 63

Speech recognition 2: HMM

speech recognizer

and what
about

monday

feature

extraction
word recognition

Natural Language Processing: Dealing with sequences 64

Speech recognition 2: HMM

speech recognizer

and what
about

monday

feature

extraction
word recognition

acoustic
models

• models for each phone in the context of its
neighboursm-a+m, m-a+n, d-a+n, ...

• computes the probability, that the signal has
been produced by the model

• states, state transitions

• transition probabilities

• emission probabilities

trained on signal data

Natural Language Processing: Dealing with sequences 64

Speech recognition 2: HMM

speech recognizer

and what
about

monday

feature

extraction
word recognition

acoustic
models

pronunciation
dictionary

• one or several phone sequences for each
word formwhat w O t spabout � b ao t sp

• concatenation of phone models to word
modelsabout:sp-�+b �-b+ao b-ao+t ao-t+sp

manually compiled

Natural Language Processing: Dealing with sequences 64

Speech recognition 2: HMM

speech recognizer

and what
about

monday

feature

extraction
word recognition

acoustic
models

pronunciation
dictionary

language

model

• computes the probability for complete
utterances

• probabilities for word bigrams, trigrams,
quadrograms, ...

p(about|and what)
p(about|the nice)
p(monday|what about)
p(monday|the is)

trained on text data

Natural Language Processing: Dealing with sequences 64

Speech recognition 2: HMM

speech recognizer

and what
about

monday

feature

extraction
word recognition

acoustic
models

pronunciation
dictionary

language

model

dialog

model

• predicts possible input utterances depending
on the current state of the dialogue

• dialogue states, transitions

• grammar rules

• authoring requires ingenious anticipatory
abilities

manually created

Natural Language Processing: Dealing with sequences 64

Speech recognition 2: HMM

• acoustic modelling

• word recognition

• HMM training

• stochastic language modelling

• dialog modelling

Natural Language Processing: Dealing with sequences 65

Acoustic modelling

• the problem: segment boundaries are not reliably detectable
prior to the phone classification

• the solution: classify phone sequences

• formal foundation: Markov models

Natural Language Processing: Dealing with sequences 66

Acoustic modelling

• Bayesian decision theory (error optimal!)

c(~x) = arg max
i

P(ci |~x)

= arg max
i

P(ci) · P(~x |ci)

P(~x)

= arg max
i

P(ci) · P(~x |ci)

• atomic observations 7→ atomic class assignments

• isolated word recognition:
sequential observations 7→ atomic class decision

c(x [1 : n]) = arg max
i

P(ci) · P(x [1 : n]|ci)

Natural Language Processing: Dealing with sequences 67

Acoustic modelling

• continuous speech recognition:
sequential observations 7→ sequences of class decisions

c(x [1 : n]) = arg max
m,c[1:m]

P(c[1 : m]) · P(x [1 : n]|c[1 : m])

→ Markov models

Natural Language Processing: Dealing with sequences 68

Acoustic modelling

c(x [1 : n]) = arg max
m,c[1:m]

P(c[1 : m]) · P(x [1 : n]|c[1 : m])

language model acoustic model

Natural Language Processing: Dealing with sequences 69

Acoustic modelling

• to provide the necessary flexibility for training
→ hidden Markov models

• doubly stochastic process
• states which change stochastically
• observations which are emitted from states stochastically

• the same observation distributions can be modelled by quite
different parameter settings

• example: coin

• emission probability only

0.5 0.5

heads tails

Natural Language Processing: Dealing with sequences 70

Acoustic modelling

• transition proabilities only (1st order Markov model)

0.5

0.5

0.5 0.5

heads tails

• Hidden Markov Models for the observation

0.5

0.5

0.5 0.5

1 0

heads tails

0 1

heads tails

0.5

0.5

0.5 0.5

0.5 0.5

heads tails

0.5 0.5

heads tails

Natural Language Processing: Dealing with sequences 71

Acoustic modelling

• alternative HMMs for the same observation

0.5

0.5

0.5 0.5

0.3 0.7

heads tails

0.7 0.3

heads tails

0.7

0.3

0.3 0.7

0.5 0.5

heads tails

0.5 0.5

heads tails

• even more possibilities for biased coins or coins with more than
two sides

Natural Language Processing: Dealing with sequences 72

Acoustic modelling

• phone recognition: identifying differently biased coins

• train different HMMs for the different coins: adjust the
probabilities so that they predict a training sequence of
observations with maximum probability

• determine the model which predicts the observed (test)
sequence of feature verctors with the highest probability

Natural Language Processing: Dealing with sequences 73

Acoustic modelling

• model topologies for phones (only transitions depicted)

the more data available → the more sophisticated models can be
trained

Natural Language Processing: Dealing with sequences 74

Acoustic modelling

• monophone models do not capture coarticulatory variation
→ triphone models

• triphone: context sensitive phone model
• increases the number of models to be trained
• decreases the amount of training data available per model
• context clustering to share models across contexts

• special case: cross word triphones (expensive to be used)

Natural Language Processing: Dealing with sequences 75

Acoustic modelling

• modelling of emission probabilities

• discrete models: quantized feature vectors
• local regions of the feature space are represented by a

prototype vector
• usually 1024 or 2048 prototype vectors

...

pe(~x1) pe(~x2)
pe(~xn)

~x1 ~x2 ~xn

Natural Language Processing: Dealing with sequences 76

Acoustic modelling

• continuous models: probability distributions for feature vectors

• usually multidimensional Gaussian mixtures

• extension to mixture models

p(x |si) =

M
∑

m=1

cm N [x , µm,Σm] N [x , µ, σ] =
1√
2πσ

e−
(x−µ)2

2σ2

• number of mixtures is chosen according to the available training
material

Natural Language Processing: Dealing with sequences 77

Acoustic modelling

• dealing with data sparseness
• sharing of mixture components: semi-continuous models
• sharing of mixture distributions: tying of states
• parameter reduction: restriction to diagonal covariance

matrices

• speaker adaptation techniques
• retraining with speaker specific data
• vocal length estimation → global transform of the feature

space
• ...

Natural Language Processing: Dealing with sequences 78

Word recognition

• concatenate the phone models to word models based on the
information from the pronunciation dictionaryat � t sp

@ t sp
a t

• apply all the word models in parallel

• choose the one which fits the data best

Natural Language Processing: Dealing with sequences 79

Word recognition

• recognition of continuous speech: Viterbi search

• find the path through the model which generates the signal
observation with the highest probability

p(x [1 : n]|si) = max
si=succ(sj)

p(x [1 : n−1]|sj)·pt(si |sj)·pe(si |x(n))

• recursive decomposition: special case of a dynamic
programming algorithm

• linear with the length of the input

Natural Language Processing: Dealing with sequences 80

Word recognition
• model topology unfolds the search space into a tree with a

limited branching factor
• model state and time indicees are used to recombine search

paths
• maximum decision rule facilitates unique path selection

. . .

. . .

. . .

. . .

. . .

m
od

el
st

at
es

feature vectors
Natural Language Processing: Dealing with sequences 81

HMM training

• concatenate the phone models according to the annotation of
the training data into a single model

• Baum-Welch reestimation
• iterative refinement of an initial value assignment
• special case of an expectation maximization (EM) algorithm
• gradient ascend: cannot guarantee to find the optimum

model

• word level annotations are sufficient

• no prior segmentation of the training material necessary

Natural Language Processing: Dealing with sequences 82

Stochastic language modelling

• idea: mimick the expectation driven nature of human speech
comprehension

What’s next in an utterance?

• stochastic language models → free text applications

• grammar-based language models → dialog modelling

• combinations

Natural Language Processing: Dealing with sequences 83

Stochastic language modelling

• n-grams: p(wi |wi−1) p(wi |wi−2wi−1)

• trained on huge amounts of text

• most probabilities are zero: n-gram has been never observed,
but could occur in principle

• backoff: if a probability is zero, approximate it by means of the
next less complex one

• trigram → bigram
• bigram → unigram

Natural Language Processing: Dealing with sequences 84

Stochastic language modelling
• perplexity: ”ambiguity” of a stochastic source

Q(S) = 2H(S)

• H(S) entropy of a source S, which emits symbols w ∈ W

H(S) = −
∑

w

p(w) log2 p(w)

• perplexity is used to decribe the restrictive power of a
probabilistic language model and/or the difficulty of a recognition
task

• test set perplexity

Q(T) = 2H(T) = p(w [1 : n])−
1
n

Natural Language Processing: Dealing with sequences 85

Dialog modelling

• based on dialog states: What’s next in a dialogue?

• reducing the number of currently active lexical items
• to increase recognition accuracy
• e.g by avoiding confusables

• simplifying semantic interpretation
• context-based disambiguation between alternative

interpretation possibilities
• e.g. number → price, time, date, account number, ...

Natural Language Processing: Dealing with sequences 86

Dialog modelling

• dialog states: input request (prompt)

• transitions between states: possible user input

Bitte
geben Sie
Ihren Ab-
fahrtsort

ein!

Bitte
geben Sie

Ihren
Zielort

ein!

Berlin

Dresden

Düsseldorf

Hamburg

Köln

München

...

Stuttgart

Bitte
geben Sie

die Ab-
fahrtszeit

ein!

Berlin

Dresden

Düsseldorf

Hamburg

Köln

München

...

Stuttgart

Natural Language Processing: Dealing with sequences 87

Dialog modelling

• recycling of partial networks

Bitte
geben Sie
Ihren Ab-
fahrtsort

ein!

Bitte
geben Sie

Ihren
Zielort

ein!

Ortsangabe
Bitte

geben Sie
die Ab-

fahrtszeit
ein!

Ortsangabe

• set of admissible utterances can also be specified by means of
generative grammars

Natural Language Processing: Dealing with sequences 88

Dialog modelling

• confirmation dialogs: compensating recognition uncertainty

Bitte
geben Sie
Ihren Ab-
fahrtsort

ein!

Sie
wollen

in
A

abfahren?

Ortsangabe

nein

Bitte
geben Sie

Ihren
Zielort

ein!

ja

Sie
wollen
nach

Z
fahren?

Ortsangabe

nein

Bitte
geben Sie

die Ab-
fahrtszeit

ein!

ja

Natural Language Processing: Dealing with sequences 89

Dialog modelling

• finite state automata are very rigid

• relaxing the constraints
• partial match
• barge in

• flexible mechanisms for dynamically modifying system prompts
• less monotonous human computer interaction
• simple forms of user adaptation

Natural Language Processing: Dealing with sequences 90

POS-Tagging

• lexical categories

• constraint-based tagger

• stochastic tagger

• transformation-based tagger

• applications

Natural Language Processing: Dealing with sequences 91

Lexical categories

• phonological evidence: explanation of systematic pronunciation
variants

We need to increase productivity.
We need an increase in productivity.
Why do you torment me?
Why do you leave me in torment?
We might transfer him to another club.
He’s asked for a transfer.

• semantic evidence: explanation of structural ambiguities
Mistrust wounds.

semantic properties itself are irrelevant

Natural Language Processing: Dealing with sequences 92

Lexical categories

• morphological evidence
• different inflectional patterns for verbs, nouns, and

adjectives
• but: irregular inflection; e.g. strong verbs, to be

• different word formation pattern
• deverbalisation: -tion
• denominalisation: -al

Natural Language Processing: Dealing with sequences 93

Lexical categories

• syntactic evidence: distributional classes
• nouns

Linguistics can be a pain in the neck.
John can be a pain in the neck.
Girls can be a pain in the neck.
Television can be a pain in the neck.
* Went can be a pain in the neck.
* For can be a pain in the neck.
* Older can be a pain in the neck.
* Conscientiously can be a pain in the neck.
* The can be a pain in the neck.

Natural Language Processing: Dealing with sequences 94

Lexical categories

• tagsets
• inventories of categories for the annotation of corpora
• sometimes even morpho-syntactic subcategories (plural, ...)
• ”technical” tags

• foreign words, symbols, interpunction, ...

Penn-Treebank Marcus et al. (1993) 45
British National Corpus (C5) Garside et al. (1997) 61
British National Corpus (C7) Leech et al. (1994) 146
Tiger (STTS) Schiller, Teufel (1995) 54
Prague Treebank Hajic (1998) 3000/1000

Natural Language Processing: Dealing with sequences 95

Lexical categories

• Penn-Treebank (Marcus, Santorini, Marcinkiewicz 1993)

CC Coordinating conjunction and,but,or, ...
CD Cardinal Number one, two, three, ...
DT Determiner a, the
EX Existential there there
FW Foreign Word a priori
IN Preposition or subord. conjunction of, in, by, ...
JJ Adjective big, green, ...
JJR Adjective, comparative bigger, worse
JJS Adjective, superlative lowest, best
LS List Item Marker 1, 2, One, ...
MD Modal can, could, might, ...
NN Noun, singular or mass bed, money, ...
NNP Proper Noun, singular Mary, Seattle, GM, ...
NNPS Proper Noun, plural Koreas, Germanies, ...
NNS Noun, plural monsters, children, ...

Natural Language Processing: Dealing with sequences 96

Lexical categories

• Penn-Treebank (2)

PDT Predeterminer all, both, ... (of the)
POS Possessive Ending ’s
PRP Personal Pronoun I, me, you, he, ...
PRP$ Possessive Pronoun my, your, mine, ...
RB Adverb quite, very, quickly, ...
RBR Adverb, comparative faster, ...
RBS Adverb, superlative fastest, ...
RP Particle up, off, ...
SYM Symbol +, %, & ...
TO to to
UH Interjection uh, well, yes, my, ...
VB Verb, base form write, ...
VBD Verb, past tense wrote, ...
VBG Verb, gerund writing
VBN Verb, past participle written, ...

Natural Language Processing: Dealing with sequences 97

Lexical categories

• Penn-Treebank (3)

VBP Verb, non-3rd singular present write, ...
VBZ Verb, 3rd person singular present writes, ...
WDT Wh-determiner e.g. which, that
WP Wh-pronoun e.g. what, whom, ...
WP$ Possessive wh-pronoun whose, ...
WRB Wh-adverb e.g. how, where, why
$ Dollar sign $
Pound sign
” left quote ”
´´ right quote ´´
(left parantheses (
) right parantheses)
, comma ,
. sentence final punct. ., !, ?
: mid-sentence punct. :, ;, –, ...

Natural Language Processing: Dealing with sequences 98

Lexical categories

• Examples

Book/NN/VB that/DT/WDT flight/NN ./.

Book/VB that/DT flight/NN ./.

Natural Language Processing: Dealing with sequences 99

Constraint-based tagger
• ENGTWOL, Helsinki University (Voutilainen 1995)
• two-step approach

• assignment of POS-hypotheses: morphological analyzer
(two-level morphology)

• selection of POS-hypotheses (constraint-based)
• lexicon with rich morpho-syntactic information("<round>"("round" <SVO><SV> V SUBJUNCTIVE VFIN (�+FMAINV))("round" <SVO><SV> V IMP VFIN (�+FMAINV))("round" <SVO><SV> V INF)("round" <SVO><SV> V PRES -SG3 VFIN (�+FMAINV))("round" PREP)("round" N NOM SG)("round" A ABS)("round" ADV ADVL (�ADVL)))

Natural Language Processing: Dealing with sequences 100

Constraint-based tagger

• 35-45% of the tokens are ambiguous: 1.7-2.2 alternatives per
word form

• hypothesis selection by means of constraints (1100)
• linear sequence of morphological features

• example
• input: a reaction to the ringing of a bell
• dictionary entry:("<to>"("to" PREP)("to" INFMARK> (�INFMARK>))

Natural Language Processing: Dealing with sequences 101

Constraint-based tagger

• example
• constraint("<to>" =0 (INFMARK>) (NOT 1 INF)(NOT 1 ADV)(NOT 1 QUOTE)(NOT 1 EITHER)(NOT 1 SENT-LIM))

Remove the infinitival reading if immediately to the right of to
no infinitive, adverb, citation, either, neither, both or
sentence delimiter can be found.

Natural Language Processing: Dealing with sequences 102

Constraint-based tagger

• quality measures
• measurement on an annotated testset (“gold standard”)

recall =
retrieved correct categories
actually correct categories

precision =
retrieved correct categories

retrieved categories

• recall < 100%: erroneous classifications
• recall < precision: incomplete category assignment
• recall = precision: fully disambiguated output

→ accuracy
• recall > precision: incomplete disambiguation

Natural Language Processing: Dealing with sequences 103

Constraint-based tagger

• ENGTWOL:

• testset: 2167 word form token
• recall: 99.77 %
• precision: 95.94 %

→ incomplete disambiguation

Natural Language Processing: Dealing with sequences 104

Constraint-based tagger

• How good are the results?
1. upper limit: How good is the annotation?

• 96-97% agreement between annotators (MARCUS ET

AL. 1993)
• almost 100% agreement in case of negotiation

(VOUTILAINEN 1995)
2. lower limit: How good is the classifier?

• baseline:
e.g. most frequent tag (unigram probability)

• example: P(NN|race) = 0.98 P(VB|race) = 0.02
• 90-91% precision/recall (CHARNIAK ET AL. 1993)

Natural Language Processing: Dealing with sequences 105

Constraint-based tagger

• manual compilation of the constraint set
• expensive
• error prone

• alternative: machine learning components

Natural Language Processing: Dealing with sequences 106

Stochastic tagger

• noisy-channel model
• mapping from word forms to tags is not deterministic
• ”noise” of the channel depends on the context
• model with memory: Markov model
• memory is decribed by means of states
• parameters of the model describe the probability of a state

transition
• transition probabilities: P(si |s1 . . . si−1)

• hidden markov models
• observations are not strictly coupled to the transitions
• sequence of state transition influences the observation

sequence only stochastically
• emission probabilities: P(oi |s1 . . . si−1)

Natural Language Processing: Dealing with sequences 107

Stochastic tagger

• model topologies for HMM taggers
• observations: word forms wi
• states: tags ti
• transition probabilities: P(ti |t1 . . . ti−1)
• emission probabilities: P(wi |t1 . . . ti−1)

Natural Language Processing: Dealing with sequences 108

Stochastic tagger

• classification: computation of the most probable tag sequence

tj [1, n] = arg max
t[1,n]

P(t[1, n]|w [1, n])

• Bayes’ Rule

tj [1, n] = arg max
t[1,n]

P(t[1, n]) · P(w [1, n]|t[1, n])

p(w [1, n])

• probability of the word form sequence is constant for a given
observation and therefore has no influence on the decision result

tj [1, n] = arg max
t[1,n]

P(t[1, n]) · P(w [1, n]|t[1, n])

Natural Language Processing: Dealing with sequences 109

Stochastic tagger

• chain rule for probabilities

P(t[1, n]) · P(w [1, n] | t[1, n])

=

n
∏

i=1

P(ti | w1t1 . . . wi−1ti−1)

·P(wi | w1t1 . . . wi−1ti−1ti)

tj [1, n] = arg max
t[1,n]

n
∏

i=1

P(ti | w1t1 . . . wi−1ti−1)

·P(wi | w1t1 . . . wi−1ti−1ti)

Natural Language Processing: Dealing with sequences 110

Stochastic tagger

• 1st simplification: the word form only depends on the current tag

tj [1, n] = arg max
t[1,n]

n
∏

i=1

P(ti | w1t1 . . . wi−1ti−1) · P(wi | ti)

• 2nd simplification: the current tag depends only on its
predecessors (not on the observations!)

tj [1, n] = arg max
t[1,n]

n
∏

i=1

P(ti | t1 . . . ti−1) · P(wi | ti)

Natural Language Processing: Dealing with sequences 111

Stochastic tagger

• 3rd simplification: the current tag depends only on its two
predecessors

• limited memory (Markov assumption): Trigram-Modell

tj [1, n] = arg max
t[1,n]

n
∏

i=1

P(ti | ti−1ti−2) · P(wi | ti)

→ 2nd order Markov process

Natural Language Processing: Dealing with sequences 112

Stochastic tagger

• further simplification leads to a bigram model
• stochastic dependencies are limited to the immediate

predecessor

tj [1, n] = arg max
t[1,n]

n
∏

i=1

P(ti | ti−1) · P(wi | ti)

→ 1st order
Markov process

t1 t2

t3 t4

w1 . . . w3 w1 . . . w3

w1 . . . w3 w1 . . . w3

Natural Language Processing: Dealing with sequences 113

Stochastic tagger

• computation of the most likely tag sequence by dynamic
programming (Viterbi, Bellmann-Ford)

αn = max
t[1,n]

n
∏

i=1

P(ti | ti−1) · P(wi | ti)

αn = max
tn−1

P(tn | tn−1) · P(wn | tn) · αn−1

• sometimes even local decision taken (greedy search)

• scores can be interpreted as confidence values

Natural Language Processing: Dealing with sequences 114

Stochastic tagger

• training: estimation of the probabilities
• transition probabilities

P(ti | ti−2ti−1) =
c(ti−2ti−1ti)
c(ti−2ti−1)

• emission probabilities

P(wi | ti) =
c(wi , ti)

c(ti)

Natural Language Processing: Dealing with sequences 115

Stochastic tagger

• unseen transition probabilities
• backoff: using bigram or unigram probabilities

P(ti |ti−2ti−1) =

P(ti |ti−2ti−1) if c(ti−2ti−1ti) > 0
P(ti |ti−1) if c(ti−2ti−1ti) = 0

and c(ti−1ti) > 0
P(ti) else

Natural Language Processing: Dealing with sequences 116

Stochastic tagger

• unseen transition probabilities
• interpolation: merging of the trigram with the bigram and

unigram probabilities

P(ti |ti−2ti−1) = λ1P(ti |ti−2ti−1) + λ2P(ti |ti−1) + λ3P(ti)

• λ1, λ2 and λ3 are context dependent parameters
• global constraint: λ1 + λ2 + λ3 = 1
• are trained on a separate data set (development set)

Natural Language Processing: Dealing with sequences 117

Stochastic tagger

• unseen word forms
• estimation of the tag probability based on ”suffixes” (and if

possible also on ”prefixes”)

• unseen POS assignment
• smoothing
• redistribution of probability mass from the seen to the

unseen events (discounting)
• e.g. WITTEN-BELL discounting (WITTEN-BELL 1991)

• probability mass of the observation seen once is
distributed to all the unseen events

Natural Language Processing: Dealing with sequences 118

Stochastic tagger

• example: TnT (BRANTS 2000)

share of accuracy
corpus unseen known unknown overall

word forms word forms
PennTB (engl.) 2.9% 97.0% 85.5% 96.7%
Negra (dt.) 11.9% 97.7% 89% 96.7%
Heise (dt.)*) 92.3%

*) training data 6= test data

• maximum entropy tagger (RATNAPARKHI 1996): 96.6%

Natural Language Processing: Dealing with sequences 119

Transformation-based tagger

• ides: stepwise correction of wrong intermediate results (BRILL

1995)
• context-sensitive rules, e.g.

Change NN to VB when the previous tag is TO

• rules are trained on a corpus
1. initialisation: choose the tag sequence with the highest

unigram probability
2. compare the results with the gold standard
3. generate a rule, which removes most errors
4. run the tagger again and continue with 2.

• stop if no further improvement can be achieved

Natural Language Processing: Dealing with sequences 120

Transformation-based tagger

• rule generation driven by templates
• change tag a to tag b if . . .

. . . the preceding/following word is tagged z.

. . . the word two before/after is tagged z.

. . . one of the two preceding/following words is tagged z.

. . . one of the three preceding/following words is tagged z.

. . . the preceding word is tagged z and the following
word is tagged w .

. . . the preceding/following word is tagged z and the word
two before/after is tagged w .

Natural Language Processing: Dealing with sequences 121

Transformation-based tagger

• results of training: ordered list of transformation rules

from to condition example
NN VB previous tag is TO to/TO race/NN → VB
VBP VB one of the 3 previous tags is MD might/MD vanish/VBP → VB
NN VB one of the 2 previous tags is MD might/MD not reply/NN → VB
VB NN one of the 2 previous tags is DT
VBD VBN one of the 3 previous tags is VBZ

Natural Language Processing: Dealing with sequences 122

Transformation-based tagger

• 97.0% accuracy, if only the first 200 rules are used

• 96.8% accuracy with the first 100 rules

• quality of a HMM tagger on the same data (96.7%) is achieved
with 82 rules

• extremly expensive training
≈ 106 times of a HMM tagger

Natural Language Processing: Dealing with sequences 123

Applications

• word stress in speech synthesis
’content/NN con’tent/JJ
’object/NN ob’ject/VB
’discount/NN dis’count/VB

• computation of the stem (e.g. document retrieval)

• class based language models for speech recognition

• ”shallow” analysis, e.g. for information extraction

• preprocessing for parsing data, especially in connection with
data driven parsers

Natural Language Processing: Dealing with sequences 124

Part 3: Dealing with structures

• Dependency parsing

• Phrase-structure parsing

• Unification-based grammars

• Constraint-based models (HPSG)

Natural Language Processing: Dealing with structures 125

Dependency parsing

• Dependency structures

• Dependency parsing as constraint satisfaction

• Structure-based dependency parsing

• History-based dependency parsing

• Parser combination

Natural Language Processing: Dealing with structures 126

Dependency structures

• labelled word-to-word dependencies

S ⊂ W × W × L

Now the child sleeps

ADV

DET

SUBJ

• distributional tests
• attachment: deletion test
• labelling: substitution test

Natural Language Processing: Dealing with structures 127

Dependency structures

• highly regular search space

root/nil root/nil root/nil root/nil root/nil
det/2 det/1 det/1 det/1 det/1
det/3 det/3 det/2 det/2 det/2
det/4 det/4 det/4 det/3 det/3
det/5 det/5 det/5 det/5 det/4
subj/2 subj/1 subj/1 subj/1 subj/1
subj/3 subj/3 subj/2 subj/2 subj/2
subj/4 subj/4 subj/4 subj/3 subj/3
subj/5 subj/5 subj/5 subj/5 subj/4
dobj/2 dobj/1 dobj/1 dobj/1 dobj/1
dobj/3 dobj/3 dobj/2 dobj/2 dobj/2
dobj/4 dobj/4 dobj/4 dobj/3 dobj/3
dobj/5 dobj/5 dobj/5 dobj/5 dobj/4

Der Mann besichtigt den Marktplatz
1 2 3 4 5

Natural Language Processing: Dealing with structures 128

Hypothesis Space

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Natural Language Processing: Dealing with structures 129

Hypothesis Space

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Natural Language Processing: Dealing with structures 130

Hypothesis Space

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Natural Language Processing: Dealing with structures 131

Hypothesis Space

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Natural Language Processing: Dealing with structures 132

Hypothesis Space

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Root attachments are not depicted.

Natural Language Processing: Dealing with structures 133

Dependency structures

• source of complexity problems: non-projective trees

She made the child happy that ...

SUBJ DOBJ

DET

VC

REL

Natural Language Processing: Dealing with structures 134

Dependency Modeling

• advantages (COVINGTON 2001, NIVRE 2005)
• straightforward mapping of head-modifier relationships to

arguments in a semantic representation
• parsing relates existing nodes to each other

• no need to postulate additional ones
• word-to-word attachment is a more fine-grained relationship

compared to phrase structures
• modelling constraints on partial ”constituents”
• factoring out dominance and linear order
• well suited for incremental processing

• non-projectivities can be treated appropriately
• discontinuous constructions are not a problem

Natural Language Processing: Dealing with structures 135

Dependency parsing as constraint satisfaction

• Constraint Grammar KARLSSON 1995
• attaching possibly underspecified dependency relations to

the word forms of an utterances�+FMAINV finite verb of a sentence�SUBJ grammatical subject�OBJ direct Object�DN> determiner modifying a noun to the right�NN> noun modifying a noun to the right

Natural Language Processing: Dealing with structures 136

Dependency parsing as constraint satisfaction

• typical CS problem:
• constraints: conditions on the (mutual) compatibility of

dependency labels
• indirect definition of well-formedness: everything which does

not violate a constraint explicitly is acceptable

• strong similarity to tagging procedures

Natural Language Processing: Dealing with structures 137

Dependency parsing as constraint satisfaction

• two important prerequisites for robust behaviour
• inherent fail-soft property: the last remaining category is

never removed even if it violates a constraint
• possible structures and well-formedness conditions are fully

decoupled: missing grammar rules do not lead to parse
failures

• complete disambiguation cannot always be achieved

Bill saw the little dog in the park�SUBJ �+FMAINV �DN> �AN> �OBJ �<NOM �DN> �<P�<ADVL
Natural Language Processing: Dealing with structures 138

Dependency parsing as constraint satisfaction

• size of the grammar (English): 2000 Constraints

• quality

without heuristics with heuristics
precision 95.5% 97.4%
recall 99.7 . . . 99.9% 99.6 . . . 99.9%

Natural Language Processing: Dealing with structures 139

Dependency parsing as constraint satisfaction

• Constraint Dependency Grammar MARUYAMA 1990

• each word form of a sentence corresponds to a variable.
→ number of variables is a priori unknown.
→ no predefined meaning for variables.

• every constraint must hold for each variable or a combination
thereof.

• values are taken from the domain W × L

• constraints license linguistically meaningful structures

• parsing can be understood as structural disambiguation: find a
complete variable assignment which satisfies all constraints

Natural Language Processing: Dealing with structures 140

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Initial state of a parsing problem with three labels (DET, SUBJ, DOBJ)

Natural Language Processing: Dealing with structures 141

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

{X} : DetNom : Det : 0.0 : X↓cat=det → X↑cat=noun ∧ X.label=DET

Natural Language Processing: Dealing with structures 142

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Natural Language Processing: Dealing with structures 143

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ{X} : SubjObj : Verb : 0.0 :
X↓cat=noun → X↑cat=vfin ∧ X.label=SUBJ ∨ X.label=DOBJ

Natural Language Processing: Dealing with structures 144

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET DET

DOBJ

SUBJ

DET

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

Natural Language Processing: Dealing with structures 145

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET DET

DOBJ

SUBJ

DET

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

{X} : Root : Verb : 0.0 :
X↓cat=vfin → X↑cat=nil

Natural Language Processing: Dealing with structures 146

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

Natural Language Processing: Dealing with structures 147

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

{X,Y} : Unique : General : 0.0 :
X↑id=Y↑id → X.label6=Y.label

Natural Language Processing: Dealing with structures 148

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Natural Language Processing: Dealing with structures 149

Constraining structures

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

{X,Y} : SubjAgr : Subj : 0.0 :
X.label=SUBJ ∧ Y.label=DET ∧ X↓id=Y↑id → Y↑case=Y↓case=nom

Natural Language Processing: Dealing with structures 150

Constraining structures

Der Mann besichtigt den Marktplatz

DET

SUBJ

DET

DOBJ

Natural Language Processing: Dealing with structures 151

Dependency parsing as constraint satisfaction

• extensions
• relational view on dependency structures instead of a

functional one:

→ SCHRÖDER (1996): access to lexical information at the
modifying and the dominating node

• recognition uncertainty / lexical ambiguity

→ HARPER AND HELZERMAN (1996): hypothesis lattice
additional global constraint (path criterion) introduced

• access to morphosyntactic features in the lexicon

Natural Language Processing: Dealing with structures 152

Dependency parsing as constraint satisfaction

• weighted constraints (penalty factors):
reduced preference for hypotheses which violate a constraint

w(c) = 0 crisp constraints: need always be satisfied
e.g. licensing structural descriptions

0 < w(c) < 1 weak constraints: may be violated as long as
no better alternative is available

w(c) << 1 strong, but defeasible well-formedness conditions

w(c) >> 0 defaults, preferences, etc.

w(c) = 1 senseless, neutralizes the constraint

Natural Language Processing: Dealing with structures 153

Dependency parsing as constraint satisfaction

Why weighted constraints?

• Weights help to fully disambiguate a structure.
• Hard constraints are not sufficient (HARPER ET. AL 1995).

• Many language regularities are preferential and contradictory.
• extraposition
• linear ordering in the German mittelfeld
• topicalization

• Weights are useful to guide the parser towards promising
hypotheses.

• Weights can be used to trade speed against quality.

Natural Language Processing: Dealing with structures 154

Dependency parsing as constraint satisfaction

• accumulating (multiplying) the weights for all constraints violated
by a partial structure
→ numerical grading for single dependency relations and pairs

of them

• combining local scores by multiplying them into a global one

w(t) =
∏

e∈t

∏

c.violates(e,c)

w(c) ·
∏

(ei ,ej)∈t

∏

c.violates((ei ,ej),c)

w(c)

• determining the optimal global structure

t(s) = arg max
t

w(t)

→ parsing becomes a constraint optimization problem

Natural Language Processing: Dealing with structures 155

Dependency parsing as constraint satisfaction

• writing constraints is counterintuitive
• CFG: to extend coverage, add or extend a rule
• CDG: to extend coverage, remove or weaken a constraint

• but: the parser itself supports grammar development providing
diagnostic information

• constraints violated by the optimal structure are identified

Natural Language Processing: Dealing with structures 156

Dependency parsing as constraint satisfaction

• high-arity constraints are expensive
→ usually at most binary ones are allowed
→ approximation of constraints with higher arity

• constraint satisfaction is only passive (no value assignment)

→ approximation of a transitive closure
e.g. projection, agreement, . . .

Natural Language Processing: Dealing with structures 157

Dependency parsing as constraint satisfaction

• consistency: works only for hard constraints

• pruning: successively remove the least preferred dependency
relations

• search: determine the optimum dependency structure

• structural transformation: apply local repairs to improve the
overall score

Natural Language Processing: Dealing with structures 158

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

Natural Language Processing: Dealing with structures 159

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

Natural Language Processing: Dealing with structures 160

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET DET

Natural Language Processing: Dealing with structures 161

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET DET

Natural Language Processing: Dealing with structures 162

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

Natural Language Processing: Dealing with structures 163

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

Natural Language Processing: Dealing with structures 164

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

SUBJ

Natural Language Processing: Dealing with structures 165

Search

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

SUBJ

DET

Natural Language Processing: Dealing with structures 166

Dependency parsing as constraint satisfaction

• structural transformations: elementary repair operations
• choose another attachment point
• choose another edge label
• choose another lexical reading

Natural Language Processing: Dealing with structures 167

Transformation-based parsing

Der Mann besichtigt den Marktplatz

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET

DOBJ

SUBJ

DET DET DET DET

Marktplatz

DET DET DET DET

Marktplatz

DET DET DET

Marktplatz

DET

SUBJ

DETDET

SUBJ

DET

DOBJ

Natural Language Processing: Dealing with structures 168

Structural Transformation

• Usually local transformations result in inacceptable structures
• sequences of repair steps have to be considered.
• e.g. swapping SUBJ and DOBJ

a) syntax . . .
der1 det/2 . . .
mann2 dobj/3 . . .
besichtigt3 root/nil . . .
den4 den/5 . . .
marktplatz5 subj/3 . . .

=⇒

b) syntax . . .
der1 det/2 . . .
mann2 subj/3 . . .
besichtigt3 root/nil . . .
den4 det/5 . . .
marktplatz5 dobj/5 . . .

Natural Language Processing: Dealing with structures 169

Frobbing∗

• gradient descent search

• escaping local minima:
increasingly complex transformations → local search

• heuristically guided tabu search
• transformation with perfect memory
• propagation of limits for the score of partial solutions

• faster than best-first search for large problems

• inherently anytime
∗frobbing: randomly adjusting the settings of an object, such as the
dials on a piece of equipment or the options in a software program.
(The Word Spy)

Natural Language Processing: Dealing with structures 170

Solution Methods

sound-
ness

complete-
ness

efficiency
predicta-

bility
interrupt-

ability
termi-
nation

pruning −− −− +/− ++ −− ++

search ++ + −− −− −− ++

transformation + − − + ++ −

Natural Language Processing: Dealing with structures 171

Hybrid parsing

• the bare constraint-based parser itself is weak

• but: constraints can be used as interface to external predictor
components

• predictors are all probabilistic, thus inherently unreliable
→ can their information still be useful?

• several predictors → consistency cannot be expected

Natural Language Processing: Dealing with structures 172

Hybrid parsing

Constraint

Parser

sentence

dependency structure

part-of-speech
tagger (POS) chunk parser

(CP)

supertagger

(ST)

PP-attacher

(PP)

shift-reduce

parser (SR)

96.7%

88.0%/89.5% 84.5%

79.4%

84.8%

Natural Language Processing: Dealing with structures 173

Hybrid parsing

• results on a 1000 sentence newspaper testset (FOTH 2006)

accuracy
Predictors unlabelled labelled
0: none 72.6% 68.3%
1: POS only 89.7% 87.9%
2: POS+CP 90.2% 88.4%
3: POS+PP 90.9% 89.1%
4: POS+ST 92.1% 90.7%
5: POS+SR 91.4% 90.0%
6: POS+PP+SR 91.6% 90.2%
7: POS+ST+SR 92.3% 90.9%
8: POS+ST+PP 92.1% 90.7%
9: all five 92.5% 91.1%

• net gain although the individual components are unreliable

Natural Language Processing: Dealing with structures 174

Hybrid parsing

• robust across different corpora (FOTH 2006)

average accuracy
text type sentences length unlabelled labelled
law text 1145 18.4 90.7% 89.6%
online news 10000 17.3 92.0% 90.9%
Bible text 2709 15.9 93.0% 91.2%
trivial literature 9547 13.8 94.2% 92.3%

skip

Natural Language Processing: Dealing with structures 175

Relative Importance of Information Sources

Class Purpose Example Importance
agree rection and agreement subjects have nominative case 1.02
cat category cooccurrence prepositions do not modify each other 1.13
dist locality principles prefer the shorter of two attachments 1.01
exist valency finite verbs must have subjects 1.04
init hard constraints appositions are nominals 3.70
lexical word-specific rules “entweder” requires following “oder” 1.02
order word-order determiners precede their regents 1.11
pos POS tagger integration prefer the predicted category 1.77
pref default assumptions assume nominative case by default 1.00
proj projectivity disprefer nonprojective coordinations 1.09
punc punctuation subclauses are marked with commas 1.03
root root subordinations only verbs should be tree roots 1.72
sort sortal restrictions “sein” takes only local predicatives 1.00
uniq label cooccurrence there can be only one determiner 1.00
zone crossing of marker words conjunctions must be leftmost dependents 1.00

Natural Language Processing: Dealing with structures 176

Relative Importance of Information Sources

Class Purpose Example Importance
init hard constraints appositions are nominals 3.70
pos POS tagger integration prefer the predicted category 1.77
root root subordinations only verbs should be tree roots 1.72
cat category cooccurrence prepositions do not modify each other 1.13
order word-order determiners precede their regents 1.11
proj projectivity disprefer nonprojective coordinations 1.09
exist valency finite verbs must have subjects 1.04
punc punctuation subclauses are marked with commas 1.03
agree rection and agreement subjects have nominative case 1.02
lexical word-specific rules “entweder” requires following “oder” 1.02
dist locality principles prefer the shorter of two attachments 1.01
pref default assumptions assume nominative case by default 1.00
sort sortal restrictions “sein” takes only local predicatives 1.00
uniq label cooccurrence there can be only one determiner 1.00
zone crossing of marker words conjunctions must be leftmost dependents 1.00

Natural Language Processing: Dealing with structures 177

Selling Points

• robustness against ungrammatical input

• inherent diagnostic abilities:
constraint violations can be interpreted as error diagnoses

• transformation-based parsing is conflict-driven
• crucial for interactive grammar development
• applications for second language learning

• inherent anytime properties
• interruptable
• processing time can be traded for parsing accuracy

Natural Language Processing: Dealing with structures 178

Selling Points

• framework for soft information fusion
• syntax, semantics, information structure, ...
• shallow processing components

• achieves always full disambiguation

• partial results can be obtained if needed

• you have to be very patient

Natural Language Processing: Dealing with structures 179

Structure-based dependency parsing

• MST-parser (MCDONALD)

• large margin learning → scoring candidate edges

• first order (unary) / second order (binary) constraints

• two step approach:
• computation of bare attachments
• labellings as edge classification

• problem: combining second order constraints and non-projective
parsing

• projective tree building: EISNER (1996)
• parse the left and the right dependents independently
• join the partial trees later

Natural Language Processing: Dealing with structures 180

Structure-based dependency parsing

• to build an incomplete subtree from word index s to t find a word
index r (s ≤ r < t) which maximizes the sum of the scores of the
two complete subtrees plus the score of the edge from s to t

s r r + 1 t

=⇒

s t

Natural Language Processing: Dealing with structures 181

Structure-based dependency parsing

• extension to second order constraints:
• establishing a dependency in two phases
• sibling creation + head attachment

• to establish an edge between h3 and h1, given that an edge
between h2 and h1 had already been established, find a word
index r (h2 ≤ r < h3) that maximizes the score of making h2 and
h3 sibling nodes

h1 h2 h2 r r + 1 h3

=⇒

h1 h2 h2 h3

Natural Language Processing: Dealing with structures 182

Structure-based dependency parsing

• delay the completion of an item until all the sibling nodes have
been collected

h1 h2 h2 h3

=⇒

h1 h3

Natural Language Processing: Dealing with structures 183

Structure-based dependency parsing

• re-evaluation of MST on the WCDG annotations

• with interpunction

accuracy[%]
structural labelled

MST parser 91.9 89.1
WCDG (POS tagger only) 89.7 87.9
WCDG (all predictors) 92.5 91.1

• without interpunction

accuracy[%]
structural labelled

MST on NEGRA 90.5 87.5
MST on TIGER (CoNLL 2006) 90.4 87.3

Natural Language Processing: Dealing with structures 184

History-based dependency parsing

• MaltParser NIVRE (2004): choice between four parser actions:
shift / left-attach + reduce / right-attach + shift / reduce

Jetzt schläft das Kind
Jetztschläft
dasKind

ADV

DET

SUBJ

• support vector machine trained on the parse history to predict
the best next parser action

• parser takes deterministic decisions: eager processing

• fully left-to-right incremental processing

Natural Language Processing: Dealing with structures 185

Parser combination

• WCDG + MST-Parser

• Reparsing (MST-Parser + Malt-Parser)

• Retraining (MST-Parser + Malt-Parser)

Natural Language Processing: Dealing with structures 186

Parser combination

• WCDG has proven useful to integrate external predictor

• so far, all predictors consider
• partial aspects of the parsing problem

tagger, supertagger, pp-attacher, ...,
• or use a different representation

projective vs. non-projective

• What happens ...
• ... if two parsers for exactly the same task are combined?
• ... if the predictor becomes superior?

Natural Language Processing: Dealing with structures 187

Parser Combination

• using the output of MST to guide WCDG

• three additional constraints
• Is the modifiee the same?
• Is the root node the same?
• Is the label the same?

• separate constraint weights for attachment and label

Natural Language Processing: Dealing with structures 188

Parser Combination

• results

accuracy[%] accuracy[%]
with interpunction without interpunction

structural labelled structural labelled
MST parser 91.9 89.1 89.5 86.0
WCDG (POS tagger only) 89.7 87.9 88.0 86.0
WCDG (all predictors) 92.5 91.1 91.3 90.0
WCDG + POS tagger + MST 93.1 91.8
WCDG + all predictors 93.9 92.6 92.9 91.4

• high degree of synergy

Natural Language Processing: Dealing with structures 189

Phrase structure parsing

• phrase structures

• parsing strategies

• chart parsing

• probabilistic models

• restricted phrase structure models

Natural Language Processing: Dealing with structures 190

Phrase structure

• constituents as basic units

• constituents are embedded into other constituents

• constituent structure can be described by means of a context
free grammar

• non-terminal symbols: S, NP, VP, PP, ...
• terminal symbols: waits, for, in, the, John, Mary, park

NT-Symbol → {T-Symbol | NT-Symbol}*

• rule application
• generatively
• analytically

• parser has to accomplish three tasks
• computing the attachment, the label, and the extension of a

phrase

Natural Language Processing: Dealing with structures 191

Phrase structure

• phrase structure tree is a byproduct of the derivation process
(recursive rule application)

→ close relationship between
• rule structure
• structural description
• rule application (analysis/generation)

• rules can be extracted from a given phrase structure tree

Natural Language Processing: Dealing with structures 192

Phrase structure

• lexical insertion rules, preterminal rules, lexicon
N → Mary
N → John
N → park
P → in
D → the
V → sees

Natural Language Processing: Dealing with structures 193

Phrase structure

• structure-building rules, grammar
S → NP VP
VP → V NP
VP → V PP
VP → V PP PP
PP → P NP
NP → N

• first constraint on possible forms of rules
• lexicon

PT-Symbol → T-Symbol
• grammar

NT-Symbol → {NT-Symbol | PT-Symbol}*

Natural Language Processing: Dealing with structures 194

Phrase structure

• recursive rules: potentially infinitely many sentences can be
generated
→ creativity of language competence

• goal of linguistic modelling: specification of additional constraints
on the possible rule forms

Natural Language Processing: Dealing with structures 195

Phrase structure

• phrasal categories: distributional type (purely structural
perspective)

• phrasal categories are derived from lexical ones by adding
additional constituents

N ⇒ NP
V ⇒ VP
A ⇒ AP
ADV ⇒ ADVP
P ⇒ PP

Natural Language Processing: Dealing with structures 196

Parsing strategies

• rule application from left to right: top-down analysis
• derivation of a sentence from the start symbol

S
NP VP
N V NP
John sees NP
John sees Mary

• rule application from right to left: bottom up analysis
• derivation of the start symbol from the sentence:

John sees Mary
N V N
NP V NP
NP VP
S

Natural Language Processing: Dealing with structures 197

Parsing strategies

• all alternatives for rule applications need to be checked

• ambiguities do not allow local decisions

• lexical ambiguities: green/VINF/VFIN/NN/ADJ/ADV

• structural ambiguities as a consequence of lexical ones

Natural Language Processing: Dealing with structures 198

Parsing strategies

• purely structural ambiguities
[NP the man [PP with the hat [PP on the stick]]]
[NP the man [PP with the hat] [PP on the stick]]
. . . , weil [NP dem Sohn des Meisters] [NP Geld] fehlt.
. . . , weil [NP dem Sohn] [NP des Meisters Geld] fehlt.

• local ambiguities can be resolved during subsequent analysis
steps

• global ambiguities remain until the analysis finishes

Natural Language Processing: Dealing with structures 199

Parsing strategies

• parsing as search
• alternative rule applications create a search space

Natural Language Processing: Dealing with structures 200

Parsing strategies

• expectation driven (top-down, expand-reduce)
• problem: left/right recursive rules cause termination

problems
• even in case of indirect recursion:

X → Y a
Y → X

• solution: transformation into a weakly equivalent grammar
without left/right recursion

• linguistically motivated derivation structure is lost
• workaround: generating a separated structure by

means of unification

Natural Language Processing: Dealing with structures 201

Parsing strategies

• data driven (bottom-up, shift-reduce)
• problem: empty productions (linguistically motivated)

X → ǫ

• perhaps ”licensing” empty categories by lexical nodes
• problem: unary rules which form a cycle

• avoid them completely

Natural Language Processing: Dealing with structures 202

Parsing strategies

• depth-first
• alternative rule applications are tried later on
• storing them on a stack

• breadth-first
• alternative rule applications are tried in ”parallel”
• maintaining the alternatives in a queue

Natural Language Processing: Dealing with structures 203

Parsing strategies

• left-to-right
• input is processed beginning from its left side

• right-to-left
• input is processed beginning from its right side

Natural Language Processing: Dealing with structures 204

Parsing strategies

• mixed strategies
• Left-Corner-Parsing: top-down analysis activating a rule by

its left corner
• robust parsing for erroneous input:

bottom-up analysis and subsequent top-down
reconstruction in case of failure (MELLISH 1989)

• island parsing: bidirectional analysis starting from reliable
hypotheses (e.g. for speech recognition results)

Natural Language Processing: Dealing with structures 205

Chart parsing

• effciency problem: repetition of analysis steps on alternative
analysis paths

• recombination of search paths is required

• data
• German with head-final verb group
• unmarked case: subclause ordering

..., weil der Vater seine Kinder liebt.

..., weil der Vater seinen Kindern glaubt.

..., weil der Vater seinen Kindern ein Eis versprach.

..., weil der Vater seinen Kindern mit einer Strafe droht.

Natural Language Processing: Dealing with structures 206

Chart parsing

• grammar

S’ → Konj S
S → NPn VP
VP → NPa Va

VP → NPd Vd

VP → NPd NPa Vd ,a

VP → NPd PPmit,d Vd ,mit

NPX → DX NX

PPX ,Y → PX NPY

• Example analysis: top-down, depth-first
... der Vater seinen Kindern ein Eis versprach.

Natural Language Processing: Dealing with structures 207

Chart parsing

S
NPn VP

Dn Nn VP
d Nn VP
d v VP

d v NPd Vd d v NPa Va d v NPd NPa Vd ,a ...
d v Dd Nd Vd d v Da Na Va d v Dd Nd NPa Vd ,a

d v s Nd Vd d v s Nd NPa Vd ,a

d v s k Vd d v s k NPa Vd ,a

d v s k Da Na Vd ,a

d v s k e Na Vd ,a

d v s k e e Vd ,a

d v s k e e v

Natural Language Processing: Dealing with structures 208

Chart parsing

• well-formed substring table (chart)
• directed acyclic graph (DAG) with

• one source (beginning of the sentence)
• one sink (end of the sentence) and
• a total precedence relation on the nodes

• edges correspond to successfully recognized constituents

Natural Language Processing: Dealing with structures 209

Chart parsing

er seinen Kindern mit einer Strafe droht

Pron

NPn

Dd Nd

NPd

Pmit Dd Nd

NPd

PPmit,d

Vd,mit

VP

S

Natural Language Processing: Dealing with structures 210

Chart parsing

1 2 3 4 5 6 7
er

0 Pron S
NPn

seinen NPd VP
1 Dd

Kindern
2 Nd

mit PPmit

3 Pmit

einer NPd

4 Dd

Strafe
5 Nd

droht
6 Vd,mit

Natural Language Processing: Dealing with structures 211

Chart parsing

• Cocke-Younger-Kasami algorithm
(KASAMI 1965, YOUNGER 1967)

• grammar in Chomsky-normalform
• binary branching rules: X → Y Z
• pre-terminal/lexical rules: X → a

Natural Language Processing: Dealing with structures 212

Chart parsing

• properties of the CYK algorithm
1. length o the derivation is constant:

n lexical rules + n-1 binary branching rules
2. number of binary partitionings of a sentence is constant: n-1((a) (b d))((a b) (d))((a b) (d))

3. no structural ambiguities due to different segmentations of
the sentence

VP → NP NP V
VP → NP V
VP → V

Natural Language Processing: Dealing with structures 213

Tabellenparsing

• CYK algorithm
1. initialisaton of the table

for i = 0 to n − 1:
CHARTi ,i+1 ⇐ { X | X ∈ VT and wi+1 ∈ X }

2. computation of the remaining entries

for k = 2 to n:
for i = 0 to n − k :

j ⇐ i + k
CHARTi ,j ⇐ { A | (A → X Y) ∈ R ∧ ∃ m . (X ∈ CHARTi ,m

∧ Y ∈ CHARTm,j , mit i < m < j }
if S ∈ CHART0,n

then RETURN(true)
else RETURN(false)

Natural Language Processing: Dealing with structures 214

Chart parsing

• bottom-up analysis
• time complexity O(n3)
• memory complexity O(n2)
• achieved by reycling of intermediate results (recombination)

• disadvantage: still constituents are generated which cannot be
integrated into a larger structure (dead ends)
→ EARLEY parser

Natural Language Processing: Dealing with structures 215

Chart parsing

• active chart
• extension: even incomplete attempts of rule applications are

recorded in the chart
• active edges:

open expectations for the right context
notation: 〈 a, b, A → B . C D 〉

• inactive edges:
completely satisfied expectations for the right context
notation: 〈 a, b, A → B C D . 〉

Natural Language Processing: Dealing with structures 216

Chart parsing

• TD rule (initialisation)

For all rules A → w1 where A is a start symbol of the grammar,
add an edge 〈 0, 0, A → . w1 〉 to the chart.

• rule: S → NPn VP

der Vater seinen Kindern . . .

S → . NPn VP

Dn Na Dd Nd

Natural Language Processing: Dealing with structures 217

Chart parsing

• TD-rule (edge introduction)

When adding a rule 〈 i, j, A → w1 . B w2 〉 to the chart, add for
each rule B → w3 an edge 〈 j, j, B → . w3 〉.

• rule: NPX → DX NX

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 218

Chart parsing

• fundamental rule (edge expansion)

If the chart contains two edges 〈 i, j, A → w1 . B w2 〉
and 〈 j, k, B → w3 . 〉, add a third edge
〈 i, k, A → w1 B . w2〉.

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 219

Chart parsing

• repeated application of the fundamental rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 220

Chart parsing

• repeated application of the fundamental rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

S → NPn . VP

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 221

Chart parsing

• repeated application of the top-down rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

S → NPn . VP

VP → . NPd NPa Vd,a

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 222

Chart-Parsing

• repeated application of the top-down rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

S → NPn . VP

VP → . NPd NPa Vd,a

NPd → . Dd Nd

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 223

Chart parsing

• repeated application of the fundamental rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

S → NPn . VP

VP → . NPd NPa Vd,a

NPd → . Dd Nd

NPd → Dd . Nd

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 224

Chart parsing

• repeated application of the fundamental rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

S → NPn . VP

VP → . NPd NPa Vd,a

NPd → . Dd Nd

NPd → Dd . Nd

NPd → Dd Nd .

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 225

Chart parsing

• repeated application of the fundamental rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

S → NPn . VP

VP → . NPd NPa Vd,a

NPd → . Dd Nd

NPd → Dd . Nd

NPd → Dd Nd .

VP → NPd . NPa Vd,a

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 226

Chart parsing

• repeated application of the top-down rule

der Vater seinen Kindern . . .

S → . NPn VP
NPn → . Dn Nn

NPn → Dn . Nn

NPn → Dn Nn .

S → NPn . VP

VP → . NPd NPa Vd,a

NPd → . Dd Nd

NPd → Dd . Nd

NPd → Dd Nd .

VP → NPd . NPa Vd,a

NPa → . Da Na

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 227

Chart parsing

• Earley algorithm (EARLEY 1970)
• for arbitrary context free grammars

• including recursion, cycles and ǫ-rules
• mixed top-down/bottom-up strategy, to avoid adding of

edges (constituents) which cannot be incorporated into
larger ones

1. top-down condition:
only edges are added for which the left context is
compatible with the requirements of the grammar

2. bottom-up condition:
the already applied part of the rule is compatible with
the input data

Natural Language Processing: Dealing with structures 228

Chart parsing

w1 wi wi+1 wj wj+1 wk wn

S

A

α β

Natural Language Processing: Dealing with structures 229

Chart parsing

• elementary operations
• expand (top-down rule, edge introduction)
• complete (fundamental rule, edge expansion)
• shift (introduction of lexical edges)

• different search strategies (depth-first/breadth-first/best-first) are
possible depending on the agenda management

Natural Language Processing: Dealing with structures 230

Chart parsing

• EARLEY-Algorithmus
1. initialization

for all (S → β) ∈ R: CHART0,0 ⇐ 〈S,∅, β〉
Apply EXPAND to the previously generated edges
until no new edges can be added.

2. computation of the remaining edges
for j = 1, . . . , n:

for i = 0, . . . , j :
compute CHARTi ,j:

1. apply SHIFT to all relevant edges in CHARTi ,j−1

2. apply EXPAND and COMPLETE until no new
edges can be produced.

if 〈S, β, ∅〉 ∈ CHART0,n

then RETURN(true) else RETURN(false)

Natural Language Processing: Dealing with structures 231

Chart parsing

• a chart-based algorithm is only a recognizer

• extending it to a real parser:
• extraction of structural descriptions (trees, derivations) from

the chart in a separate step
• basis: maintaining a pointer from an edge to the activating

edge in the fundamental rule
• ”collecting” the trees starting with all inactive S-edges

Natural Language Processing: Dealing with structures 232

Chart parsing

• time complexity
• O(n3 · |G2|)
• for deterministic grammars: O(n2)
• in many relevant cases: O(n)

• complexity result is only valid for constructing the chart

• tree extraction might require exponential effort in case of
exponentially many results

Natural Language Processing: Dealing with structures 233

Chart parsing

• space complexity
• O(n2)
• due to the reuse of intermediate results

• holds only for atomic non-terminal symbols

• chart is a general data structur to maintain intermediate results
during parsing

• alternative parsing strategies are possible
• e.g. bottom-up

Natural Language Processing: Dealing with structures 234

Chart parsing

• bottom-up rule (edge introduction)

When adding a rule 〈 i, j, B → w1 〉 for every rule A → B w2 add
another edge 〈 i, i, A → . B w2 〉

der Vater seinen Kindern . . .

NPn → . Dn Nn NPd → . Dd Nd

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 235

Chart parsing

• application of the fundamental rule

der Vater seinen Kindern . . .

NPn → . Dn Nn NPd → . Dd Nd

NPn → Dn . Nn NPd → Dd . Nd

Dn Nn Dd Nd

Natural Language Processing: Dealing with structures 236

Chart parsing

• application of the fundamental rule

der Vater seinen Kindern . . .

NPn → . Dn Nn NPd → . Dd Nd

NPn → Dn . Nn NPd → Dd . Nd

Dn Nn Dd Nd

NPn → Dn Nn . NPd → Dd Nd .

Natural Language Processing: Dealing with structures 237

Chart parsing

• Application of the bottom-up rule

der Vater seinen Kindern . . .

NPn → . Dn Nn NPd → . Dd Nd

NPn → Dn . Nn NPd → Dd . Nd

Dn Nn Dd Nd

NPn → Dn Nn . NPd → Dd Nd .

S → . NPn VP VP → . NPd NPa Vd,a

Natural Language Processing: Dealing with structures 238

Chart parsing

• application of the fundamental rule

der Vater seinen Kindern . . .

NPn → . Dn Nn NPd → . Dd Nd

NPn → Dn . Nn NPd → Dd . Nd

Dn Nn Dd Nd

NPn → Dn Nn . NPd → Dd Nd .

S → . NPn VP VP → . NPd NPa Vd,a

S → NPn . VP VP → NPd . NPa Vd,a

Natural Language Processing: Dealing with structures 239

Chart parsing

• parsing is a monotonic procedure of information gathering
• edges are never deleted from the chart
• even unsuccessful rule applications are kept

• edges which cannot be expanded further

• duplicating analysis effort is avoided
• edge is only added to the chart if not already there

Natural Language Processing: Dealing with structures 240

Chart parsing

• agenda
• list of active edges
• can be sorted according to different criteria
• stack: depth-first
• queue: breadth-first
• TD-rule: expectation-driven analysis
• BU-rule: data -driven analysis

Natural Language Processing: Dealing with structures 241

Chart parsing

• flexible control for hybrid strategies

• left-corner parsing
• TD-parsing, but only those rules are activated, which can

derive a given lexical category (left corner) directly or
indirectly

• mapping between rules and their possible left corners is
computed from the grammar at compile time

• variant: head-corner parsing

Natural Language Processing: Dealing with structures 242

Chart parsing

• best-first parsing
• sorting the agenda according to confidence values

• hypothesis scores of speech recognition
• rule weights (e.g. relative frequency in a tree bank)

Natural Language Processing: Dealing with structures 243

Stochastic models

• common problem of all purely symbolic parser
• high degree of output ambiguity
• even in case of (very) fine-grained syntactic modelling
• despite of a dissatisfyingly low coverage

• coverage and degree of output ambiguity are typically highly
correlated

Natural Language Processing: Dealing with structures 244

Stochastic models

• output ambiguity
• Hinter dem Betrug werden die gleichen Täter vermutet, die

während der vergangenen Tage in Griechenland gefälschte
Banknoten in Umlauf brachten.

• The same criminals are supposed to be behind the deceit
who in Greece over the last couple of days brought falsified
money bills into circulation.

• Paragram (KUHN UND ROHRER 1997): 92 readings
• Gepard (LANGER 2001): 220 readings
• average ambiguity for a corpus of newspaper texts: 78 with

an average sentence length of 11.43 syntactic words
(Gepard)

• extreme case: 6.4875 · 1022 for a single sentence (BLOCK

1995)

Natural Language Processing: Dealing with structures 245

Stochastic models

• sources of ambiguity:
• lexical ambiguity
• attachment

• We saw the Eiffel Tower flying to Paris.
• coordination:

• old men and women
• NP segmentation

• . . . der Sohn des Meisters Geld

Natural Language Processing: Dealing with structures 246

Stochastic models

• example: PP-attachment
the ball with the dots in the bag on the table

• grows exponentially (catalan) with the number of PPs

C(n) =
1

n + 1

(

2n
n

)

PPs # parses
2 2
3 5
4 14
5 132
6 469
7 1430
8 4867

Natural Language Processing: Dealing with structures 247

Stochastic models

• coverage
• partial parser (WAUSCHKUHN 1996): 56.5% of the sentences
• Gepard: 33.51%
• on test suites (better lexical coverage, shorter and less

ambiguous sentences) up to 66%

Natural Language Processing: Dealing with structures 248

Stochastic models

• alternative: probabilistic context-free grammars (PCFG)

• estimation of derivation probabilities for all rules

Pr(N → ζ)

or

Pr(N → ζ|N) mit
∑

ζ

Pr(N → ζ) = 1

• e.g.

S → NP VP 0.8
S → Aux NP VP 0.15
S → VP 0.05

Natural Language Processing: Dealing with structures 249

Stochastic models

• language models: assigning a probability to a terminal string

Pr(w1,n) =
∑

t1,n

Pr(t1,n)

(several derivations for a sentence)

=
∑

t1,n

∏

rj∈t1,n

Pr(rj)

• determining the most probable word form sequence

Natural Language Processing: Dealing with structures 250

Stochastisches Basismodell

• disambiguation: determining of the most probable derivation

t1,n = arg max
t1,n∈T

Pr(t1,n)

= arg max
t1,n∈T

∏

rj∈t1,n

Pr(rj)

Natural Language Processing: Dealing with structures 251

Stochastic models

• independence assumption:

Pr(N j
k ,l → ζ|N1,, N j−1, w1, . . . , wk−1, wl+1, . . . , wn)

= Pr(N j
k ,l → ζ)

w1 wk−1 wl+1 wn

Nj

N1

Natural Language Processing: Dealing with structures 252

Stochastic models

• evaluation: PARSEVAL-metric (BLACK ET AL. 1991)

• comparison with a reference annotation (gold standard)

• labelled recall

LR =
correct constituents in the output
constituents in the gold standard

• labelled precision

LP =
correct constituents in the output

constituents in the output

Natural Language Processing: Dealing with structures 253

Stochastic models

• crossing brackets
a constituent of a parse tree contains parts of two constituents
from the reference, but not the complete ones.output: [[A B C ℄ [D E ℄ ℄gold standard: [[A B ℄ [C D E ℄ ℄

CB =
crossing brackets

sentences

0CB =
sentences without crossing brackets

sentences

Natural Language Processing: Dealing with structures 254

Stochastic models

• How meaningful are the results?

• gold standard:
S

NP VP

I saw NP PP

a man PP in NP

with NP the park

NP and NP

a dog a cat

[I [saw [[a man] [with [[a dog] and [a cat]]]] [in [the park]]]]

Natural Language Processing: Dealing with structures 255

Stochastic models
• 1st result: one erroneous attachment

S

NP VP

I saw NP

a man PP

with NP

NP and NP

a dog NP PP

a cat in NP

the park
[I [saw [[a man] [with [[a dog] and [[a cat] [in [the park]]]]]]]]

Natural Language Processing: Dealing with structures 256

Stochastic models

• 2nd result: almost flat analysis
• the parser tries to avoid any decisions on attachments

S

NP VP

I saw NP with NP and NP PP

a man a dog a cat in NP

the park
[I [saw [a man] with [a dog] and [a cat] [in [the park]]]]

Natural Language Processing: Dealing with structures 257

Stochastic models

• 1st result
[I [saw [[a man] [with [[a dog] and [[a cat] [in [the park]]]]]]]]
[I [saw [[a man] [with [[a dog] and [a cat]]]] [in [the park]]]]

LR = 7
10 = 0.7 LP = 7

11 = 0.64 CB = 3
1 = 3

• 2nd result
[I [saw [a man] with [a dog] and [a cat] [in [the park]]]]
[I [saw [[a man] [with [[a dog] and [a cat]]]] [in [the park]]]]

LR = 7
10 = 0.7 LP = 7

7 = 1 CB = 0
1 = 0

• alternative (LIN 1996):
transformation of the PS-tree into a dependency tree and
evaluation of attachment errors

Natural Language Processing: Dealing with structures 258

Stochastic models

• training: estimation of rule-application probabilities

• simplest case: treebank grammars
(CHARNIAK 1996)

Pr(N → ζ|N) =
C(N → ζ)

∑

ξ C(N → ξ)
=

C(N → ζ)

C(N)

• Penn treebank: 10605 rules, among them 3943 only seen once

• results for sentences with up to 40 word forms:
• LR = 80.4%, LP = 78.8%
• constituents without crossing brackets: 87.7%

Natural Language Processing: Dealing with structures 259

Stochastic models

• parsing with a modified EARLEY/CYK algorithm

• dynamic programming:
• recursively constructing the parsing table and selecting the

locally optimal interpretation

Natural Language Processing: Dealing with structures 260

Stochastic models

• problem: independence assumption is systematically wrong
• subject is more often pronominalized than the object

• particularly in spoken language
• consequence of the information structure

• subcategorisation preferences disambiguate attachment
problems

• attachment to an NP is more frequent that attachment
to the verb (2:1)

• but: some verbs enforce an attachment of certain
prepositions

Moscow sent more than 100.000 soldiers into Afghanistan.

• send requires a direction (into)
→ modelling of lexical dependencies becomes
necessary

Natural Language Processing: Dealing with structures 261

Stochastic models

• lexical dependencies cannot be expressed in a PCFG
• only stochastic dependence on the dominating non-terminal

Pr(N → ζ|N)

• extending the stochastic model with additional conditions

Natural Language Processing: Dealing with structures 262

Stochastic models

• → lexicalised rule-application probabilities (CHARNIAK 2000)

Pr(N → ζ|N, h(r))

• additionally considering the dependence
(CHARNIAK 2000, COLLINS 1999)

• on the head of the immediately dominating phrase level

Pr(r = N → ζ|N, h(r), h(m(r)))

• on the head of the two dominating phrase levels

Pr(r = N → ζ|N, h(r), h(m(r)), h(m(m(r))))

Natural Language Processing: Dealing with structures 263

Stochastic models

• problem: data sparseness
• backoff
• smoothing
• stochastic modelling of the dependency of the sister nodes

from the head as a Markov process (COLLINS 1999)

Natural Language Processing: Dealing with structures 264

Stochastic models

• quality (CHARNIAK 2000)
sentence length ≤ 40

parser LR LP CB 0CB 2CB
COLLINS 1999 88.5 88.7 0.92 66.7 87.1
CHARNIAK 2000 90.1 90.1 0.74 70.1 89.6

sentence length ≤ 100
parser LR LP CB 0CB 2 CB
COLLINS 1999 88.1 88.3 1.06 64.0 85.1
CHARNIAK 2000 89.6 89.5 0.88 67.6 87.7

Natural Language Processing: Dealing with structures 265

Stochastic models

• data orientierted parsing (DOP) (BOD 1992, 2003)
• decomposition of the parse trees inro partial trees up to a

depth of n (n ≤ 6)
• estimation of the frequency of all partial trees
• determining the derivation probability for an output structure

as the sum of all derivation possibilities
• closed computation no longer possible
→ Monte-Carlo sampling

• LR=90.7%, LP=90.8% (sentence length ≤ 100)

Natural Language Processing: Dealing with structures 266

Stochastic models

• supertagging (BANGALORE 1997)
• decomposition of the parse tree into lexicalised tree

fragments
• in analogy to a Tree Adjoining Grammar (TAG)

• using the tree fragments as structurally rich lexical
categories

• training of a stochastic tagger
• selection of the most probable sequence of tree fragments
→ almost parsing

• reconstruction of a parse tree out of the tree fragments
• better results (lower perplexity) with a Constraint

Dependency Grammar (HARPER 2002)
• even if trained on erroneous treebanks (HARPER 2003)

Natural Language Processing: Dealing with structures 267

Stochastic models

• applications
• approximative parsing for unrestricted text

• information extraction
• discourse analysis

• analysis of ungrammatical input
• language models for speech recognition
• grammar induction

Natural Language Processing: Dealing with structures 268

Restricted phrase-structure models

• linguistic goals:
• define the rules of a grammar in a way that natural

languages can be distinguished from artificial ones
• specify general rule schemata which are valid for every

language
→ X-bar schema (Jackendoff, 1977)

• constraints on possible rule instances are principles of the
grammar
→ universal grammar

Natural Language Processing: Dealing with structures 269

Restricted phrase-structure models

• assumption: a phrase is always an extension of a lexical element

VP → V NP
reads the book

NP → AP N
dancing girls

AP → PP A
with reservations accepted

PP → P NP
with the children

• there cannot be any rules of the type

NP → V AP
VP → N PP
. . .

Natural Language Processing: Dealing with structures 270

Restricted phrase-structure models

• two different kinds of categories
• lexical element: head
• phrasal elements: modifier

• head principle: Every phrase has exactly one head.

• phrase principle: Every non-head is a phrase

Natural Language Processing: Dealing with structures 271

Restricted phrase-structure models

• head feature principle: The morphological (agreement-)features
of a phrase are realized at its head

PP

P NP[dat]

mit NP N[dat]

Susis N[dat] PP

Auffassungen zu dieser Frage

Natural Language Processing: Dealing with structures 272

Restricted phrase-structure models

• projection line, head line: path from a complex category to its
lexical head

PP

P NP[dat]

mit NP N[dat]

Susis N[dat] PP

Auffassungen zu dieser Frage

Natural Language Processing: Dealing with structures 273

Restricted phrase-structure models

• phrases are maximum projections of the head
• case feature of a nominal head is only projected up to the

NP level, not to the VP level
• VP receives its agreement features from its head (the verb)

S

NP[3rd,sg] VP[3rd,sg]

N[3rd,sg] V[3rd,sg] NP[dat]

Er droht N[dat]

ihnen

Natural Language Processing: Dealing with structures 274

Restricted phrase-structure models

• complexity levels: NP has a higher (actually highest) complexity
than N

head
head of the department
head of the department who addressed the meeting

Natural Language Processing: Dealing with structures 275

Restricted phrase-structure models

• level indicees to describe complexity levels (HARRIS 1951)
• lexical level: X0, head of the phrase
• phrasal level: Xmax or XP, phrases which cannot further be

extended
• X ∈ {N, V, A, P}

N2

D N1

the N0 PP

head of the department

Natural Language Processing: Dealing with structures 276

Restricted phrase-structure models
• observation:

PP has a closer relationship to the head than a relative clause
(cannot be exchanged without changing the attachment)

the head of the department who addressed the meeting
the head who addressed the meeting of the department

→ PPs belong to a lower complexity level Xn than the relative
clause Xm (n < m)

Nmax = N3

D N2

the N1 S

N0 Nmax who addressed . . .

head of the department

Natural Language Processing: Dealing with structures 277

Restricted phrase-structure models

• adjunction: constituents with the same distribution may get
assigned the same complexity level

N2

D N1

the N1 S

N0 NP who adressed . . .

head of the department

Natural Language Processing: Dealing with structures 278

Restricted phrase-structure models

• three complexity level are sufficient
• language specific parameter?

• rules:

NP → D N1

N1 → N1 S
N1 → N0 (NP)

Natural Language Processing: Dealing with structures 279

Restricted phrase-structure models

• adjunction for prepositional phrases

N1 → N1 PP

man with the glasses

• recursive application
man with the glasses at the window
man at the window with the glasses

• left NP-adjuncts

N1 → NP N1

a [Cambridge] [high quality] [middle class] student

Natural Language Processing: Dealing with structures 280

Restricted phrase-structure models

• left adjective adjuncts

N1 → AP N1

• license “infinitely” long adjective sequences
NP

D N1

the AP N1

small AP N1

busy AP N1

agreeable N0

men

Natural Language Processing: Dealing with structures 281

Restricted phrase-structure models

• generalisation: Chomsky-adjunction

X1 → YP X1

X1 → X1 YP

• schema for Chomsky-adjunction

Xi

Xi Yj

Xi

Yj Xi

Xi is the head

Natural Language Processing: Dealing with structures 282

Restricted phrase-structure models

• level principle: The head of a category Xi is a category Xj , with
0 ≤ j ≤ i .

• the head has the same syntactic type as the constituent
• the head is of lower structural complexity than the

constituent

Natural Language Processing: Dealing with structures 283

Restricted phrase-structure models

• X-bar schema: generalisation for arbitrary phrase structure rules:

• category variables

X ∈ {V, N, P, A}

• category independence:

Any categorial rules can be formulated using category variables.

Natural Language Processing: Dealing with structures 284

Restricted phrase-structure models

• complement rule

X1 → YP* X0 YP*

• adjunct rule

Xi → YP* Xi YP* 0 < i ≤ max

• specifier rule

Xmax → (YP) Xmax−1

Natural Language Processing: Dealing with structures 285

Restricted phrase-structure models

• general schema for phrase structures with max = 2

XP = X2

spezifier X1

adjunct X1

X1 adjunct

complement X0 complement

head

Natural Language Processing: Dealing with structures 286

Restricted phrase-structure models

• object restriction:

subcategorized elements appear always at the transition
between the X0 and the X1 level.

• X1 dominates immediately X0 and the phrases
subcategorized by X0

• X-bar schema is order-free

• periphery of the head:

The head of a projection is always peripheral.

• linearisation is a language specific parameter

• e.g. verb phrase
• English: left peripheral
• German: right peripheral

Natural Language Processing: Dealing with structures 287

Restricted phrase-structure models

• X-bar schema is considered a constraint of universal grammar
• restricts the set of possible phrase structure rules
• gives a prognosis about all the acceptable structural

descriptions for all natural languages

Natural Language Processing: Dealing with structures 288

Restricted phrase-structure models

• example: English verb phrases
VP

ASP V1

be V0 NP

reading a book

specifier head complement
• aspectual auxiliary (progressive be and perfective have) as

specifier (JACKENDOFF 1977)

Natural Language Processing: Dealing with structures 289

Restricted phrase-structure models

• evidence for V1

• only V1 can become topicalized, not VP

They swore that John might have been taking heroin and

. . . [V 1 taking heroin] he might have been!

. . . * [VP been taking heroin] he might have!

. . . * [VP have been taking heroin] he might!

• some verbs (e.g. begin or see) subcategorize V1

I saw John [V 1 running down the road].
* I saw him [VP be running down the road].
* I saw him [VP have finished his work].

Natural Language Processing: Dealing with structures 290

Restricted phrase-structure models

• structural distinction between complements and adjuncts

• complement:
He will work at the job.
He laughed at the clown.

VP

V1

V0 PP

laughed at the clown

Natural Language Processing: Dealing with structures 291

Restricted phrase-structure models

• adjunct:
He will work at the office.
He laughed at ten o’clock.

VP

V1

V1 PP

V0 at ten o’clock

laughed

Natural Language Processing: Dealing with structures 292

Restricted phrase-structure models

• evidence for the distinction between complements and adjuncts

1. structural ambiguity:

He may decide on the boat.
He couldn’t explain last night.

V2

V1

V0 PP

decide on the boat

V2

V1

V1 PP

V0 on the boat

decide

Natural Language Processing: Dealing with structures 293

Restricted phrase-structure models
2. passivization is possible for PP-complements, but not for

PP-adjuncts

[This job] needs to be worked at by an expert.
* [This office] is worked at by a lot of people.

[The clown] was laughed at by everyone.
* [Ten o’clock] was laughed at by everyone.

3. when passivizing ambiguous constructions the adjunct reading
disappears

[The boat] was decided on after lengthy deliberation.
[Last night] couldn’t be explained by anyone.

more evidence from phenomena like pronominalization, ordering
restrictions, subcategorization, optionality and gapping in
coordinated structures ...

Natural Language Processing: Dealing with structures 294

Unification-based grammars

• feature structures

• rules with complex categories

• subcategorization

• movement

Natural Language Processing: Dealing with structures 295

Feature structures

• feature structures describe linguistic objects (lexical items or
phrases) as sets of attribute value pairs

• complex categories: name of the category may be part of the
feature structure

Haus:

cat N
case nom
num sg
gen neutr

• a feature structure is a functional mapping from a finite set of
attributes to the set of possible values

• unique names for attributes / unique value assignment
• number of attributes is finite but arbitrary
• feature structure can be extended by additional features

Natural Language Processing: Dealing with structures 296

Feature structures

• partial descriptions: underspecified feature structures

Frauen:
cat N
num pl
gen fem

Natural Language Processing: Dealing with structures 297

Feature structures

• subsumtion:

A feature structure M1 subsumes a feature structure M2 iff every
attribute-value pair from M1 is also contained in M2.

→ not all pairs from M2 need also be in M1

• constraint-based notation (SHIEBER 1986): M1 ⊑ M2

• M2 contains a superset of the constraints contained in M1
• M2 is an extension of M1 (POLLARD UND SAG 1987)
• M1 is less informative than M2 (SHIEBER 1986,

POLLARD UND SAG 1987)
but:

• M1 is more general than M2

• alternative notation:

instance-based (POLLARD UND SAG 1987): M1 � M2

Natural Language Processing: Dealing with structures 298

Feature structures

• subsumtion hierarchy

x a y a y b x b

x a
y a

x a
y b

x b
y a

x b
y b

Natural Language Processing: Dealing with structures 299

Feature structures

• formal properties of subsumtion
• reflexive: ∀Mi .Mi ⊑ Mi
• transitive: ∀Mi∀Mj∀Mk .Mi ⊑ Mj ∧ Mj ⊑ Mk → Mi ⊑ Mk
• antisymmetrical: ∀Mi∀Mj .Mi ⊑ Mj ∧ Mj ⊑ Mi → Mi = Mj

• subsumtion relation defines a partial order

• not all feature structures need to be in a subsumtion relation

Natural Language Processing: Dealing with structures 300

Feature structures

• unification I (subsumtion-based)

If M1, M2 and M3 are feature structures, then M3 is the unification
of M1 and M2

M3 = M1 ⊔ M2

iff
• M3 is subsumed by M1 and M2 and
• M3 subsumes all other feature structures, that are also

subsumed by M1 and M2.

• result of a unification (M3) is the most general feature structure
which is subsumed by M1 and M2

Natural Language Processing: Dealing with structures 301

Feature structures

• not all feature structures are in a subsumtion relation
→ unification may fail

• completing the subsumtion hierarchy to a lattice
• bottom (⊥): inconsistent (overspecified) feature structure
• top (⊤): totally underspecified feature structure

corresponds to an unnamed variable ([])

Natural Language Processing: Dealing with structures 302

Feature structures

• subsumtion lattice

x a y a y b x b

x a
y a

x a
y b

x b
y a

x b
y b

⊥

Natural Language Processing: Dealing with structures 303

Feature structures

• unification II (based on the propositional content) (POLLARD UND

SAG 1987)

The unification of two feature structures M1 und M2 is the
conjunction of all propositions from the feature structures M1 and
M2.

• unification combines two aspects:
1. test of compatibility
2. accumulation of information

• result of a unification combines two aspects
1. BOOLEAN value whether the unification was successful
2. union of the compatible information from both feature

structures

Natural Language Processing: Dealing with structures 304

Feature structures

• formal properties of the unification
• idempotent: M ⊔ M = M
• commutative: Mi ⊔ Mj = Mj ⊔ Mi
• associative: (Mi ⊔ Mj) ⊔ Mk = Mi ⊔ (Mj ⊔ Mk)
• neutral element: ⊤ ⊔ M = M
• zero element: ⊥ ⊔ M = ⊥

• unification and subsumtion can be mutally defined from each
other

Mi ⊑ Mj ↔ Mi ⊔ Mj = Mj

Natural Language Processing: Dealing with structures 305

Feature structures

• recursive feature structures: conditions are not to be defined for
individual features but complete feature collections (data
abstraction)

• value of an attribute is again a feature structure

Frauen:

cat N
bar 0

agr
num pl
gen fem

Natural Language Processing: Dealing with structures 306

Feature structures

• access to the values through paths
〈 cat 〉 = N
〈 bar 〉 = 0
〈 agr num 〉 = pl
〈 agr gen 〉 = fem

〈 agr 〉 =
num pl
gen fem

Natural Language Processing: Dealing with structures 307

Feature structures

• unification III (constructive algorithm)

Two feature structures M1 and M2 unify, iff for every common
feature of both structures

• in case of atomic values both value assignments are
identical or

• in case of complex values both values unify.
If successful unification produces as a result the set of all
complete paths from M1 and M2 with their corresponding values.
If unification fails the result will be ⊥.

Natural Language Processing: Dealing with structures 308

Feature structures

• recursive data structures can be used
• lists
• trees

(A B C) =⇒

first A

rest

first B

rest
first C
rest nil

Natural Language Processing: Dealing with structures 309

Feature structures

• example: subcategorisation list

(NP[dat] NP[akk]) =⇒

first
cat N
bar 2
cas dat

rest
first

cat N
bar 2
cas akk

rest nil

• two lists unify iff
• they have the same length and
• their elements unify pairwise.

Natural Language Processing: Dealing with structures 310

Feature structures

• information in a feature structure is conjunctively combined

• feature structures might also contain disjunctions

agr

cas nom
gen masc
num sg

cas gen
gen fem
num sg

cas dat
gen fem
num sg

cas gen
num pl

Natural Language Processing: Dealing with structures 311

Rules with complex categories

• categories with complexity level information

cat N
bar 2

→ cat D
cat N
bar 1

• modelling of government

cat N
bar 1

→ cat N
bar 0

cat N
bar 2
cas gen

Natural Language Processing: Dealing with structures 312

Rules with complex categories

• representing the rule structure as a feature structure

example: binary branching rule: X0 → X1 X2

X0
cat N
bar 2

X1
cat D
bar 0

X2
cat N
bar 1

Natural Language Processing: Dealing with structures 313

Rules with complex categories

• representation of feature structures as path equations

X0
cat N
bar 2

X1
cat D
bar 0

X2
cat N
bar 1

=⇒

〈 XO cat 〉 = N
〈 XO bar 〉 = 2
〈 X1 cat 〉 = D
〈 X1 bar 〉 = 0
〈 X2 cat 〉 = N
〈 X2 bar 〉 = 1

• features may corefer (coreference, reentrancy, structure sharing)

Natural Language Processing: Dealing with structures 314

Rules with complex categories

• applications of coreference:
• agreement: 〈 X1 agr 〉 = 〈 X2 agr 〉
• projection: 〈 X0 agr 〉 = 〈 X2 agr 〉

Natural Language Processing: Dealing with structures 315

Rules with complex categories

• representation in feature matricees by means of coreference
marker or path equations

X0
cat N
bar 2
agr 1

X1
cat D
bar 0
agr 1

X2
cat N
bar 1
agr 1

X0
cat N
bar 2
agr

X1
cat D
bar 0
agr = 〈 X0 agr 〉

X2
cat N
bar 1
agr = 〈 X0 agr 〉

• coreference corresponds to a named variable

Natural Language Processing: Dealing with structures 316

Rules with complex categories

• feature structures with coreference correspond to a directed
acyclic graph

◦

◦ ◦ ◦

N 2 D 0 N 1

◦

X0

X1
X2

cat

bar

agr

cat
bar

agr

cat

bar

agr

Natural Language Processing: Dealing with structures 317

Rules with complex categories

• generalised adjunct rule for prepositional phrases

X0
cat 1

bar 1

X1
cat 1

bar 1

X2
cat P
bar 2

Natural Language Processing: Dealing with structures 318

Rules with complex categories

• consequences of coreference on the information content:

• structural equality (type identity):
x []
y []

• referential identity (token identity):
x 1 []
y 1

• a coreference is an additional constraint

• equality is more general than identity:
x []
y []

⊑ x 1 []
y 1

• definition of unification is not affected by the introduction of
coreference

Natural Language Processing: Dealing with structures 319

Rules with complex categories

• construction of arbitrary structural descriptions
e.g. logical form

cat I
bar 2

sem 1 agens 2

→

cat N
bar 2
sem 2

agr 3 cas nom

cat I
bar 1
sem 1
agr 3

cat V
bar 1

sem
pred 1
patiens 2

→

cat N
bar 2
sem 2

agr cas akk

cat V
bar 0
subcat tr-akk
sem 1

Natural Language Processing: Dealing with structures 320

Rules with complex categories
. . .

cat V
bar 2
sem 1

cat V
bar 1

sem 1
pred 4

patiens 5

cat N
bar 2
sem 5

agr cas akk

cat V
bar 0
subcat tr-akk
sem 4

...

Natural Language Processing: Dealing with structures 321

Rules with complex categories

cat I
bar 2

sem 1 agens 2

cat N
bar 2
sem 2

agr 3 cas nom

cat I
bar 1
sem 1

agr 3

cat D
bar 0
agr 3

cat N
bar 1
sem 2

agr 3

cat V
bar 2
sem 1

cat I
bar 0
agr 3

...

Natural Language Processing: Dealing with structures 322

Rules with complex categories

• construction of left recursive structures with right recursive rules

• left recursive rules (DCG-notation)np(np(Snp,Spp)) --> np(Snp), pp(Spp).np(np(Sd,Sn)) --> d(Sd), n(Sn).
• right recursive rulesnp(np(Sd,Sn)) --> d(Sd), n(Sn).np(Spps) --> d(Sd), n(Sn), pps(np(Sd,Sn),Spps).pps(Snp,np(Snp,Spp)) --> pp(Spp).pps(Snp,Spps) --> pp(Spp), pps(np(Snp,Spp),Spps).

Natural Language Processing: Dealing with structures 323

Rules with complex categories

• example: the house behind the street with the red roof?- np(S,[t,h,bts,wtrr℄,[℄).np(Spps1) --> d(Sd), n(Sn), pps(np(Sd,Sn),Spps1). S=Spps1. . .?- pps(np(d(t),n(h)),Spps1,[bts,wtrr℄,Z1).pps(Snp2,Spps2) --> pp(Spp), pps(np(Snp,Spp),Spps2). Spps1=Spps2. . .?- pps(np(np(d(t),n(h)),pp(bts)),Spps2,[wtrr℄,Z2)pps(Snp,np(Snp,Spp)) --> pp(Spp).Snp = np(np(d([t℄),n([h℄)),pp([bts℄)),Spps2 = np(np(np(d([t℄),n([h℄)),pp([bts℄)),pp([wtrr℄)

Natural Language Processing: Dealing with structures 324

Rules with complex categories

• parsing with complex categories
• test for identity has to be replaced by unifiability
• but: unification is destructive

• information is added to rules or lexical entries
• feature structures need to be copied prior to unification

Natural Language Processing: Dealing with structures 325

Subcategorization

• modelling of valence requirements as a list

geben:

cat V
bar 0

subcat

first
cat N
bar 2
agr|cas akk

rest
first

cat N
bar 2
agr|cas dat

rest nil

Natural Language Processing: Dealing with structures 326

Subcategorisation

• processing of the information by means of suitable rules

cat V
bar 0
subcat 1

→ 2

cat V
bar 0

subcat
first 2

rest 1

rule 1

cat V
bar 1

→
cat V
bar 0
subcat nil

rule 2

Natural Language Processing: Dealing with structures 327

Subcategorisation

• list notation

geben:

cat V
bar 0

subcat 〈
cat N
bar 2
agr|cas akk

,
cat N
bar 2
agr|cas dat

〉

Natural Language Processing: Dealing with structures 328

Subcategorisation

cat V
bar 1

cat V
bar 0
subcat 〈 〉

rule 2

1
cat N
bar 2
agr|cas dat

cat V
bar 0

subcat 〈 1
cat N
bar 2
agr|cas dat

〉

rule 1

2
cat N
bar 2
agr|cas akk

cat V
bar 0

subcat 〈 2
cat N
bar 2
agr|cas akk

,
cat N
bar 2
agr|cas dat

〉

rule 1

Natural Language Processing: Dealing with structures 329

Movement

• movement operations are unidirectional and procedural

• goal: declarative integration into feature structures

• slash operator
S/NP sentence without a noun phrase
VP/V verb phrase without a verb
S/NP/NP
. . .

• first used in categorial grammar (BAR-HILLEL 1963)
• also order sensitive variant: S\NP/NP

Natural Language Processing: Dealing with structures 330

Movement

• topicalisation
CP → SpecCP/NP C1/NP
SpecCP/NP → NP slash introduction
C1/NP → C IP/NP slash transition
IP/NP → NP/NP I1 slash transition
NP/NP → ε slash elimination

CP

SpecCP/NP C1/NP

NP C IP/NP

NP/NP I1

ε

Natural Language Processing: Dealing with structures 331

Movement

• encoding in feature structures: slash feature
• moved constituents are connected to their trace by means of

coreference
• computation of the logical form is invariant against

movement operations

Natural Language Processing: Dealing with structures 332

Constraint-based models

• head-driven phrase-structure grammar (HPSG, POLLARD AND

SAG 1987, 1994)

• inspired by the principles & parameter model of Chomsky (1981)

• constraints: implications over feature structures:
if the premise can be unified with a feature structure unify the
consequence with that structure.

type1 → X1| . . . | XN 1

Y1| . . . |YM 1

Natural Language Processing: Dealing with structures 333

Constraint-based models
• feature structures need to be typed Haus:

nomen
cat N

agr

agr
case nom
num sg
gen neutr

• extention of unification and subsumtion to typed feature
structures

• subsumtion:

Mm
i ⊑ Mn

j gdw. Mi ⊑ Mj und m = n

• unification:

Mm
i ⊔ Mn

j = Mo
k gdw. Mk = Mi ⊔ Mj und m = n = o

Natural Language Processing: Dealing with structures 334

Constraint-based models

• graphical interpretation: types as node annotations

lexical item

beginnt verb ergativ

vfin 3sg trans pred index
.

3 sg

word

syn

sem

cat

agr
subcat

pred

index

person
number

Natural Language Processing: Dealing with structures 335

Constraint-based models

• types are organized in a type hierarchy:
• partial order for types:

sub(verb,finite)
sub(verb,finite)
. . .

• hierarchical abstraction

• subsumtion for types:

m ⊑ n iff
{

sub(m, n)
sub(m, x) ∧ sub(x , n)

• unification for types:

m ⊔ n = o iff
m ⊑ o ∧ n ⊑ o and
¬∃x .m ⊑ x ∧ n ⊑ x ∧ x ⊑ o

Natural Language Processing: Dealing with structures 336

Constraint-based models

• subsumtion for typed feature structures:

Mm
i ⊑ Mn

j iff
Mi ⊑ Mj and
m ⊑ n

• unification for typed feature structures:

Mm
i ⊔ Mn

j = Mo
k iff

Mk = Mi ⊔ Mj and
o = m ⊔ n

Natural Language Processing: Dealing with structures 337

Constraint-based models
• HPSG: lexical signs

word
PHON

SYNSEM

synsem

LOC

local

CAT
cat
HEAD
SUBCAT

CONT
npro/ppro
INDEX
RESTR

CONX
BACKGR {

psoa
, . . . }

NONLOC

Natural Language Processing: Dealing with structures 338

Constraint-based models

• HPSG: phrasal signs
• signs of type phrase

additional features: Daughters, (Quantifier-Store)
• most important special case:

head-comp-struc

Natural Language Processing: Dealing with structures 339

Constraint-based models

• DAUGHTERS (DTRS)
• constituent structure of a phrase
• HEAD-DTR (phrase)
• COMP-DTRS (list of elementes of type phrase)

phrase
PHON 〈 Kim, walks 〉
SYNSEM S[fin]

DTRS

head-comp-struc

HEAD-DTR
phrase
PHON 〈 walks 〉
SYNSEM VP[fin]

COMP-DTRS

* phrase
PHON 〈 Kim 〉
SYNSEM NP[nom]

+

Natural Language Processing: Dealing with structures 340

Constraint-based models

• head-feature principle
• projection of head features to the phrase level

• the HEAD-feature of a head structure corefers with the
HEAD-feature of its head daughter.

DTRS
head-struc →

SYNSEM|LOC|CAT|HEAD 1

DTRS|HEAD-DTR|SYNSEM|LOC|CAT|HEAD 1

Natural Language Processing: Dealing with structures 341

Constraint-based models

• subcategorisation principle
• SUBCAT-list is ordered: relative obliqueness
• subject is not structurally determinined, and therefore the

element of the SUBCAT-list with the lowest obliqueness
• obliqueness hierarchie

• subject, primary object, secondary object, oblique
prepositional phrases, verb complements, . . .

• oblique subcategorisation requirements are bound first in
the syntax tree

Natural Language Processing: Dealing with structures 342

Constraint-based models

• subcategorisation principle:

In a head-complement-phrase the SUBCAT-value of the head
daughter is equal to the combination of the SUBCAT-list of the
phrase with the SYNSEM-values of the complement daughters
(arranged according to increasing obliqueness).

DTRS
head-compl-struc

→

SYNSEM|LOC|CAT|SUBCAT 1

DTRS
HEAD-DTR|SYNSEM|LOC|CAT|SUBCAT append(1 , 2)
COMP-DTRS 2

Natural Language Processing: Dealing with structures 343

Constraint-based models

• subcategorisation principle:

LOC|CAT HEAD 4
SUBCAT 〈 〉

(= S[fin])

1 LOC|CAT
HEAD 4
SUBCAT 〈 1 〉

(= VP[fin])

Kim

LOC|CAT

HEAD 4 verb [fin]

SUBCAT

* 1 NP[nom] [3rd,sg],

2 NP[acc],
3 NP[acc]

+

2 3

gives Sandy Fido

C H

H

C1

C2

Natural Language Processing: Dealing with structures 344

Constraint-based models

• more constraints for deriving a semantic description
(predicate-argument structure, quantor handling, ...)

• advantages of principle-based modelling:
• modularization: general requirements (e.g. agreement,

construction of a semantic representation) are implemented
once and not repeatedly in various rules

• object-oriented modelling: heavy use of inheritance
• context-free backbone of the grammar is removed almost

completely; only very few general structural schemata
remain (head-complement structure, head-adjunct structure,
coordinated structure, ...)

• integrated treatment of semantics in a general form

Natural Language Processing: Dealing with structures 345

Questions to ask ...

... when defining a research project:
• What’s the problem?
• Which kind of linguistic/extra-linguistic knowledge is needed

to solve ist?
• Which models and algorithms are available?
• Are their similar solutions for other / similar language?
• Which information can they capture and why?
• What are their computational properties?
• Can a model be applied directly or need it be modified?
• Which resources are necessary and need to be developed?

How expensive this might be?
• Which experiments should be carried out to study the

behaviour of the solution in detail?
• ...

Natural Language Processing: Dealing with structures 346

	Natural Language Processing
	Non-determinism
	Dealing with sequences
	Finite state techniques
	String-to-string matching
	Speech recognition 1: DTW
	Speech recognition 2: HMM
	POS-Tagging

	Dealing with structures
	Dependency parsing
	Phrase structure parsing
	Restricted phrase-structure models
	Unification-based grammars
	Constraint-based models

