Coordinating Speech Delivery to Gesture Progress

Timo Baumann
Universität Hamburg

baumann@informatik.uni-hamburg.de
www.timobaumann.de/work
Coordinating Speech Delivery to Gesture Progress

e.g. for deictic expressions:

„move this piece over there through that gate.„

Image courtesy of Vanderbilt University.
Coordinating Speech Delivery to Gesture Progress

e.g. for deictic expressions:

„move this piece over there through that gate. “

Problems with Fixed Plans

Image courtesy of Vanderbilt University.
Coordinating Speech Delivery to Gesture Progress

e.g. for deictic expressions:

„move this piece over there through that gate.“

Problems with Fixed Plans

- actuator speed deviations
- reflexes to avoid a collision
- referent changes position
Conventional Approach: Stop/Resume Speech

„move this piece over ... there through th..at gate. “

• just pausing the audio stream is psycholinguistically implausible
 – effects around pauses would still have to be modelled
 – it's not what humans do

• already requires delivery progress information

• no way to speed up synthesis if gesture is ahead of time

→ simply stopping/resuming doesn't cut it
Coordinating Speech Delivery to Gesture Progress

... with incremental speech synthesis

- more flexible than stopping/resuming speech:
 - online speech tempo adaptations (stretch/compress)
 - change content that is to be spoken (e.g. change a referent)
 - reflexive behaviour, such as hesitations
 - provide detailed feedback on delivery progress

→ relatively easy to perform in the IU Framework
Incremental Processing in the IU Framework

- pragmatic plan (conceptualization):\(\text{say}(\text{move}(p, [x, y, z]) \land \text{loc}(x) \land \text{loc}(z) \land \text{gate}(y) \land \text{loc}(y))\)
- syntactic plan/pattern: \(\text{move}(p,...) \land \text{loc}(x)\) \(\text{loc}(z)\) \(\text{gate}(y) \land \text{loc}(y)\)
- formulation: move this piece over there through that gate
- phonemisation: \(m\ u\: v\ \delta\ I\ s\ p\)
- motor planning (HSMM parameters): ...
- articulation (vocoding):...

- data come as *increments* (IUs), smallest units of information on a given level of abstraction that are individually processable
Incremental Processing in the IU Framework

- **pragmatic plan** (conceptualization): \(\text{say(move(p, } [x, y, z]) \land \text{loc}(x) \land \text{loc}(z) \land \text{gate}(y) \land \text{loc}(y)) \)
- **syntactic plan/pattern**: \(\text{move(p,...) } \land \text{loc}(x) \quad \text{loc}(z) \quad \text{gate}(y) \land \text{loc(y)} \)
- **formulation**: move this piece over there through that gate
- **phonemisation**: \(\text{mu: v ő i s p} \)
- **motor planning** (HSMM parameters)
- **articulation** (vocoding)

- IUs are interconnected with related IUs (those that are above/below, or on the same level)
 - IUs form a network that reflects the system state
Incremental Processing in the IU Framework

- pragmatic plan (conceptualization): \(\text{say}(\text{move}(p, [x, y, z]) \land \text{loc}(x) \land \text{loc}(z) \land \text{gate}(y) \land \text{loc}(y)) \)
- syntactic plan/pattern: \(\text{move}(p,...) \land \text{loc}(x) \lor \text{loc}(z) \lor \text{gate}(y) \land \text{loc}(y) \)
- formulation: move this piece over there through that gate
- phonemisation: \(\text{mu; v ð I s p} \)
- motor planning (HSMM parameters): []
- articulation (vocoding): []

- the system state is changed by adding/removing IUs
- IUs can be managed by processors that react to network updates (add/revoke/update)
Incremental Processing in the IU Framework

- the system state is changed by adding/removing IUs
- IUs can be managed by processors that react to network updates (add/revoke/update)

pragmatic plan (conceptualization): $\text{say}(\text{move}(p, [x, y, z]) \land \text{loc}(x) \land \text{loc}(z) \land \text{gate}(y) \land \text{loc}(y))$

syntactic plan/pattern: $\text{move}(p,\ldots) \land \text{loc}(x) \land \text{loc}(z) \land \text{gate}(y) \land \text{loc}(y)$

formulation: $\text{move this piece over there through that gate}$

phonemisation: mu: v ð i sp

motor planning (HSMM parameters): \ldots just enough lookahead to model co-articulation

articulation (vocoding): \ldots just enough to keep sound-card buffers full
Coordinating Speech Delivery to Gesture Progress

→ relatively easy to perform in the IU Framework

→ requirements for coordination/coupling:
 – provide synchronization points between motion & speech
 – synchronization should be available on various linguistic levels (phrases, words, syllables) and
 – synchronization should integrate with production capabilities (NLG, prosody, articulation, synthesis)
Interfacing with Execution Control

- anchor points between gesture & speech that are co-planned in advance
 - e.g. start/center/end of some IU

- robot control monitors gesture delivery and notifies of deviations (e.g. including $t_{expected}$ and expectation error)
 - notify the IU, it will automatically determine the relevant processing steps
 - expectation error could be used e.g. to determine whether stretching or hesitating should be performed

- speech delivery returns how well it is able to meet the new goal
An example

- synchronization on more abstract level leaves more freedom (and responsibility) to speech delivery:
 - on word level:
 - through that gate
 - through that gate
 - on concept level:
 - gate(y) ∧ loc(y)
 - gate(y) ∧ loc(y)

- let speech delivery decide on the best option given the timing constraints
Summary

Coordinated Speech Delivery is work-in-progress

- tempo changes not yet articulatorily plausible
 - need to determine stretchability in given contexts
- hesitations are available (but do not sound great)
- simple re-generation would be easy, but inflexible
 - thorough re-generation is still an open question
- generic interface with gesture is yet to be determined
 - that's why I came to the workshop
- I don't have a robot
Thank you.

baumann@informatik.uni-hamburg.de, get the code at inprotk.sf.net.

Funded by a Daimler and Benz Foundation PostDoc grant.
Raum für Notizen