Taking Turn-Taking Simulation to the Real World™

Coordination Between Agents Workshop

Timo Baumann
timo@ling.uni-potsdam.de
http://www.ling.uni-potsdam.de/~timo

Acknowledgements:
David Schlangen, Michaela Atterer
Turn-Taking in Dialogue

- predictive
 - turn endings are signalled and interpreted in advance
 - syntactic, semantic, pragmatic & **prosodic** cues

- locally managed
 - relying on local context only
 - Transition Relevance Places mark possible turn-changes
Example: Natural Turn-Taking

Example from Switchboard, telephone speech
Our Goal:
Simulate Realistic TT Behaviour

• have two agents interchange speech
 ▪ observe „natural“ turn-taking behaviour
 ▪ natural environment

• what rules do the agents have to follow in order to be successful?
 ➔ what's important, what's not in turn-taking
 ➔ use this knowledge to improve Spoken Dialogue Systems
Taking Turn-Taking Simulation to the Real World™

1 Symbolic Turn-Taking Simulation: Padilha (2006)

2 Challenges for a more realistic Simulation Environment

3 Dialogue Simulation Architecture

4 Classification of Audio Into Speech States

5 Locally Managed Turn-Control Rules

6 Conclusions, Current and Future Work
A Symbolic Approach to Turn-Taking Simulation

- agents generate TT-relevant symbols
 - \textit{sil}, \textit{start} (with precise timestamp), \textit{talk}, \textit{preTRP}, \textit{TRP}, several kinds of back-channels
 - additional modalities: gaze, gesture, posture
- symbol exchange is synchronized on a blackboard
- rules determine behaviour
- some variables tune talkativeness, confidence, etc.
Our Goal:

The Real World

- exchange audio between dialogue participants
 - recordings allow naïve third person evaluation
- ideally, be able to interact directly with one (or more) dialogue participants
 - allows first person evaluation
- have a TT module that is useful in a general SDS
- ideally predict what's going to happen (like humans do, as is necessary to initiate responses)
Our Goal:

For Now

- exchange audio instead of symbolic messages
- classify speech into talk, silence, end of turn (EoT)
- check what the turn-taking management has to know in order to show good behaviour
- abstract away from dialogue content
 - we only use prosody to find TRPs
 - even abstract away from some phonetic complexity
 - we ignore other cues (words, gaze, gesture, …)
Dialogue Simulation Architecture

- interaction through asynchronous audio streams over RTP
- headset tool, recording and monitoring tools
- artificial DPs define their own internal communication
Simulated Dialogue Participants

- internal communication using the Open Agent Architecture (Martin, et al 1999)
- speech generation randomly selects canned audio
- fixed delay of 100 ms which simulates generation time (Levinson 1983 says 200 ms)

→ introduces necessity for prediction
Taking Turn-Taking Simulation to the Real World™

1. Turn-Taking in Dialogue
2. Dialogue Simulation Architecture
3. Classification of Audio Into Speech States
 - Evaluation
4. Locally Managed Turn-Control Rules
 - Evaluation
5. Conclusions, Current and Future Work
Classification of Audio
Into Speech States

- continuously extract prosodic features from audio
- classify each frame: silence, talk or end of turn
Prosodic Feature Extraction

very basic, not phonologically grounded features:

- we don't need syllables, phonemes, words
- pitch and energy for each frame of 10 ms
 - no smoothing, no DP, strictly incremental
- windows of past pitch/energy-values
- mean, range, min, max, slope, RMSE, ...
 - short windows: remove outliers, smooth values
 - larger windows: long-term trends
Corpora Used

- two different corpora
- each corpus contains two speakers (male, female)
- corpus of controlled pseudo-speech (next slide)
- Kiel Corpus of Read Speech (IPDS 1994)
 - about 600 utterances for each speaker
- both corpora are less complex than real dialogue
 → our results should be considered an upper bound
Corpus of Pseudo-Speech

- speakers read real sentences (50 each)
- but uttered /ba/ instead of real syllables
 ➔ „How are you today?“ → /ba ba ba baba?/
- speech is always voiced
- minimal micro-prosodic effects
- sentence intonation remains untouched
- Example: „Warum ist die Banane krumm?“
Speech State Classification

- standard machine learning classifier training
- most predictive feature (according to OneR): dynamic range of frame energy over 100 or 200 ms
- results for JRip, J48 (Witten & Frank 2000):

<table>
<thead>
<tr>
<th></th>
<th>F_{sil}</th>
<th>F_{talk}</th>
<th>F_{EoT}</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>J48</td>
<td>0.98</td>
<td>0.98</td>
<td>0.61</td>
<td>71.1</td>
</tr>
<tr>
<td>JRip</td>
<td>0.97</td>
<td>0.98</td>
<td>0.73</td>
<td>61.1</td>
</tr>
</tbody>
</table>

- table for Kiel-Corpus female speaker, other settings similar
Smoothing of Classification Results

- data and states are sequential
- classifiers evaluate frames independently
- many false alarms (over-generated state changes)
 - many false alarms last for just one frame
- only change state after *two consecutive* classifications

<table>
<thead>
<tr>
<th></th>
<th>F_{sil}</th>
<th>F_{talk}</th>
<th>F_{EoT}</th>
<th>FAR</th>
</tr>
</thead>
<tbody>
<tr>
<td>JRip</td>
<td>0.97</td>
<td>0.98</td>
<td>0.73</td>
<td>61.1</td>
</tr>
<tr>
<td>StatefulJRip</td>
<td>0.96</td>
<td>0.98</td>
<td>0.70</td>
<td>31.9</td>
</tr>
</tbody>
</table>
Discussion of Classification Results

- very good distinction between speech/non-speech
 - EoT is of lower quality but better than Schlangen (2006)
- smoothing of classification results reduces FAR
- higher phonetic complexity of Kiel-Corpus is counterbalanced its by larger size
 - may indicate, that speech state classification for real dialogue speech would be feasible with a large corpus and speaker-normalized prosodic features
Simulating Spoken Dialogue With a Focus on Realistic Turn-Taking

1. Turn-Taking in Dialogue
2. Dialogue Simulation Architecture
3. Classification of Audio Into Speech States
 - Evaluation
4. Locally Managed Turn-Control Rules
 - Evaluation
5. Conclusions, Current and Future Work
Setup for Turn-Taking Simulation

artificial dialogue participant A

artificial dialogue participant B

dialogue recorder

2008-11-05
Coordination Between Agents Workshop

Timo Baumann
Taking Turn-Taking Simulation to the Real World™
Inside the Turn-Taking Manager

- knows the speech generation's state
 - start of turn, talk, EoT, sil
- the currently estimated listening state
 - remember? that's what we were dealing with before
 - ideally, this matches the interlocutor's speech state!
- outputs commands to the speech generation module
- always willing but never demanding to talk
when A talks, B should perceive that A is talking and vice versa.

There will be a lag and there will be mistakes due to a noisy channel and misclassification.

The diagram shows the flow of information and states in a turn-taking management system involving artificial dialogue participants A and B.
The First Step: Do not look back!

- Turn-Taking Manager has no history or temporal reasoning
- very simple reflex rules, behaviour only depends on current state
Simple Strategies for Turn-Taking

1. Start talking when neither you nor your interlocutor is talking. Continue until your utterance is finished.

2. as above, plus: Stop your utterance, when both you and your interlocutor are talking.
 ➔ results in turn truncations

3. change first rule to: Start talking, when your interlocutor is ending their turn or has already ended.
 ➔ effectively anticipate turn changes by exploiting the EoT class of speech state analysis
Simple Strategies for Turn-Taking

Strategy 1

Strategy 2

Strategy 3

- add a little randomness

<table>
<thead>
<tr>
<th>talking state</th>
<th>listening state</th>
</tr>
</thead>
<tbody>
<tr>
<td>talk</td>
<td>stop talking</td>
</tr>
<tr>
<td>eot</td>
<td>start talking</td>
</tr>
<tr>
<td>sil</td>
<td>start talking+</td>
</tr>
</tbody>
</table>
Evaluation of Turn-Taking Success

• dialogue can be described by the speech states of all dialogue participants (each state either sil or talk)

• for two-party dialogue, there are two good states
 ▪ one's talking, the other is not (hopefully listening?)

• and two bad states
 ▪ clashes, when both participants talk simultaneously
 ▪ and gaps, when neither is talking

→ we choose clashes and gaps to measure turn success
Results for Turn-Taking Strategies

results for Kiel-Corpus (pseudo-speech similar):

<table>
<thead>
<tr>
<th>Strategy</th>
<th>Gaps</th>
<th>Clashes</th>
</tr>
</thead>
<tbody>
<tr>
<td>strategy 1</td>
<td>14%</td>
<td>24%</td>
</tr>
<tr>
<td>strategy 2</td>
<td>21%</td>
<td>4%</td>
</tr>
<tr>
<td>strategy 3</td>
<td>19%</td>
<td>4%</td>
</tr>
</tbody>
</table>

- gaps: 528ms, 477ms, 454ms
- clashes: 1915ms, 253ms, 243ms

- strategy 3 is similar to Verbmobil Corpus
 - gaps: 363ms, clashes: 331ms (Weilhammer & Rabold 2003)

- predicting EoT improves turn-taking performance
 - despite the amount of uncertainty connected with EoT
Example for strategy 3

this example shows:

- bad behaviour in the first half
 - many simultaneous starts (or almost simultaneous)
- smooth turn-taking in the second half
- pseudo-speech would be better for listening evaluation purposes (but not for fun!)
Analysis for strategy 3

- false starts in the middle of an utterance
 - due to misrecognition of EoT
 - both detect crosstalk, either of them stops (while the one who started should stop more often)
- many (simultaneous) false starts
 - Padilha resolves this with time-stamping the start, and having a rule that the lower timestamp wins

→ introduce speech state timing
Second Step: Time-Stamping Events

- time-stamp when a state change occurs
- we can now check what happened earlier
 - somewhat resolves simultaneous start dilemma
 - unfortunately, listening state always lags behind a little
Current Extension: Back Channel Utterances

- back channel utterances (BCs) should occur during longer turns at (almost-)TRPs
- to keep it easy: also allow them at the real EoT (as a kind of turn-acquiring)
- rule: self-sil + other-EoT → give BC
- problem: back-channels sound like EoT, thus will be responded to by a BC and so on
- no BC when you've just finished talking yourself
Further Extensions in a Spoken Dialogue System

- *Should* I talk? – Make the agents more self-aware of whether they need to communicate something
- *Should* I *listen*? – Make the agents more aware of whether their interlocutor wants to communicate something
 - this requires semantic and pragmatic processing
 - which in turn need words and trees
Conclusions and Future Directions

- speech state classification is feasible
 - in the future: speaker-normalized features
 - exploitation of higher level information (ASR, ...)
- turn-taking simulation works with real audio
 - allows new ways of evaluation of turn-taking
- turn-taking can be managed locally
 - integrate reasoning about what to say
- simple, local rules enough for complex behaviour
Thanks for Listening

feel free to ask questions – now or later

I hope it didn't all sound like bababa to you...