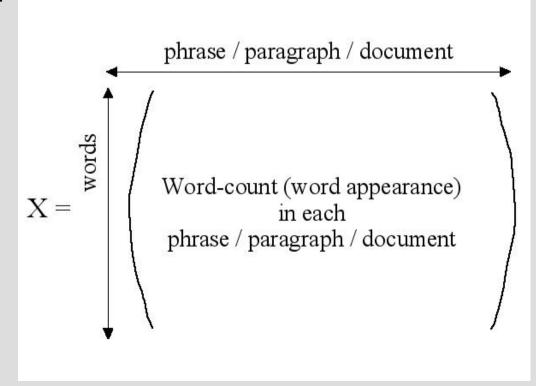
## Latent Semantic Analysis (LSA)

### Monica Gavrila gavrila@nats.informatik.uni-hamburg.de

13. June 2006

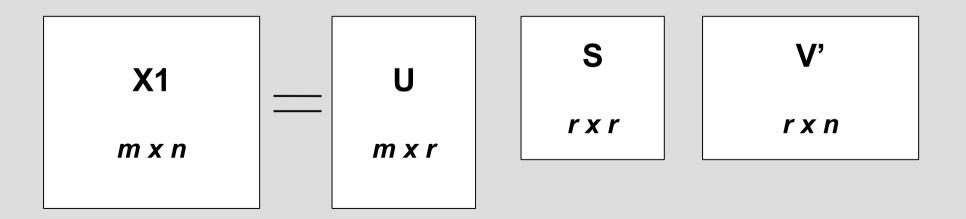
### Contents

- Latent Semantic Analysis Algorithm Description
- PROLIV Presentation
- Discussions


### What is LSA?

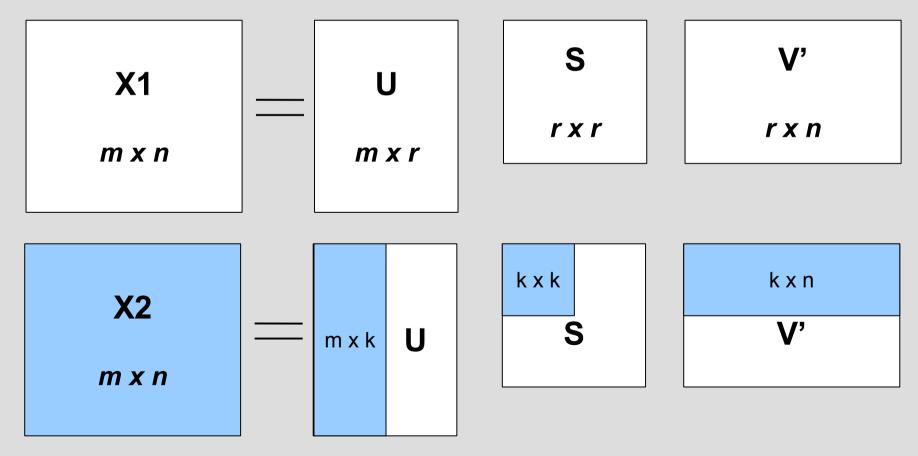
- LSA is a fully automatic statistics-algebraic technique for extracting and inferring relations of expected contextual usage of words in documents
- It uses no humanly constructed dictionaries, knowledge bases, semantic networks, parsers, morphology, grammars
- Motivation: finding similarity between words, texts

### Method: Co-occurrence Matrix


- Takes as input row text
  - text segmented in words
  - text segmented in passages
- The text "is introduced"

in a matrix




# Method: Singular Value Decomposition

- The matrix is normalized (weighted) not always
- Matrix decomposed (Singular Value Decomposition)



### **Method: Dimension Reduction**

- Dimension reduction
  - X2 is an approximation of X1



### **Method: Calculating Similarity**

- · Calculating similarity measures
  - Cosine

. . . . . . . . .

- · Obtaining similarity results
  - Word word
  - Word passage
  - Passage passage

### **Example - Corpus**

- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- · c3: The EPS user interface management system
- c4: System and human system engineering testing of EPS
- c5: Relation of user perceived response time to error measurement
- m1: The generation of random, binary, ordered trees
- m2: The intersection graph paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minor: A survey

### **Example - Terms Considered**

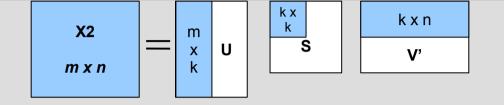
- c1: Human machine interface for ABC computer applications
- c2: A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- c4: **System** and **human system** engineering testing of **EPS**
- c5: Relation of user perceived response time to error measurement
- m1: The generation of random, binary, ordered **trees**
- m2: The intersection graph paths in trees
- m3: Graph minors IV: Widths of trees and well-quasi-ordering
- m4: Graph minors: A survey

Words (appear 2 times): human, interface, computer, user system, response, time, EPS, survey, trees, graph, minors.

### **Example - Passages Considered**

- **c1**: Human machine interface for ABC computer applications
- **c2:** A survey of user opinion of computer system response time
- c3: The EPS user interface management system
- **c4:** System and human system engineering testing of EPS
- **c5:** Relation of user perceived response time to error measurement
- **m1:** The generation of random, binary, ordered trees
- m2: The intersection graph paths in trees
- **m3:** Graph minors IV: Widths of trees and well-quasi-ordering
- **m4:** Graph minors: A survey

**Text passages:** c1, c2, c3, c4, c5, m1, m2, m3, m4.


### **Example - Co-occurrence Matrix**

X=

|           | c1 | c2 | c3 | c4 | c5 | m1 | m2 | m3 | m4 |
|-----------|----|----|----|----|----|----|----|----|----|
| human     | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  | 0  |
| interface | 1  | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  |
| computer  | 1  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 0  |
| user      | 0  | 1  | 1  | 0  | 1  | 0  | 0  | 0  | 0  |
| system    | 0  | 1  | 1  | 2  | 0  | 0  | 0  | 0  | 0  |
| response  | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| time      | 0  | 1  | 0  | 0  | 1  | 0  | 0  | 0  | 0  |
| EPS       | 0  | 0  | 1  | 1  | 0  | 0  | 0  | 0  | 0  |
| survey    | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| trees     | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  | 0  |
| graph     | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
| minors    | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |

### **Example - Reduced Matrix**

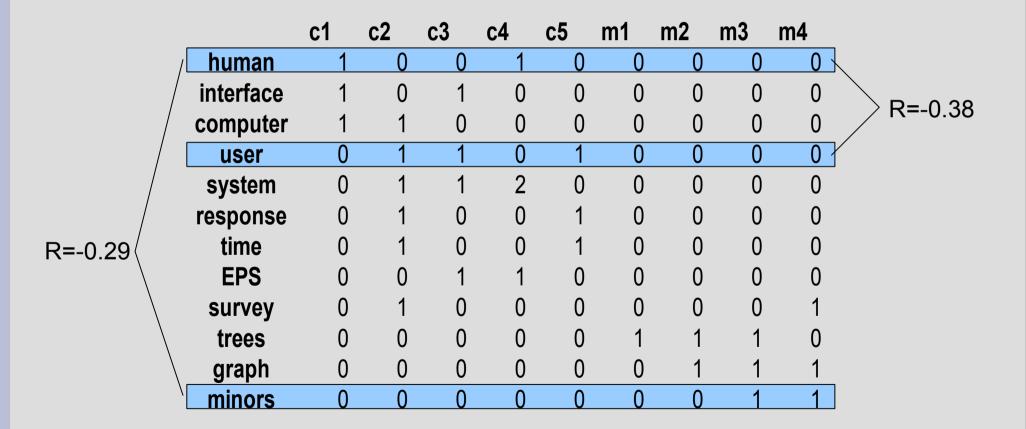
After SVD and dimension reduction:



|           | c1    | c2   | c3    | c4    | с5   | m1    | m2    | m3    | m4    |
|-----------|-------|------|-------|-------|------|-------|-------|-------|-------|
| human     | 0.16  | 0.4  | 0.38  | 0.47  | 0.18 | -0.05 | -0.12 | -0.16 | -0.09 |
| interface | 0.14  | 0.37 | 0.33  | 0.4   | 0.16 | -0.03 | -0.07 | -0.1  | -0.04 |
| computer  | 0.15  | 0.51 | 0.36  | 0.41  | 0.24 | 0.02  | 0.06  | 0.09  | 0.12  |
| user      | 0.26  | 0.84 | 0.61  | 0.7   | 0.39 | 0.03  | 0.08  | 0.12  | 0.19  |
| system    | 0.45  | 1.23 | 1.05  | 1.27  | 0.56 | -0.07 | -0.15 | -0.21 | -0.05 |
| response  | 0.16  | 0.58 | 0.38  | 0.42  | 0.28 | 0.06  | 0.13  | 0.19  | 0.22  |
| time      | 0.16  | 0.58 | 0.38  | 0.42  | 0.28 | 0.06  | 0.13  | 0.19  | 0.22  |
| EPS       | 0.22  | 0.55 | 0.51  | 0.63  | 0.24 | -0.07 | -0.14 | -0.2  | -0.11 |
| survey    | 0.1   | 0.53 | 0.23  | 0.21  | 0.27 | 0.14  | 0.31  | 0.44  | 0.42  |
| trees     | -0.06 | 0.23 | -0.14 | -0.27 | 0.14 | 0.24  | 0.55  | 0.77  | 0.66  |
| graph     | -0.06 | 0.34 | -0.15 | -0.3  | 0.2  | 0.31  | 0.69  | 0.98  | 0.85  |
| minors    | -0.04 | 0.25 | -0.1  | -0.21 | 0.15 | 0.22  | 0.5   | 0.71  | 0.62  |

X2=

#### Taken from Landauer et al., 1998

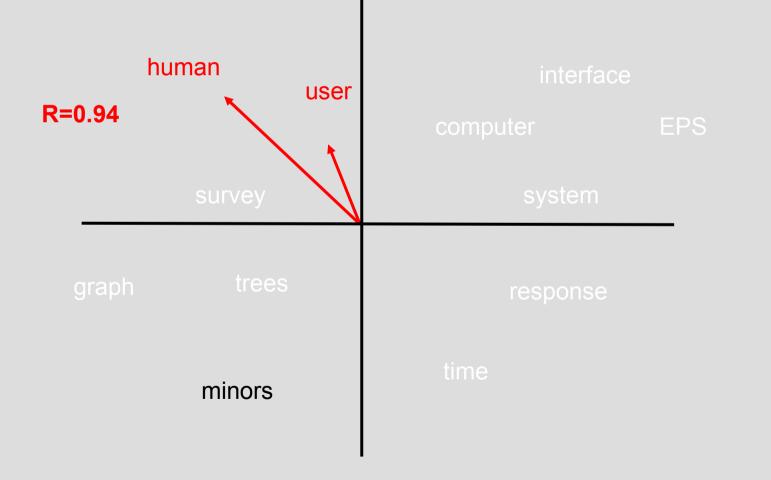

### **Example - Interesting results**

m1: The generation of random, binary, ordered trees
m2: The intersection graph paths in trees
m3: Graph minors IV: Widths of trees and well-quasiordering
m4: Graph minors: A survey

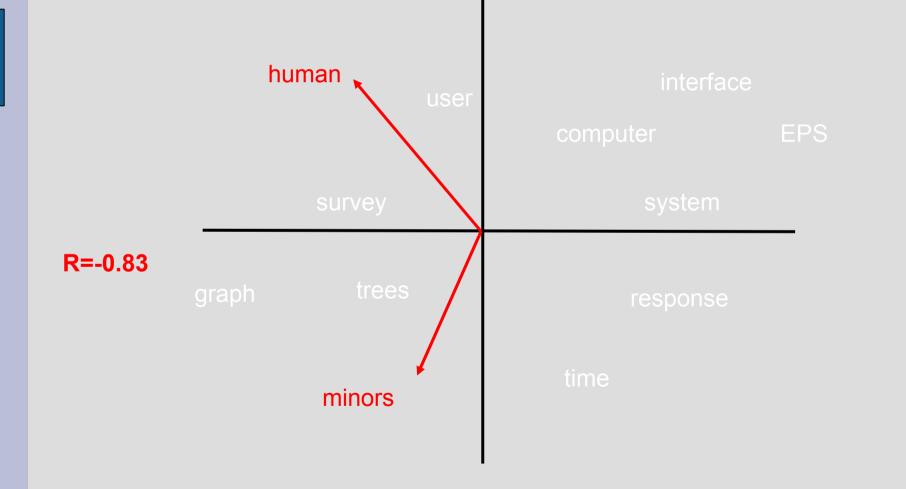
|        | c1 | c2 | c3 | c4 | c5 | m1 | m2 | m3 | m4 |
|--------|----|----|----|----|----|----|----|----|----|
| survey | 0  | 1  | 0  | 0  | 0  | 0  | 0  | 0  | 1  |
| trees  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |    |    |
| graph  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  | 1  |
| minors | 0  | 0  | 0  | 0  | 0  | 0  | 0  | 1  | 1  |

|        | c1    | c2   | c3    | c4    | с5   | m1   | m2   | m3   | m4   |
|--------|-------|------|-------|-------|------|------|------|------|------|
| survey | 0.1   | 0.53 | 0.23  | 0.21  | 0.27 | 0.14 | 0.31 | 0.44 | 0.42 |
| trees  | -0.06 | 0.23 | -0.14 | -0.27 | 0.14 | 0.24 | 0.55 | 0.77 | 0.66 |
| graph  | -0.06 | 0.34 | -0.15 | -0.3  | 0.2  | 0.31 | 0.69 | 0.98 | 0.85 |
| minors | -0.04 | 0.25 | -0.1  | -0.21 | 0.15 | 0.22 | 0.5  | 0.71 | 0.62 |

### Example - Similarity Measures – Unreduced Case




### Example- Similarity Measures – Reduced Case


|         |           | c1    | c2   | c3    | c4    | с5   | m1    | m2    | m3    | m4     |        |
|---------|-----------|-------|------|-------|-------|------|-------|-------|-------|--------|--------|
| /       | human     | 0.16  | 0.4  | 0.38  | 0.47  | 0.18 | -0.05 | -0.12 | -0.16 | -0.09  | k      |
|         | interface | 0.14  | 0.37 | 0.33  | 0.4   | 0.16 | -0.03 | -0.07 | -0.1  | -0.04  | R=0.94 |
| /       | computer  | 0.15  | 0.51 | 0.36  | 0.41  | 0.24 | 0.02  | 0.06  | 0.09  | 0.12   | K=0.94 |
|         | user      | 0.26  | 0.84 | 0.61  | 0.7   | 0.39 | 0.03  | 0.08  | 0.12  | 0.19 / | Y      |
| R=-0.83 | system    | 0.45  | 1.23 | 1.05  | 1.27  | 0.56 | -0.07 | -0.15 | -0.21 | -0.05  |        |
|         | response  | 0.16  | 0.58 | 0.38  | 0.42  | 0.28 | 0.06  | 0.13  | 0.19  | 0.22   |        |
|         | time      | 0.16  | 0.58 | 0.38  | 0.42  | 0.28 | 0.06  | 0.13  | 0.19  | 0.22   |        |
|         | EPS       | 0.22  | 0.55 | 0.51  | 0.63  | 0.24 | -0.07 | -0.14 | -0.2  | -0.11  |        |
|         | survey    | 0.1   | 0.53 | 0.23  | 0.21  | 0.27 | 0.14  | 0.31  | 0.44  | 0.42   |        |
|         | trees     | -0.06 | 0.23 | -0.14 | -0.27 | 0.14 | 0.24  | 0.55  | 0.77  | 0.66   |        |
|         | graph     | -0.06 | 0.34 | -0.15 | -0.3  | 0.2  | 0.31  | 0.69  | 0.98  | 0.85   |        |
|         | minors    | -0.04 | 0.25 | -0.1  | -0.21 | 0.15 | 0.22  | 0.5   | 0.71  | 0.62   |        |

R

### Example - Graphic Representation (human, user)



### Example - Graphic Representation (human, minors)



### LSA's Ability to Model Human Conceptual Knowledge

- Predictor of query-document topic similarity judgments
- Simulation of agreed upon word-word relations and of human vocabulary test synonym judgments
- Simulation of human choices on subject-matter multiple-choice tests
- Predictor of text coherence and resulting comprehension
- Simulation of word-word, passage-word relations found in lexical priming experiments
- Predictor of subjective ratings of text properties
- Predictor of appropriate matches of instructional text to learners
- Used to simulate synonym, antonym, singularplural and compound-compound word relations.

### What is LSA used for?

- · Ability to model human conceptual knowledge
- Searching, information retrieval (queries and documents are in different language, or the same language), indexing (Latent Semantic Indexing - LSI)
- Semantic representation (text comparison Foltz et al. 1996)
- Vocabulary acquisition (Landauer & Dumais, 1997)
- Text comprehension (Lemaire et al.)
- Free text assessment (Haley et al. 2005)

### LSA and PROLIV

### http://lsa.colorado.edu

### Run DEMO

Discussions

## **Technology Overview**

- Generated the word-passage co-occurance matrix
- · Weight it
- · Apply SVD
- Reduce the dimensions
- Find similarity