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Introduction to the Volume

Kerstin Fischer
University of Bremen
kerstinf@uni-bremen.de

There is a growing body of research on the design of artificial communi-
cation partners, such as dialogue systems, robots, ECAs and so on, and thus
conversational interfaces are becoming more and more sophisticated. How-
ever, so far such systems do not meet the expectations of ordinary users. One
reason that prevents systems being perceived as useful and fully functional
may be that there is still very little known about the ways human users
actually address such conversational interfaces. How naive speakers really
interact with such systems and the language that they use to do so cannot be
deduced by intuition; effective language of this kind is simply not available
to introspection. Moreover, empirical linguistic and psychological studies of
the ways people talk to artificial communication partners so far have yielded
only very particular, corpus-, domain- or situation-specific results. What is
needed, therefore, is to bring together results from various different scenarios
in order to achieve a more general picture of the determining factors of dif-
ferent ways of talking to artificial agents, such as dialogue systems, ECAs,
robots and the like, aiming at a model that promises both reusability of
results achieved in different human-computer situations and predictability
with respect to behaviours that may be expected of new human-computer
interfaces. In this area, researchers have only just begun to explore the
role of central pragmatic mechanisms, such as recipient design, alignment,
and interactional strategies, such as feedback, in communication with ar-
tificial communication partners. Here, psychological and linguistic studies
will certainly reveal dialogue strategies that support dialogue system design.
Furthermore, system design may profit from the identification of different
user groups. For instance, a compromise between fully speaker-independent
systems (word-error rate too high) and fully speaker-dependent systems (low
word-error rate but confined to one speaker) might be to establish different
types of speakers according to their linguistic behaviour and to establish
different recognizers especially tailored for these different groups. Finally,
the fact that speakers align to their communication partners should be ex-
ploited by shaping the linguistic behaviour of speakers in a way which is



most useful for the system to understand. This involves issues of initiative,
feedback, and dialogue act modelling. The contributions to this volume are
thus highly relevant from theoretical and practical perspectives. The vol-
ume addresses one of the most urgent deadlocks in current dialogue system
design and evokes an interdisciplinary perspective on the problem, providing
theoretically interesting and practical ways out of current dilemmas, con-
necting scientists from different disciplines. The papers focus particularly
on the following questions:

e Which different types of linguistic behaviours (phonetic, prosodic, syn-
tactic, lexical, conversational) can be found in communication with
artificial communication partners?

e Do these types of behaviours cluster in particular ways such that some
behaviours tend to co-occur with others so that different types of users
become apparent?

e Are there particular linguistic means to identify different types of users
(unobtrusively and online)?

e Which aspects of the design condition which kinds of behaviours?

e Which roles do recipient design, alignment, and feedback play in the
communication with artificial communication partners?

e Which kinds of problems in dialogue modelling and automatic speech
processing can be prevented by modelling different kinds of linguistic
behaviours and different types of users?

Three papers are concerned with the details of linguistic interation,
how people react to particular linguistic features of linguistic output from
robots. Robert Porzel looks at entrainment, the role of pauses, structuring
cues, hesitation markers and discourse particles in human-to-human versus
human-to-computer communication. Britta Wrede, Stefan Buschkiam-
per, Claudia Muhl and Katharina Rohlfing are concerned with users’
reactions to different kinds of feedback from the robot. Thora Tenbrink
compares interaction with an autonomous wheelchair with and without lin-
guistic feedback and shows how the robot’s linguistic output can reduce
the variability of linguistic structures and guide the speakers into producing
what the robot understands best.

Three papers address the nature of language directed at systems. Petra
Gieselmann and Prisca Stenneken investigate syntax and the lexicon



of language directed at a robot, providing further evidence for the regis-
ter hypothesis [1]. Also Anton Batliner, Christian Hacker and Elmar
No6th investigate the properties of computer talk, focussing on the phonetic
and prosodic delivery of utterances, comparing it with off-talk produced by
the same speakers with how they address an automatic speech processing
system. Stefan Kopp analyses the kinds of utterances speakers in un-
restricted scenarios direct towards an embodied conversational agent. His
investigation focuses on quantitative semantic and pragmatic analyses of
such interactions with the result that many speakers apply communicative
strategies from human-to-human communication in the communication with
the embodied conversational agent.

Two papers deal with the users’ mental models of artificial communi-
cation partner and their communicative consequences. Kerstin Fischer
shows that only some users in human-computer and human-robot interac-
tion attend to communicative strategies from conversations among humans,
and that the different preconceptions, computer/robot as a tool versus as
a social actor, have consequences for the users’ linguistic behaviour on all
linguistic levels, the so-called register features as well as their interactional
behaviour, for example, with respect to alignment. Elena Andonova uses
questionnaire data to establish mental models of robots before and after
human-robot interaction. She identifies features that persist and thus consti-
tute stable aspects of peconceptions of robots and features that may change
during the course of the interaction.

Two papers address alignment in more deatil: Holly Branigan and
Jamie Pearson discuss and compare findings on the relationship between
alignment and recipient design in human-to-human versus in human-computer
communication, argueing that speakers do not regard computers as social
actors, contrary to claims by Clifford Nass, for instance [3, 2]. John Bate-
man provides a social/semiotic perspective both on register and alignment
and discusses the problems for an implementation of alignment in dialogue
systems.

Finally, Robert Ross discusses the usability of the information state up-
date approach for a dialogue modeling that allows interactions with robots,
not just on the level of tool-using, but as interactions with a social agent.
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support.
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How Computers (Should) Talk to Humans

Robert Porzel
University of Bremen, Germany
porzel@informatik.uni—-bremen.de

Abstract

End-to-end evaluations of more conversational dialogue systems
with naive users have uncovered severe usability problems that, among
other things, result in low task completion rates. First analyses suggest
that these problems are related to the system’s dialogue management
and turn-taking behavior. This paper starts with a presentation of
experimental results, which shed some light on the effects of that be-
havior. Based on these findings, some criteria which lie orthogonal to
dialogue quality are spelled out. As such, they nevertheless constitute
an integral part of a more comprehensive view on dialogue felicity as
a function of dialogue quality and efficiency. Since the work on spo-
ken and multimodal dialogue systems presented and discussed herein is
aimed at more conversational and adaptive systems, we also show that
- in certain dialogical situations - it is important for such systems to
align linguistically towards the users. After describing the correspond-
ing empirical experiments and their results, pragmatic alignment will
be introduced as more general framework for these types of adaptation
to users which are, in the light of the aforementioned studies critical
to building more conversational dialog systems.

1 Introduction

Research on dialogue systems in the past has by and large focused on engi-
neering the various processing stages involved in dialogical human-computer
interaction (HCI) - e.g., robust automatic speech recognition, natural lan-
guage understanding and generation or speech synthesis [3, 17, 6]. Alongside
these efforts the characteristics of computer-directed language have also been
examined as a general phenomenon [69, 67, 18]. The flip side, i.e., computer-
human interaction, has received very little attention as a research question
by itself. That is not to say that natural language generation and synthesis
have not made vast improvements, but rather that the nature and design of



the computer as an interlocutor itself, i.e., the effects of human-directed lan-
guage, have not been scrutinized to the same degree. Looking, for example
at broad levels of distinctions for dialogue systems, e.g., between controlled
and conversational dialogue systems [2], we note the singular employment
of human-based differentiae, i.e., degrees of restrictedness in the linguistic
behaviour for the human interaction. Differentiae stemming from the other
communication partner, i.e., the computer, are not taken into account -
neither on a practical nor on a theoretical level.

In the past controlled and restricted interactions between the user and
the system increased recognition and understanding accuracies to a level that
systems became reliable enough for deployment in various real world applica-
tions, e.g., transportation or cinema information systems [5, 30, 28]. Today’s
more conversational dialogue systems, e.g., SmartKom [61] or MATCH [37],
have been engineered to be able to cope with less predictable user utterances.
Despite the fact that in these systems recognition and processing have be-
come extremely difficult, the reliability thereof has been pushed towards
acceptable degrees by employing an array of highly sophisticated technolog-
ical advances - such as:

e dynamic lexica for multi-domain speech recognition and flexible pro-
nunciation models [55],

e robust mulit-modal fusion, understanding and discourse modeling tech-
niques [36, 22, 1]

e and ontological and contextual reasoning capabilities [31, 51, 49].

However, the usability of such conversational dialogue systems is still unsat-
isfactory, as shown in usability experiments with real users [7] that employed
the PROMISE evaluation framework [8], which offers some multimodal ex-
tentions over the uni-modal PARADISE framework [63].

The work described herein constitutes a starting point for a scientific
examination of the whys and wherefores of the challenging results stem-
ming from such end-to-end evaluations of more conversational dialogue sys-
tems. Following a brief description of the state of the art in examinations of
computer-directed language, we shortly describe several prior experiments,
which sought to lay the ground for a more systematic examination of the
effects of the computer’s linguistic behaviour in more conversational spoken
dialogue systems. Based on these results, we will discuss the ensuing im-
plications for the design of successful and felicitous conversational dialogue
systems in which computers talk as they should followed by some comcluding
remarks and future work.



2 Prior Work

The complete understanding of specific characteristics of dialogical interac-
tion is still an unresolved task for (computational) linguistics. Linguistic
adaptation, e.g., alignment, entrainment and the like, presents such a spe-
cific characteristic in dialogue, which has been explored by linguists [29] and
recently came into focus of computational linguistics [16, 52]. Linguistic
adaptation, in general, can be described as the process of tailoring any form
of linguistic behavior or output towards the recipient of that output. We
will firstly summarize prior art in human-human communication followed
by a corresponding summary in human-computer communication.

2.1 Adaptation in Human-Human Communication

Speakers may not always be aware of the potential ambiguities inherent in
their utterances. They leave it to the context to disambiguate and specify
the message. Furthermore, they trust in the addressee’s ability to extract
that meaning from the utterance that they wanted to convey. In order to in-
terpret the utterance correctly, the addressee must employ several recourses.
Speakers in turn anticipate the employment of these interpretative recourses
by the hearer and construct the utterance knowing that certain underspec-
ifications are possible since the hearer can infer the missing information or
that certain ambiguities are permissible, etc. The role of the communicative
partner is of paramount importance in this process.

The general necessity of the inclusion of a partner model in the modeling
of human-human communication seems undisputed at the moment, even
though some of the views presented below have recently been challanged by
some empirical findings [24]. Without a partner model several empirically
observable phenomena cannot be explained. We will present some findings
as they are relevant to the studies and work presented herein. A departure
from prior modes of looking at human-human communication is summed up
by social psychologists [42] who have pointed out that

”‘the traditional separation of the roles of participants in verbal
communication into sender and receiver, speaker and addressee,
is based on an illusion — namely that the message somehow ‘be-
longs to’ the speaker, that he or she is exclusively responsible
for having generated it, and that the addressee is more-or-less a
passive spectator to the event. (...) the addressee is a full partic-
ipant in the formulation of the message — that is the vehicle by



which the message is conveyed — and, indeed, may be regarded
in a very real sense as a cause of the message”’ (ibid:96)

The listener has, therefore, come to be regarded as an essential part in the
causation of speech production in a communicative setting; in part respon-
sible for and shaping the speaker’s behaviour through the following means:

e Back-channeling: Some results of back-channeling [68], — which is
the phenomenon of verbal and non-verbal (or quasi-verbal) responses
of the listener during the speaker’s discourse, such as yes, hmmm,
I see, uh-huh, facial expressions, nods, gestures, etc. — have been
specified and experimentally displayed [43]. Therein, the effects of
back-channeling on the development of the redundancy of words and
phrases within a discourse are described. In general, the effect is,
that exact repetitions of phrases and/or words are less likely when
back-channeling occurs. In the event of back-channeling the usage of
abbreviations and phrase-reductions increases. Back-channeling also
has a significant bearing on the course of the discourse. It has also
been shown that the availability of visual contact between speaker and
listener greatly influences the efficiency of the discourse [44].

e Common ground: The influence of common ground, i.e., the shared
knowledge, shared associations, shared sentiments, and shared de-
faults, between speaker and listener has been identified and described
[39, 15]. Common ground has, therefore been shown to influence the
lexicalization preferred by the speaker - for example, what kind of
words to use - or whether to describe objects more figuratively or lit-
erally. Furthermore, it influences the type versus token ratio in the
speakers’ discourse as well as the length and specificallity of descrip-
tions.

e Social factor(s): Further research has demonstrated that some ver-
balizations, e.g., non-egocentric localizations, demand more mental
attention than, for example, egocentric ones [13], which speakers are
more willing to invest when speaking to social superiors or based on
some estimation of the recipient’s cognitive competence, e.g. when
talking to children [32].

In this light the notion of lezical entrainment [29, 9, 10] constitutes an-
other crucial aspect of linguistic alignment. Research teams found that
word choice within a dialogue is dependent on the dialogue history. In fact
their results show that through hedging two interlocutors adopt each other’s
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terms and stay with it for the remainder of the dialogue. The variability
in word choice is huge in any field. This phenomenon has been labeled as
the Vocabulary Problem [27]. Although there are no real synonyms, i.e. two
words that in all contexts would be used interchangeably, people still have
individual preferences when referring to an object in a given context.! In
some cases it further depends on the interlocutors’ perspective whether they
adapt to their conversational partner or whether they do not. For example,
throughout a court trial in which a physician was charged with murder for
performing an abortion, the prosecutor spoke of the baby while the defense
lawyer spoke of the fetus [11]. If people wish to align within a conversa-
tion and adopt each others lexical choices, the interlocuter who introduces
a term has been denoted as the leader and the one who adopts it as the
follower [29].

However, entrainment represents the peak of a foregoing alignment, i.e.
the cooperation process. First, the interlocutors need to establish a common
ground for their conversation [9]. After that they hedge, i.e. they mark the
term as provisional, pending evidence of acceptance from the other [10].
Only then do they agree on the same choice of words. As a last step,
entrained terms are no longer indefinite and can be shortened, e.g. via
anaphora, one-pronominalization, gapping or elision [45].

2.2 Adaptation in Human-Computer Communication

The first studies and descriptions of the particularities of dialogical human-
computer interaction, then labeled as computer talk in analogy to baby talk
[69], focused - much like subsequent ones - on:

e proving that a regular register for humans conversing with dialogue
system exists [41, 26],

e describing the general characteristics of that register [40, 18].

The results of these studies clearly show that such registers exists and that
their regularities can be replicated and observed again and again. In general,
previous work focuses on the question: what changes happen to human
verbal behavior when they talk to computers as opposed to fellow humans?
The questions which are not asked as explicitely are:

e how does the computer’s way of communicating affect the human in-
terlocutor,

'For instance, in a user study conducted by Furnas et al. [27] subjects used several
different words for to delete: change, remove, spell or make into.
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e do the particulars of computer-human interaction help to explain why
today’s conversational dialogue systems are by and large unusable.

To the best of our knowledge, there has not been a single publication
reporting a successful end-to-end evaluation of a conversational dialogue
system with naive users. We claim that, given the state of the art of the
adaptivity of today’s conversational dialogue systems, evaluation trials with
naive users will continue to uncover severe usability problems resulting in low
task completion rates.?2 Surprisingly, this occurs despite acceptable partial
evaluation results. By partial results, we understand evaluations of individ-
ual components such as concerning the word-error rate of automatic speech
recognition or understanding rates [19, 33].

As one of the reasons for the problems thwarting task completion, re-
searchers point at the problem of turn overtaking [7], which occurs when
users rephrase questions or make a second remark to the system, while it
is still processing the first one. After such occurrences a dialogue becomes
asynchronous, meaning that the system responds to the second last user
utterance while in the user’s mind that response concerns the last. Given
the current state of the art regarding the dialogue handling capabilities of
HCI systems, this inevitably causes dialogues to fail completely.

We can already conclude from these informal findings that current state
of the art conversational dialogue systems suffer from

e a lack of turn-taking strategies and dialogue handling capabilities and

e a lack of strategies for repairing dialogues once they become out of
sync.

In human-human interaction turn-taking strategies and their effects have
been studied for decades in unimodal settings [20, 57, 64] as well as more
recently in multimodal settings [60]. Virtually no work exists concerning
the turn-taking strategies that dialogue systems should pursue and how
they effect human-computer interaction, except in special cases, e.g. in
conversational computer-mediated communication aids for the speech and
hearing impaired [66] or for turn negotiation in text-based dialogue systems
[59]. Overviews of classical HCI experiments and their results also shows
that problems, such as turn-overtaking, -handling and -repairs, have not
been addressed by the research community [67].

2These problems can be diminished, however, if people have multiple sessions with the
system and adapt to the respective system’s behavior.
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It has also been shown that entrainment is of major importance in tuto-
rial systems [16]. Here the arguement goes that especially students do not
always know specific terms and use common sense terms instead. Instead
of treating those terms as completely incorrect students should however be
given partial credit for expressing the right general idea. For this reason their
system NUBEE, a parser within a tutorial system, looks up unknown words
in the WORDNET database [23] and searches for synonyms that match.

Looking back at the notion of leader and follower in entrainment phe-
nomena, it becomes clear that, especially in an expert-novice relationship,
the expert should also function as follower and not only as leader. An open
question, to be answered by means of one of the studies described below,
is whether in shorter exchanges, e.g. in an assistance, help-desk or hotline
setting, we find specific cases of entrainment or not among human inter-
locuters. Adaptation by computers to their users has been examined in
various branches of natural language generation from epistemic factors such
as prior knowledge or cognitive competence [34, 38, 47| via stereotypes [56]
to multimodal preferences [21].

3 Studies on Computer-Human Interaction

In the following two sets of studies will be described, which sought to exam-
ine the effects of the computer’s turn taking and entrainment behavious on
human-computer dialogues.

3.1 Entrainment Studies

The notion of lexical entrainment was first established by Garrod and An-
derson [29] and later explored by Brennan [9, 10].> It is, therefore, well
known that in human-human dialogues the interlocutors converge on shared
terms and phrases, e.g. if A talks to B and uses a term such as pointer to
refer to an graphically displayed object, i.e. leads in the usage of the term
- and B (from then on) also employs the term, i.e. follows lead of A, then
we have a classic case of entrainment. A viable hypothesis, addressed in
this research effort, is that dialogue efficiency and user-satisfaction could be
increased considerably if spoken dialogue systems also adapted the user’s
choice of terms rather than staying with their own fixed vocabulary. In the

3We follow their understanding of the term lexical entrainment, i.e. that people adopt
their interlocutor’s terms in order to align with them over a certain period of time.
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following we summarize two studies on entrainment - one in a human-human
setting and one using a Wizard-of-Oz human-computer set-up.*

3.1.1 Entrainment in Asisstance Dialogues

As for implementing entrainment in a multimodal dialogue system that fea-
tures spoken interaction as a modality, it is important to find out under
which circumstances people entrain in human-human dialogues. Based on
such findings decisions can be made whether it is viable and beneficial to
train a classification system that can be used to compute in a specific dia-
logue situation that entrainment should be performed or not. Furthermore,
there might be application scenarios in which entrainment is more necessary
than in others.

In order to study entrainment in the domains of assistance systems,
e.g., help-desks, hotline or call center systems, and to develop and test an
annotation scheme we collected a corpus of human-human dialogues. The
data collection was conducted by means of a Multiple Operator and Sub-
ject (MOS) study that is in essence akin to the benchmark impurity graph
evaluation paradigm [46]. In the MOS study, new operators as well as new
subjects were recruited after each session, resulting in new pairs for each ses-
sion. By these means we were able to avoid long term adaptation through
familiarity caused by prior interactions. During the trials, the operators
were to act as a call-center agent who had to answer questions posed by the
subjects regarding operating a very modern television set, that as an ad-
ditional feature has Internet access. The subject’s tasks included assigning
channels to stations and changing Internet configurations. The purpose of
setting up an assistance scenario was to gain an expert-novice relationship,
in which ideally the operators would sometimes also act as the follower, i.e.
we were hoping that they may adopt terms introduced by the subjects. The
subjects were sitting on a couch in front of the TV set and talked via a
hand-held phone to the operator and used a remote control for interacting
with the TV set. Ten dialogues were recorded altogether. When the study
was finished the dialogues were transcribed.

The first examinations of the transcriptions showed that indeed two ba-
sic levels of entrainment ocurred, namely phrasal entrainment and lexical
entrainment. An annotation was conducted in order to measure the follow-
ing aspects: Can entrainment be detected reliably? If yes, which kind of
entrainment is it? And who was leader who was follower? For that purpose

4For the full description of these studies please see [53].

14



a manual was created that contained instructions on how to mark the as-
pects mentioned above. For the annotation, any two consecutive dialogue
utterances were coupled. The coupled dialogue utterances were grouped
as one entrainment segment, encompassing an utterance ¢ and its successor
i+ 1. The next segment than repeats (uses) the successor i + 1 as i’ with
its successor i’ + 1. Each entrainment segment was to be marked by the
operator’s role as follower or leader and which kind of entrainment could be
detected.

In the first analysis, all entrainment segments were counted in both anno-
tations. As was mentioned in the manual one dialogue entrainment segment
in this case is defined as two succeeding operator-subject or subject-operator
utterances. Also it was possible for one segment to hold more than one phe-
nomenon that had been entrained, phrases and terms included. During this
analysis phrases and terms were not distinguished from one another. Nei-
ther were different kinds of entrainment considered. The only thing that
was important was if any entrainment phenomenon could be detected for
each segment. Table 1 shows the distribution of assigned values (N/NE)
in percent. The measured agreement was K = 0.76 using the Kappa coeffi-
cient [14], which showed a good reliability in terms of agreement between the
annotators according to the interpretation by Altman [4]. As far as phrases
are concerned, all occurrences of entrained phrases were counted. Addition-
ally, one of the annotators counted all the phrases that might have been
entrained but were not. A phrase was defined as a coherent word-chain that
cannot be separated. For phrases percentages are given in Table 1 and the
agreement was K = 0.92, which shows an excellent reliability. As for terms,
all the terms were counted that had been assigned one of the kinds of lexical
entrainment. In order to additionally gain the potentially entrainable terms,
a program was written that returned the total number of tokens within the
tagged dialogues. However, the different kinds of entrainment were at first
not considered because we first aimed at a general result regarding lexical
entrainment. The distribution is presented in Table 1. Again the reliability
of agreement was excellent, since the Kappa result was K = 0.82.

Additionally to the agreement evaluation a statistical analysis of the dia-
logue data was calculated based on the annotation results of one of the anno-
tators. The following section provides an overview of how many phrases and
terms have been entrained. The sections after that present the evaluation
results for different kinds of phrasal and lexical entrainment. The amount of
entrained terms and phrases is called the entrainment rate. Additionally the
results reveal if the operator was leader or follower when adopting terms.

Here we show the distribution of entrained phrases versus non-entrained

15



‘ ‘ Annotator 1 ‘ Annotator 2

Segment with E | 33% 28%
Segment with NE | 67% 72%
Phrases with E 7% 6%

Phrases with NE | 93% 94%
Terms with E 18% 15%
Terms with NE 82% 85%

Table 1: Annotated Segments, Phrases and Terms

phrases, which could only be evaluated for a random of 50% of the dialogues.
The reason for that is that the entire amount of phrases - entrained phrases
as well as non-entrained phrases - could only be annotated in five of the
dialogues. As Figure 1 shows, phrases were entrained in about 9% of all
cases.

Entrained Phrases vs. Hon-Entrained
Phrases for § Dialogues

O Ertrained
Prrazes

B hon-Entrained
Phrazes

Percent

All Dislogues

Figure 1: Entrained Phrases vs. Non-Entrained Phrases

On top of that, further comparison between entrained phrases and entrained
terms, as presented in Figure 2, affirms this observation on another level:
it shows clearly that entrainment occurs a lot more often on a lexical level
than on the phrasal one. As for different kinds of entrainment, the statistical
analysis showed that ad hoc entrainment occurred more often than later
phrasal entrainment.

Figure 3 shows a first overview of how many terms were entrained and
how many remained non-entrained. As for each individual dialogue, the
results showed that there were some in which the interlocutors entrained
very successfully.
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P hrasal E mtrainment vs. Lexical
E niral etk for All Dialogues

OPE
=LE

Parcant
-
o
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Figure 2: Phrasal Entrainment vs. Lexical Entrainment

Entrai ned Terms vs. HonEntrained Terms
for All Dialogues

100
50 1 -
- OEntrained Terms
T 60
Lol
E 40 - B ) on-Ertrained
Terms
20 4
o+

Cizalogues

Figure 3: Entrained Terms vs. Non-Entrained Terms

Intuitively, the amount of entrainment within a dialogue can depend on
several factors:

e Age of operator and subject

Profession (i.e. Computer Expert / Novice)

Psychological factors

— Cooperative behavior
— Security/Insecurity of one of the interlocutors

— The sensibility to detect signs of insecurity

Conversational flow

Dialogue length

17



All of these aspects are closely intertwined with one another and thus influ-
ence the amount of entrained terms within a dialogue.

As far as the interlocutors’ roles as follower and leader are concerned,
Figure 4 shows that the operator was leader in most of the dialogues. In
dialogue 7 both operator and subject introduced new terms as well as they
adopted terms from their conversational partner at an equal distribution.
Dialogue 9 is the only dialogue in which the operator functioned as follower
more often than the subject. As always one has to keep in mind that both
subjects and operators were in a situation that was imposed on the them - in
that very moment the subjects neither had really bought a TV, nor had they
really lost the manual. Considering these drawbacks, operators and subjects
played their role very well. If one were to truly prove that people entrain in
an expert-novice relationship in the same setting, one would have to collect
dialogue data from a real call center agent-customer dialogue. Also, people
react differently if they know that they are being recorded, since recording
causes people either to act more timidly or overeagerly than in situations in
which they are not being recorded [58].

The Operator's Role as Follower vs. Leader for Each
Dialogue

] ooF =
Fallower
WP =

Percent

Figure 4: The Operator’s Role as Follower vs. Leader

3.1.2 Wizard of Oz Experiment

Based on these and prior [48] empirical examinations of human-human in-
teraction, we performed an entrainment experiment for multimodal human-
computer interaction in an assistance setting. The aim of this study was
to test the potential effects of entrainment performed by the system the is
engaged in the multimodal interaction.
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‘ Order ‘ Task ‘
Task 1 | Assigning Channels to Stations
Task 2 | Accessing the Internet

Task 3 | Changing Mouse Speed

Task 4 | Changing Font Size in Browser

Table 2: Overview: Tasks in MOS and WoZ Study

Experimental Set-Up: In our experimental setup we created an entrain-
ing and a non-entraining Wizard of Oz system [25].

e The HILFIX-E system was piloted by a wizard who had to use a fixed
set of replies.

e The HILFIX+E system was piloted by a wizard who could entrain
towards the user by exchanging parts of the set of fixed replies.

We employed the two mock-up systems with a diverse set of users on
the very same tasks, shown in Table 2 as in the MOS Study described in
Section 3.1.1. Also the modalities of spoken and remote control interaction
that were involved in the human-human study stayed the same. Only this
time subjects thought they talked to an actual dialogue system. The sys-
tem, however, was piloted by an operator, who - after hearing the subject’s
questions - selected which answer was to be synthesized.

The central task of the operator/wizard, therefore, was to deliver ap-
propriate answers. Half of the subjects used HILFIX-E and the other half
HILFIX+E. In the former the answers were derived from the TV man-
ual and in the letter they heard answers, which - despite having the same
propositional content as the ones in HILFIX-E - featured an alignment to
the subject’s lexical and phrasal choices, i.e. entrainment.

Since it was impossible to anticipate all possible particular lexical and
phrasal choices of the subjects, the operator/wizard had to insert the ap-
propriate linguistic surface structures on the fly, which called for a special
one-way muting device, but did not affect response times, as in both sys-
tems identical latency times - corresponding to those of state of the art
multimodal systems - were employed.

The results after five subjects using the entraining and another five using
the non-entraining system indicate that there is a noticeable speed-up com-
pletion time. Looking at all subjects, this amounts to an improvement of
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task-completion time by one minute. While this can already be regarded as a
good finding, we noticed that the speed-up is even doubled when comparing
the non-experts’ performance with the experts’ as shown in Figure 5. This
means that non-experts gained on average two minutes. Experts, however,
using the adaptive system were not helped at all, on average they needed
even a little longer with the entraining system, even though in this case the
sample is definitely too small to make any kind of significance judgment.
Clearly not so in the case of the non-experts. Using a PARADISE-like gen-
eral user-satisfaction questionnaire [63], the adaptive system - as one would
expect - scored better in all respects.

Adaptive System vs. Inflexible System by Dialogue
Length Means and Subject's Pior Expertise
w
T 2348
9 2555 —
o 2302
T 2010
a 117 O Adaptive System
o 1424 +—— )
5 1131 4 B Inflexible System
£ 0838
c 0546 H
o 0253 H
E 0000 T T T
- Computer  Computer  No expert  No expert
expert expert means means
means means
Figure 5: Task Completion Times
User-Satisfaction Adaptive System versus Inflexible
System

[
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3 M Inflexible System
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instructions i
menu
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Figure 6: User Satisfaction
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Figure 6 shows that, after calculating the means of all user replies, in
nearly all cases the subjects preferred the adaptive system rather than the
inflexible one. This is also true for the computer experts who solved the task
more slowly using the adaptive system than those using the inflexible system.
The only two categories that do not show a distinct result is whether people
would prefer the help manual over the system and whether they needed
the instructions in the help manuals rather than system replies. While the
adaptive system shows slightly better results - also in these categories - the
difference was slight. The result that stands out most is the felicity regarding
system replies. All of the subjects testing the adaptive system rated felicity
of system replies by marking down the top score. None of the subjects
testing the inflexible system gave the same rating regarding this question.

In these studies we have shown that subjects and operators did entrain
despite the fact that the they were put in a situation which was unfamiliar to
them within laboratory conditions (where subjects were situated on a couch
facing the TV in a usability lab and operators in an office environment).
Furthermore, operators had to explain a process they had been taught them-
selves only minutes before the experiment started. Generally speaking, the
results of the Multiple and Operator and Subject study showed - with re-
spect to human-human interaction - that entrainment is not a matter of
minor importance. In fact, if operator and subject show a great willingness
to align, as was the case in one of the recorded dialogues, the entrainment
rate is at 30%. Considering that two people do not constantly repeat each
other in a dialogue this rate - as well as the overall average of 20% lexical
and 9% phrasal - is rather high. Additionally, our Wizard-of-Oz experi-
ment showed that, especially for domain novices, entrainment behaviour on
the computer side increases both measured dialogical efficiency as well as
questionnaire-based user satisfaction rates.

3.2 Feedback and Signal Studies

For conducting these experiments we developed a new paradigm for collect-
ing telephone-based dialogue data, called Wizard and Operator Test (WOT),
which contains elements of both Wizard-of-Oz (WoZ) experiments [25] as
well as Hidden Operator Tests [54]. This procedure also represents a sim-
plification of classical end-to-end experiments, as it is - much like WoZ ex-
periments - conductible without the technically very complex use of a real
conversational system. As post-experimental interviews showed, this did
not limit the feeling of authenticity regarding the simulated conversational
system by the human subjects (S). The WOT setup consists of two major
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phases that begin after subjects have been given a set of tasks to be solved
with the telephone-based dialogue system:

e in Phase 1 the human assistant (A) is acting as a wizard who is sim-
ulating the dialogue system, much like in WoZ experiments, by oper-
ating a speech synthesis interface,

e in Phase 2, which starts immediately after a system breakdown has
been simulated by means of beeping noises transmitted via the tele-
phone, the human assistant is acting as a human operator asking the
subject to continue with the tasks.

This setup enables to control for various factors. Most importantly the tech-
nical performance (e.g., latency times), the pragmatic performance (e.g.,
understanding vs. non-understanding of the user utterances) and the com-
municative behavior of the simulated systems can be adjusted to resemble
that of state of the art dialogue systems. These factors can, of course, also
be adjusted to simulate potential future capabilites of dialogue systems and
test their effects. The main point of the experimental setup, however, is
to enable precise analyses of the differences in the communicative behav-
iors of the various interlocutors, i.e., human-human, human-computer and
computer-human interaction.

During the experiment S and A were in separate rooms. Communication
between both was conducted via telephone, i.e., for the user only a telephone
was visible next to a radio microphone for the recording of the subject’s lin-
guistic expressions. The assistant/operator room featured a telephone as
well as two computers - one for the speech synthesis interface and one for
collecting all audio streams; also present were loudspeakers for feeding the
speech synthesis output into the telephone and a microphone for the record-
ing of the synthesis and operator output. With the help of an audio mixer
all linguistic data were recorded time synchronously and stored in one audio
file. The assistant/operator acting as the computer system communicated
by selecting fitting answers for the subject’s request from a prefabricated
list which were returned via speech synthesis through the telephone. Be-
yond that it was possible for the assistant/operator to communicate over
telephone directly with the subjects when acting as the human operator.

The experiments were conducted with an English setup, subjects and as-
sistants in the United States of America and with a German setup, subjects
and assistants in Germany. Both experiments were otherwise identical and
in each 22 sessions were recorded. At the beginning of the WOT, the test
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manager told the subjects that they were testing a novel telephone-based di-
alogue system that supplies touristic information on the city of Heidelberg.
In order to avoid the usual paraphrases of tasks worded too specifically, the
manager gave the subjects an overall list of 20 very general touristic activi-
ties, such as visit museum or eat out, from which each subject had to pick six
tasks which had to be solved in the experiment. The manager then removed
the original list, dialed the system’s number on the phone and exited from
the room after handing over the telephone receiver. The subject was always
greeted by the system’s standard opening ply: Welcome to the Heidelberg
tourist information system. How I can help you? After three tasks were fin-
ished (some successful some not) the assistant simulated the system’s break
down and entered the line by saying Fxcuse me, something seems to have
happened with our system, may I assist you from here on and finishing the
remaining three tasks with the subjects.

The PARADISE framework [62, 63] proposes distinct measurements for
dialogue quality, dialogue efficiency and task success metrics. The remain-
ing criterion, i.e., user satisfaction, is based on questionaries and interviews
with subjects and cannot be extracted (sub)automatically from log-files.
The measurements described herein mainly revolve around dialogue effi-
cency metrics. As we will show below, our findings show that a felicitous
dialogue is not only a function of dialogue quality, but critically hinges on
a minimal threshold of efficiency and overall dialogue management as well.
While these criteria lie orthogonal to the criteria for measuring dialogue
quality such as recognition rates and the like [63], we regard them to consti-
tute an integral part of an aggregate view on dialogue quality and efficiency,
herein referred to as dialogue felicity. For examining dialogue felicity we will
provide detailed analyses of efficiency metrics per se as well as additional
metrics for examining the number and effect of pauses, the employment of
feedback and turn-taking signals and the amount of overlaps.

The length of the collected dialogues was on average 5 minutes for the
German and 6 minutes for the English sessions.” The subjects featured
approximately proportional mixtures of gender (25m,18f), age (12< >T71)
and computer expertise. Table 3 shows the duration and turns per phase of
the experiment.

First of all, we applied the classic metric for measuring dialogue efficiency
[63], by calculating the number of turns over dialogue length. Figure 7
shows the discrepancy between the dialogue efficiency in Phase 1 (HHI)

®The shortest dialogues were 3:18 (English) and 3:30 (German) and the longest 12:05
(English) and 10:08 (German).
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Phase HHI-G | HHI-E | HCI-G | HCI-E
Average | 1:52 2:30 2:59 3:23

length min. min. min. min.
Average | 11.35 21.25 9.2 7.4
turns

Table 3: Average length and turns in Phase 1 and 2

versus Phase 2 (HCI) of the German experiment and Figure 8 shows that
the same patterns can be observed for English.

B HCl with pauses
B HCl without pauses
O HHI with pauses
oasf O HHI without pauses

turnilenght

nz2-

3 10 15
dialogue

Figure 7: Dialogue efficiency (German data)

As this discrepancy might be accountable by latency times alone, we
calculated the same metric with and without pauses. For these analyses,
pauses are very conservatively defined as silences during the conversation
that exceeded one second. The German results are shown in Figure 9 and,
as shown in Figure 10, we find the same patterns hold cross-linguistically in
the English experiments. The overall comparison, given in Table 4, shows
that - as one would expect - latency times severely decrease dialogue effi-
ciency, but also that they alone do not account for the difference in efficiency
between human-human and human-computer interaction. This means that
even if latency times were to vanish completely, yielding actual real-time
performance, we would still observe less efficient dialogues in HCI.

While it is obvious that the existing latency times increase the num-
ber and length of pauses of the computer interactions as compared to the
human operator’s interactions, there are no such obvious reasons why the
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B HCI with pauses
tumnflenght m o) without pauses

O HHI with pauses
[0 HHI without pauses

5 10 15 20
dialogue

Figure 8: Dialogue efficiency (English data)

number and length of pauses in the human subjects’ interactions should dif-
fer in Phase 1 and Phase 2. However, as shown in Table 5, they do differ
substantially.

B HCl with pauses

turnilenght i
B HCl without pauses
22T E HHI with pauses
RS O HHI without pauses

3 10 15
dialogue

Figure 9: Efficiency w/out latency in German

Next to this pause-effect, which contributes greatly to dialogue efficiency
metrics by increasing dialogue length, we have to take a closer look at the
individual turns and their nature. While some turns carry propositional in-
formation and constitute utterances proper, a significant number solely con-
sists of specific particles used to exchange signals between the communica-
tive partners or combinations thereof. We differentiate between dialogue-
structuring signals and feedback signals [68]. Dialogue-structuring signals -

25



W HClwith pauses

turnilenght B HCIl without pauses
oAr [ HHI with pauses
ECYS O HHI without pauses

dialogue

Figure 10: Efficiency w/out latency in English

Efficiency | HCI -p | HCI +p | HHI -p | HHI +p
Mean 0.18 0.05 0.25 0.12
German

Standard- 0,04 0,01 0.06 0.03
deviation

Mean 0.16 0.05 0.17 0.17
English

Standard- 0.25 0.02 0.07 0.07
deviation

Table 4: Overall dialogue efficiencies with pauses +p and without pauses -p

such as hesitations like hmm or ah as well as expressions like well, yes, so
- mark the intent to begin or end an utterances, make corrections or inser-
tions. Feedback signals- while sometimes phonetically alike - such as right,
yes or hmm - do not express the intent to take over or give up the speaking
role, but rather serve as a means to stay in contact with the speaker, which
is why they are sometimes referred to as contact signals.

In order to be able to differentiate between the two, for example, between
an agreeing feedback yes and a dialogue-structuring one, all dialogues were
annotated manually. The resulting counts for the user utterances in Phase 1
and 2 are shown in Table 6. Not shown in Table 6 are the number of particles
employed by the computer, since it is zero, and those of the human operator
in the HHI dialogues, as they are like those of his human interlocutor.
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Pauses HCI-G | HHI-G | HCI-E | HHI-E
Number 79 10 94 21
total

Number 3.95 0.5 4.7 1.05
per dialog

Number 0.46 0.05 0.64 0.05
per turn

total 336sec | 19sec | 467sec | 48sec
length

% of 9.37 0.84 13.74 1.75
phase

% of 5.75 0.3 7.46 0.766
dialogue

Table 5: Overall pauses of human subjects: Phase 1 and 2 German (HCI-
G/HHI-G) and English (HCI-G/HCI-E)

Particles | structure particle | feedback particle

HCI HHI HCI HHI
Number 112 G 225 G 18 G 135 G
total 90 E 202 E 0E 43 E
per 56 G 11.25 G 009G 6.75G
dialogue 4.5 E 10.1 E 0E 215E
per 04G 059G 0.04 G 026G
turn 061 E 048 E 0E 0.1 E

Table 6: Particles of human subjects: HCI vs. HHI

Again, the findings for both German and English are congruent. We find
that feedback particles almost vanish from the human-computer dialogues -
a finding that corresponds to those described in Section 2. This linguistic
behavior, in turn, constitutes an adaptation to the employment of such
particles by that of the respective interlocutor. Striking, however, is that
the human subjects still attempted to send dialogue structuring signals to
the computer, which - unfortunately - would have been ignored by today’s
“conversational” dialogue systems.5

In the English data the subject’s employment of dialogue structuring particles in HCI
even slightly surpassed that of HHI.
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Before turning towards an analysis of this data we will examine the
overlaps that occurred throughout the dialogues. Most overlaps in human-
human conversation occur during turn changes with the remainder being
feedback signals that are uttered during the other interlocutor’s turn [35].
The results on measuring the amount of overlap in our experiments are
given in Table 7. Overall the HHI dialogues featured significantly more
overlap than the HCI ones, which is partly due to the respective presence
and absence of feedback signals as well as due to the fact that in HCI turn
takes are accompanied by pauses rather than immediate - overlapping - hand
overs.

Overlaps HCI-G | HHI-G | HCI-E | HHI-E
Number total 7 49 4 88
per dialogue 0.35 3.06 0.2 4.4
per turn 0.03 0.18 0.01 0.1

Table 7: Overlaps in Phase 1 versus Phase 2

Lastly, our experiments yielded negative findings concerning the type-
token ratio and syntax. This means that there was no statistically significant
difference in the linguistic behavior with respect to these factors. We regard
this finding to strengthen our conclusions, that to emulate human syntactic
and semantic behavior does not suffice to guarantee effective and therefore
felicitous human-computer interaction.

The results presented above enable a closer look at dialogue efficiency
as one of the key factors influencing overall dialogue felicity. As our experi-
ments show, the difference between the human-human efficiency and that of
the human-computer dialogues is not solely due to the computer’s response
times. There is a significant amount of white noise, for example, as users
wait after the computer has finished responding. We see these behaviors as
a result of a mismanaged dialogue. In many cases users are simple unsure
whether the system’s turn has ended or not and consequently wait much
longer than necessary.

The situation is equally bad at the other end of the turn taking spectrum,
i.e., after a user has handed over the turn to the computer, there is no signal
or acknowledgment that the computer has taken on the baton and is running
along with it - regardless of whether the user’s utterance is understood or
not. Insecurities regarding the main question, i.e., whose turn is it anyways,
become very notable when users try to establish contact, e.g., by saying
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hello -pause- hello. This kind of behavior certainly does not happen in HHI,
even when we find long silences.

Examining why silences in human-human interaction are unproblematic,
we find that, these silences have been announced, e.g., by the human op-
erator employing linguistic signals, such as just a moment please or well,
I’ll have to have a look in our database in order to communicate that he is
holding on to the turn and finishing his round.

To push the relay analogy even further, we can look at the differences
in overlap as another indication of crucial dialogue inefficiency. Since most
overlaps occur at the turn boundaries and, thusly, ensure a smooth (and
fast) hand over, their absence constitutes another indication why we are far
from having winning systems.

As the primary effects of the human-directed language exhibited by to-
day’s conversational dialogue systems, our experiments show that:

e dialogue efficiency decreases significantly even beyond the effects caused
by latency times,

e the human interlocutor ceases in the production of feedback signals,
but still attempts to use his or her turn signals for marking turn bound-
aries - which, however, remain ignored by the system,

e the increases in the amount of pauses is caused by waiting- and uncer-
tainty-effects, which are also manifested by missing overlaps at turn
boundaries.

Generally, we can conclude that a felicitous dialogue needs some amount
of extra-propositional exchange between the interlocutors. The complete
absence of such dialogue controlling mechanisms - by the non-human inter-
locutors alone - literally causes the dialogical situation to get out of control,
as observable in the turn-taking and -overtaking phenomena described in
Section 2. As witnessable in recent evaluations, this way of behaving does
not serve the intended end, i.e., efficient, intuitive and felicitous human-
computer interaction.

4 Towards Pragmatic Alignment

We see the results of the aforementioned studies to contribute part of an
emerging picture that shows how interlocutors employ a variety of linguis-
tic or paralinguistic instruments to make dialogues efficient, align to their
interlocutors and, thereby, guarantee their felicity. One way of looking at
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this ensemble of instruments is to view them as means for pragmatic align-
ment. We motivate the choice of the term pragmatic by the fact that these
instruments exhibit both a discourse functional dimension - beyond that of
the morpho-syntactic and semantic levels as well as by the fact that they
are, by their very nature, context-dependent.

Therefore, we have to take a look at two fundamental, but notoriously
tricky, notions for human-computer interface systems, which frequently are
regarded as one of the central problems facing both applications in artificial
intelligence and natural language processing. These, often conflated, notions
are those of context and pragmatics. Indeed, in many ways both notions are
inseparable from each other if one defines pragmatics to be about the ways
of encoding and decoding of meaning in discourse, which, as pointed out nu-
merously [12, 65, 50], is always context-dependent. This, therefore, entails
that pragmatic inferences (also called pragmatic analyses [12]) are impossi-
ble without recourse to contextual observations. In a sense suprisingly”, the
context-dependency of these features elevates their status from mere auto-
matically produced garnishings of a given discourse to the level of flexibly
employed workhorses thereof.

In order to address how computers should talk to humans we face two
corresponding challenges:

e how to enable to encode the computer’s internal processing and stance
to their human interlocutors in order to avoid phenomena discussed
above such as turn-overtaking, dialogical inefficiency and general dis-
satisfaction;

e how to decode these signals and adaptations provided by their human
interlocutors in order to understand them better, manage natural turn-
taking and react felicitously.

Last but not least, the distinction between pragmatic knowledge - which
is learned /acquired - and contextual information - which is observed /inferred
- is also of paramount importance in designing scalable context-adaptive
systems, which seek to align to their human users and, thereby, to (inter)act
felicitously with them.

"Surprising as these central and functionally critical features of discourse have been by
and large overlooked in the design and development of dialogue systems.
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Abstract

Feedback is one of the crucial components of dialogue which al-
lows the interlocutors to align their internal states and assessments of
the ongoing communication. Yet, due to technical limitations, imme-
diate and adequate feedback is still a challenge in artificial systems
and, therefore, causes manifold problems in human-robot interactions
(HRI). Our starting point is the assumption that the manner and con-
tent of the feedback, that robots currently are able to provide, often dis-
turbs the flow of communication and that such disruptions may impact
the affective evaluation of the users towards the robot. In our study
we therefore analysed quantatively how different feedback behavior of
the robot resulted in different affective evaluations. In a subsequent
qualitative analysis we looked at how the different feedbacks actually
affected the communicational flow in detail and produced hypotheses
on how this might influence the interaction and thus the affective eval-
uation. Based on these analyses we conclude with hypotheses about
the implications for the design of feedback.

1 Introduction

One central assumption in social robotics states that if users are to accept
robots in their private lives, robots need to blend in the social situation and
act according to social rules. This means that embedded in social situa-
tions, a robot is not only situated in an environment with humans and can
interact with the other agents [7], but is also designed to respect the rules
of dialogue. The first ability, to blend in the social situation, is known as
"social embeddedness” [9], while the second ability, to respect the rules of
dialogue, is also referred to as ”interaction awareness” [7]). Yet, in a natural
interaction, the two abilities are interweaved: If a robot respects the rules of
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a dialogue, it will more likely be embedded in social situation; a socially em-
bedded robot has to act according to "human interactional structures” [7].
A phenomenon that combines the two aspects in an natural interaction is
feedback. Feedback is a response signaling an immediate result in the en-
vironment which in turn can be used as a basis for another more adapted
behavior. This way, a basic pattern of interaction depending upon mutual
monitoring can emerge and creates a social interaction (cf. [14]). In our
approach, we pursued the question of which factors may be crucial for the
two central abilities of a social robot, social embeddedness and interaction
awareness, and how they can be used to design feedback undesirable for a
successful communication.

To design a robot that is able to blend in a social situation, factors
like anthropomorphism [8], [22] and perceived personality [26] have been
discussed. In our study, we accessed the quantitative correlations between
the robot’s behavior and the user’s reaction by asking how users perceive the
personality of a robot they have been interacting with in a non-restricted
situation. The underlying scenario for which our robot is designed mainly
consists of showing and explaining locations and objects to a robot in a
home-like environment. The goal is to teach the robot enough knowledge
in order to enable it to autonomously navigate to perform fetch and carry
jobs or basic object manipulation tasks such as laying out the table. In
such a scenario, the initiative is mainly with the user, however the degree of
initiative taking of the robot may vary and thus be used as a cue to convey
different robot personalities or may otherwise affect the users’ evaluation of
the robot. In our study, we varied initiative taking behavior of the robot
and analyzed the effects this had on the users’ perception. In detail, we
addressed the following three questions: (1) If asked to describe a robot’s
personality with traits established in personality psychology, how easy do
users find this task and how sure are they about their judgment? (2) Does
the robot’s initiative taking behavior influence the perceived personality?
(3) Which factors are relevant for the affective evaluation of the robot?

Based on these results, we attempted to explain how can a robot act
according to social rules. In our approach, we applied these quantitative
findings to qualitative analyses based on methods derived from sociology.
We assessed the situative factors of the communication by applying eth-
nomethodological conversation analysis to each interaction and by charac-
terizing the given feedback by evaluating users strategies and difficulties in
keeping the communication in its flow. Pursuant to social constructionism,
individuals actively participate in the creation of their perceived reality. Ac-
cordingly, social situations consist of mutual processes of attribution and the
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ascription of meaning. That there is to be some kind of feedback, is part
of the actors expectancy of communication settings. If there is not, the ex-
pected indicator is not given and hinders the follow up. We reveal strategies
of users’ elaborations that substantiate social expectation in communicative
processes. These identified basic interaction patterns in HRI seem to be
close to social communication practices in human-human settings.

Our results demonstrate the synergetic effects of the combination of
quantitative and qualitative analysis: the combined analysis allows us to
formulate hypotheses as to why users rate the robot and its interaction in a
certain way. In detail, we present hypotheses on what situative and personal
factors influence the interaction and what kind of feedback is necessary for
a successful complex human-robot interaction.

2 The Robot System

The basis of our data collection is a user study carried out with our mo-
bile robot BIRON [12] (Bielefeld Robot Companion), an interactive robot
based on an ActiveMedia PeopleBot platform. This robot is able to carry
out multi-modal interactions with a user fully autonmously. The main com-
ponent is a person attention system [15] which enables the robot to focus
its attention on a person. Based on this attention system the robot can
physically follow the person of interest and engage in verbal interactions.
A multi-modal object attention module allows the system to learn new ob-
jects shown by the user. The verbal interactions are carried out by a dialog
component [17] that enables mixed-initiative interactions. For the purpose
of this study we disabled BIRON’s mobility so that it remained fixed on its
place. Note that the complete software also runs on our anthropomrophic
robot BARTHOC [13] where further interaction capabilities such as facial
expressions are currently being integrated. However, at the time of the study
the running system was only available for the mobile robot BIRON.

The different initiative behaviors of BIRON are realized by the dialog
system. In contrast to many finite-state based dialog systems for robots
([20, 4, 1]) we implemented a powerful computational model of multi-modal
grounding [16] which is based on the grounding idea of Clark [6] and extends
the conventional computational grounding models of Traum et al. [24] and
Cahn et al. [5].

For the personality study we implemented two dialog modes for BIRON
(a high-initiative mode and a low-initiative mode) that differ from each
other in whether or not the robot initiates the interaction with the user
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vy R1: Hello human!
— U1: Hello!
Who are you?
Ex2 R2: My name is BIRON, if you show me
something | can remember it.
— U2: OK, um, look, this is a mug.
i R3: | beg your pardon?
“— U3: This is a mug, umm, here.
i R4: Sorry, can you use some other words?
“— U4: This is a mug!
exs [ R5: Sorry, I can't find it. Are you pointing
Ex6 to it with your finger?
US: Yes!
R6: | know it is sometimes difficult with me,
Ex7 but don't feel discouraged!
uUé: (laugh)
L R7: OK, I've found it, it is really nice!

Figure 1: Taking initiatives (Ex: exchange, U: user, R: robot)

and makes comments on the ongoing interaction based on its evaluation of
the communicative success as shown in Table 1. Figure 1 presents a dialog
example from a user interaction with the high-initiative version of BIRON.
In Ex1, BIRON actively greets a person once it detects her and in Ex6 it
makes remarks on its own poor performance. The low-initiative BIRON
does not have these two capabilities. The technical realization of them is
described in detail in [17].

3 Data Collection

For the data collection we used a between-subject design with a total of 14
users aged between 25 and 37 years interacting with BIRON. Each subject
had to go through two subsequent interaction sessions. In the first warm-
up session the users were asked to familiarize themselves with the robot by
asking questions about its capabilities upon which the robot would give a
short explanation (”You can show me objects and locations”) and the users
would start showing objects. Before the second session the users were given
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Feedback in case of.. High Init. Low Init.

User command
User query
Error messages from system
Seeing human
Well going interaction
Badly going interaction

+ o+t
+ o+ o+

Table 1: Feedback behavior of system with high initiative ("High Init.”) vs
system with low initiative ("Low Init.")

more technical information about the details of the underlying functionality
in order to minimize technical failures which can occur when users do not
stand still or do not look into the robot’s camera while speaking etc. These
instructions were intended to help to reduce perception errors of the system
and to make users feel more comfortable during the interaction. Then the
subjects were given the instruction to show specific objects to the robot.
The mean interaction time of each session was about 10 minutes, yielding
an overall interaction time of about 20 minutes per subject. After the second
session the users completed a set of questionnaires regarding their judgment
of the interaction as well as ratings of the perceived personality of the robot,
of their own personality and on how much they liked the robot. The per-
sonality of the robot and the user were each assessed by a time-economic
questionnaire, the BFI-10 [23], which measures personality according to the
widely accepted and cross-culturally [10] as well as more or less even cross-
speciesly [25] applicable Big Five Model of personality [21]. Furthermore
after rating the robot’s personality users were asked how easy the task of
judging BIRON’s personality was and how sure they felt about their judge-
ment. Each of these questions was answered by a 5-point verbal rating scale
with 'very easy’ / 'very sure’ and ’very difficult’ / 'not sure at all’ as the
extreme anchor points. As an affective evaluation of the interaction users
were asked if they liked BIRON, this question was to be answered with a
simple ’yes’ or 'no’.

For the qualitative analysis, the interactions were video taped and later
analyzed in detail.

In order to assess the influence of different initiative-taking behaviors of
the robot on its perceived personality we used two different interaction types
of the dialog system that were randomly distributed over the subjects. In the
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low initiative interaction type the robot only gives feedback when addressed
by the user. Only in case of errors the robot takes the initiative and reports
them to the user. In contrast, the pro-active interaction type will actively
engage in a conversation by issuing a greeting when it detects a person
facing the robot. It will also give comments relating to the success of the
communication at certain points during the interaction (e.g. "It’s really fun
doing interaction with you” or ”I know it’s sometimes difficult with me, but
please don’t feel discouraged”). Note that in contrast to other studies on
the perception of artifical agent’s personality we use an interactive cue that
is not pre-programmed but depends on the actual interaction situation and
thus takes the user in the loop as an active interaction partner into account.

4 Quantitative Study on Personality

In this section we report on some quantitative findings from the question-
naire study on the perceived personality of BIRON. In general the sub-
jects reported to feel ‘very sure’ (71.4%) about their judgements concerning
BIRON’s personality. Also, most of them (57.1%) thought the task of an-
swering the personality items was ‘very easy’ or ‘rather easy’.

Users interacting with the pro-active interaction type of BIRON rated
the robot significantly higher on extraversion than users interacting with the
low initiative version (#-test for independent samples: p < .05, see Fig. 2).
Interestingly, the pro-active version of the robot might also provoke more
heterogenous personality judgments than the less initiative version. The
standard deviations of the ratings of the robot’s personality traits were larger
by 1.11 to 3.02 times in the user group interacting with the more initiative
version than in the user group interacting with the less initiative version of
BIRON.

The third research question we addressed was, which factors might influ-
ence the affective evaluation of the users concerning BIRON. Overall 57.1%
of the users answered that they liked BIRON. Most interestingly it turned
out that in the group of users interacting with the pro-active version of
BIRON 85.5% liked the robot, while this was only the case for 28.6% of the
users interacting with the less initiative version. The correlation of r = .577
(p < .05) indicates that 33.3% of the variance in the users’ answers concern-
ing this question could be explained by the root’s interaction behavior. In
short, there was a significant and strong tendency of the pro-active version
being preferred by the users over the less initiative version.

However, while this quantitative analysis provides us with a good basis
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2,51 0O Low Init.
m High Init.

E* A C ES 0]

Figure 2: Personality ratings of users interacting with robot with high vs.
low initiative interaction behavior. Star marks significant difference between
the two settings. (E: Extraversion, A: Agreeableness, C: Conscientiousness,
ES: Emotional Stability, O: Openness to Experience)

for statistical correlations it can not answer the question why users tend to
prefer the extroverted behavior. Thus, in order to produce more concrete
hypotheses about this question we performed a qualitative analysis of the
interactions which is described in the following section.

5 Qualitative Analysis of Feedback in HRI

Our basic assumption is that users will prefer a robot when they perceive
its behaviour as social. But what does it mean for a robot to act according
to social rules? In order to concretize the social phenomena and special
character of an interaction situation and to explicitly frame the constraints
and context of information given, we analyzed interactions with BIRON
from a sociological point of view. As methodological approach we employed
ethnomethodological conversation analysis techniques. The empirical case
study is presented in the following section where some findings and also
interpretations are given.

We apply the social constructionism and Niklas Luhmanns systems the-
ory as theoretical frame for HRI in a sociological perspective. There, com-
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munication is seen as the central vehicle establishing social relations. But
how do people act in the face of a non-human interaction partner? How
do people adjust their interaction in these specific human-robot settings?
Do they establish relevant patterns of behavior? The focused phenomenon
chosen for our analysis upon HRI is the variability of feedback. Our case
studies bring to light that the users interprete the context and syntonize
their performances according to their interpretation of the situation.

5.1 Theoretical Framing - Constructionism and Systems The-
ory

The paradigm of social constructionism (a theory of knowledge) as devel-
oped in the 1960s (e.g. [2]), anticipates that there is not one single and true
reality, but the world consists of subjective constructions of the perceived
phenomena made by subjects. According to this, dealing with reality means
that the individual always refers to its own perceptions (which evidently
differ from each other). From this follows for interactions that the interpre-
tations of the communicating partner’s actions and his decisions that keep
the conversation going are context-driven, situative and individual.

5.1.1 Constructionist Prerequisites

From the perspective of the social constructionism, a situation is built up
in a human’s mind from variables as context, knowledge and the ascription
of meaning (e.g. the specific cultural background). Thus, social reality is
a dynamical construction made and renewed by practical acting. As such,
each action has to be understood as communication practice and, vice versa,
communicating is a constructive action.

5.1.2 Systems of Communication

The sociologist Niklas Luhmann’s systems theory describes the functional
differenciation of society. In these terms, modern societies build up a web
of distributed functionalities [19]. A social system’s main function is to lead
and organize interactions. Accordingly, the main operation is the attempt
to understand the other’s communicative distributions, and to assign some
discourse elements as well. This operation is much more complex, than it
might appear. Communication consists of the triad information, message
and understanding [19]. Which means that it is not evident to access a
simple transfer of facts but a communication consists of the longing for
"accessibility’ in several dimensions.
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5.1.3 Systems of Interaction

A social system according to Luhmann is built on coordinated actions of
several persons [18]. Because social systems can be characterized mainly by
their communicative procedure [19], social systems are systems of commu-
nication. While action is constituted by processes of attribution, cognition
has a high impact on interaction proceedings.

5.2 Adapting Sociological Systems Theory to HRI

In this paper we discuss feedback as a problem of expectation. Drawing
decisions about the next action is a kind of selection which refers to former
action-decision settings. Concrete actions reduce the complexity of all pos-
sible actions by means of attribution and expectation. Generalizing the own
intentions leads to expectations that lower the world’s complexity: if to my
thoughs, there is only one possibility to behave, I can await its appearance
and in any other case, decline all not expected operations. The interaction
itself is an operation of registering the operations of others and compar-
ing them to one’s own suggestions which leads to concrete decision taking
and further actions. Systems of interaction are interrelating constructions
driven by expectance and estimation. HRI deals with the overall problem of
communication in a specific context. The reciprocal setting of interrelated
expectations differs from a sheer humanoid interaction where both partners
tend to interprete the other’s actions flexibly. In case of interacting with a
robot, we have to ask what is social about the situation and what is special
in the human’s behaviour? The general strategy in lowering the costs of
interacting in HRI is to implement dialogue strategies that match human
speech behavior as much as possible. Feedback plays an important role in
the attempt of understanding as it serves as checkback signal for both coun-
terparts. Since strategies of interaction are revealing social expectation in
communicative processes the aim is thus to establish and reestablish step-
by-step access and connectivity. Based on this considerations, we focussed
our analysis on feedback in the HRI experiments.

5.3 Qualitative Evaluation

5.3.1 Ethnomethodological Conversation Analysis

In contrast to the experimental setting described in IV., qualitative analysis
is based on fine grained observations on the behavior [3]. The methodology
refers directly to the observed and video taped interaction. Ethnomethod-
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ological conversation analysis is a technique acted out by the researcher him-
/herself. Not the user’s ratings about their own interactions were collected
in a questionnaire, but their performances were reviewed and analyzed.

5.3.2 Hypotheses and Questions

Feedback serves as an interacting mechanism. There is a dynamic interplay
between the user’s feedback and BIRON’s verbal behavior. By studying
the experimental setting qualitatively, we analyzed how users react, if the
assigned reaction is not the expected one, or if the robot shows no feedback
at all.

5.4 Results of Qualitative Analysis of Feedback in HRI

Due to the qualitative researcher’s intention in studying concrete interaction
proceedings in daily life, we analyzed the users’ communicative behavior in
its situative context. We found a huge variability of human behavior in
HRI with BIRON. Several fixed phenomena consist of verbal variations,
mimic assertions or rhetorical comments. The human users are referring
to both, sensorial perceived utterances and conceptual ones, like their own
expectations.

Based on the user’s reactions BIRON’s feedback can be interpreted either
as a matching or a mismatching reply. BIRON’s denounced feedback did
not fit in every situation with the user’s expectance. But in each situation
the user reacted somehow.

5.4.1 Matching and Mismatching Feedback

Users expect from an interaction situation an alternating interplay. This
bilateral mechanism which includes the functionality of turn-taking ensures
the flow of communication. So the distribution of any feedback from the
robot mostly is registered positive and answered by the user. We differ-
entiate the two cases of a “good” matching reply that is directing to the
continuation of the interaction process, and a “bad” mismatching reply that
leads to an interruption in the flow of communication.

In the following we define a matching reply as holding the line by answer-
ing somehow as expected, as the first example of an dialogue with BIRON
underlines:
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User 03:  “Look here!”

BIRON:  “Yes, I'm looking.”
User 03: “This is a keyboard.”
BIRON: “It’s really interesting.”

From the human user’s point of view it is also expectable that BIRON
would give some internal insights, so he reacts positive to a given problem
report as shown in the following example:

User 13:  “What can you do?”

BIRON: “I just understood you partially.
What did you say?”

User 13:  “What can you do?”

BIRON: “I can follow you to an other lo-
cation and you can show me some-
thing.”

User 13:  “Ok.”

Even if the robot does not give semantically correct feedback, users tend
to reprise the dialogue if they get any feedback from the system as can be
seen in the next example:

User 01: ‘Hello!”*

BIRON: “Sorry, I can’t understand you.
Maybe you can use some other
words?”

User 01:  “What can you do?”

We define an episode in our experiment as mismatching if the user’s
expectation can not be linked to the robot’s statement hence the user can
not answer the robot.

The user’s expectation is linked to an awaited reaction. A not expected
comment from the robot can irritate the dialogue because the user does
not wait for it and is not ready to interprete it. In mismatching cases in
which BIRON did not produce feedback at all or was giving an unanticipated
answer, the users showed individual reactions. They often expressed their
open loop as verbal repeating of their previous assertions. This meant on
the prosodic level, modifying their accentuation by emphasis of singular
words or syllables, also slowed reechoing and even spelling have been shown.
In some cases the user switched to a different vocal pitch. On the lexical
level, some usage of synonyms or differing expressions took place. The users
expressed on non-verbal level mimic variation, such as lifting the eyebrows
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or augmenting the general frequency of gesture usage. There has also been
discursive feedback just like encouraging the robot (e.g. User 03: “Oh, come
on! Talk to me please!”).

Also, the users were shifting to thematic cues in form of naming and
commenting the robot’s mistakes as in the following dialogue example:

BIRON: ”I know it is sometimes difficult
with me, but please don’t feel dis-

couraged!”
User 03: “What choice do I have?”

Some contributions are made (e.g. User 03: “Please don’t tell me it’s
my fault.”) and even suppositions about the internal state of the robot are
not rare (e.g. User 02: “I suppose that he wishes to end the conversation
with me!”).

Interestingly users also tried out an other variance: they shifted to a
meta reflexive level by addressing the experimentator. They interrupted the
mismatching HRI and established an interaction with a human communica-
tion partner to whom they are familiar with and the flow of communication
retained - in this case with a different partner.

5.4.2 Missing of Feedback

We can learn much more about the problem of communication by looking
at the critical cases: As most critical moment within those interactions with
a robot we found a given order by the user, not being reacted to at all.
More specifically, if the robot does no show any reaction, there is no access
for slightly and effortless continuing the interaction. After Garfinkel [11],
those moments show fruitful efforts in applying repairing strategies. If a
communicative lack occurs, the human will be trying to provoke any reset
of the former dialogue to gain new access to the communication. In those
situations the human users have to improve the interaction and they have
manifold possibilities: they might be awaiting even longer for the robot to
answer - and most of them in our study already did. Others tended to
evoke a new and better accessible interactional element. This would be an
assertion, provoking some feedback. Some non-verbal cues like snipping the
fingers or waveing were acted out too. In each case, even the mismatching
trials, the act of communicating continues, even if the interaction with the
robot is cut off finally.

These general replying mechanisms are leading to typical behavior peo-
ple acted out in the experiment setting: The users reactions tend to continue
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the interaction and offer some renewal of accessibility. If some spoken in-
structions remain not-answered, the user is getting irritated. Irritation will
be augmenting by its duration.

Feedback is a reciprocal mechanism of monitoring, interpreting and an-
swering the interaction partners’ verbal, mimic and embodied expressions
as well as actions. The users tend to obtain and retain orientation towards
the robotic system.

6 Conclusion

The quantitative results have shown that the likeability of the robot is signif-
icantly correlated to the robot’s interaction behavior with the more extrovert
system being preferred over the less initiative one. This result can be inter-
preted from a sociological point of view that by giving more feedback, the
robot provides more access to the user to re-enter the communication after
it has been interrupted by a system failure. Thus, by excusing for a fault,
the robot gives the user an opportunity to make sense of the communication
again and, thereby, to answer.

In contrast to this positive feedback, the robot’s message “I've lost you”
does not relate to the user’s own experience and thus does not provide access
for the user to re-enter the conversation since it does not make sense to her.
This means that the understanding and correct interpretation of feedback
is closely related to the context that the conversation is taking place in.

From these findings we can draw some conclusions about the design of
feedback: A criterion for feedback that contributes to successful communi-
cation is that it needs to produce accessibility in order to motivate the user
to continue the communication even when in trouble. In contrast, feedback
that does not produce accessiblity will demotivate the user because it can
not be related to the user’s own world of experience and expectations in the
concrete context.
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Teaching an autonomous wheelchair
where things are

Thora Tenbrink
SFB/TR 8 Spatial Cognition, University of Bremen, Germany
tenbrink@informatik.unt-bremen. de

1 Introduction

How do users react when asked to inform an autonomous wheelchair about
the locations of places, objects and about spatial relationships in an indoor
scenario? This paper presents a qualitative analysis of speakers’ sponta-
neous descriptions in such a task, analyzing how non-expert German and
English users talk to a robot that is supposed to augment its internal map
with the information the users provide. The analysis focuses on a range
of aspects which reflect systematic features and variability in the linguistic
descriptions: choice of strategy, granularity level, presupposition, underspec-
ification, vagueness, and syntactic variations. A brief language comparison
reveals systematic differences between German and English usage with re-
spect to spatial descriptions. First (sketched) results of a follow-up study
point to desirable effects of allowing the robot to react verbally to the users’
input on speakers’ spontaneous choices.

The results presented here are explorative and qualitative, reflecting
work in progress within a larger research enterprise that comprises tech-
nological as well as linguistic endeavours. The linguistic work is part of
project I1-[OntoSpace] of the DFG-funded major research program SFB/TR
8 Spatial Cognition situated in Bremen and Freiburg. Other projects within
this program deal with implementations of the linguistic findings within a
dialogue system (I3-[SharC]), and a broad range of robotics-related issues
that concern the matching of perceptual and verbal input with the robot’s
prior spatial knowledge, for example, via computational models (e.g., R3-
[Q-Shape], A2-[ThreeDSpace]).

Related work is carried out also in other projects dealing with human-
robot interaction, for example, within the EU funded major project COSY,
the recently completed SFB 360 in Bielefeld, and the SFB 378 in Saarbriicken.
Also, relevant work on spatial language semantics and usage is carried out
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at several places (e.g., the LIMSI group in Paris, and the research groups
around K. Coventry and L. Carlson, among others), the results of which in-
fluence the interpretation and evaluation of our specific findings as detailed
below. A thorough and systematic overview of relevant knowledge about
spatial language is given in [14]. In this paper, I focus on the specific results
of our empirical studies involving “Rolland”.

2 Experimental Study I

2.1 Method

In our! scenario, the robot (the Bremen autonomous wheelchair “Rolland”)

[9], is situated inside a room that is equipped with a number of function-
ally interesting objects and furniture, intended to resemble a disabled per-
son’s flat. Our users (non-disabled university students) are seated in the
wheelchair and given four tasks: first, they are asked to steer the wheelchair
(whose automatic functions are not operating) around inside the room they
are currently in, and teach it the positions of the ‘most important’ objects
and places so that it can augment its internal map. Second, they are placed
at one specific position inside the room and asked to describe the spatial rela-
tionships of the locations to each other from there. Third, they are asked to
steer the wheelchair along the hallway and visit some predetermined places,
explaining, again, the locations that they encounter along the way. Their
final task then is to instruct the wheelchair to move autonomously to one
of the places just encountered. In this baseline experiment, the wheelchair
does not react in any way throughout the study. In a follow-up study de-
scribed briefly below, the robot gives detailed verbal feedback; first results
of this study complement the current analysis.

It is one of the most prominent aims in our project to identify speakers’
spontaneous ideas on how to address robots in carefully controlled spatial
tasks (cf. [2]). From a technological perspective, this approach enables the
system designers to allow for the interpretation of an increasing range of ut-
terances that are spontaneously produced in a given context, without having
to provide the users with a predefined list of commands. A sophisticated
dialogue system is currently under development (see e.g., [10, 15]); also,
other modules of the robotic system are being developed toward increasing
integration of perceptual and linguistic information (e.g., [6]).

!The study was carried out in cooperation with other researchers within the SFB/TR,
8, most notably K. Fischer.
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From a linguistic perspective, this approach allows for optimal flexibil-
ity in investigating generalizable features of human-robot interaction. The
main idea here is to restrict the setting rather than the users’ utterances.
Given a clearly defined discourse context, the range of users’ reactions re-
mains within reasonable (and analyzable) limits, in spite of the fact that
users are not trained or asked explicitly to restrict their utterances in any
way. Thus, the contents of what users say are restricted by the setting and
the discourse task, not by the prior expectations of an experimenter limiting
the possible outcomes. In our scenarios, there is an emphasis on spatial lan-
guage; therefore, the extralinguistic context is essential for speakers’ choices
and their interpretations.

2.2 Procedure

We collected utterances by 23 German and 7 English native speakers, which
provides a useful basis for a qualitative language comparison. The approxi-
mate duration of the study was 30 minutes per participant.

The spoken language data were stored in video and audio files and subse-
quently transcribed into an xml format for annotation and analysis. About
12.600 German and 5.800 English words collected (2.100 & 800 speech units
or ‘utterances’).

2.3 Results

Given the present scenario, it could be expected that users adhere to a num-
ber of principles that they consider adequate for an automatic system: they
might be specifically precise and explicit, they might try to be especially
consistent, they might try to identify those items that might be relevant
for an autonomous wheelchair, and they might adopt a specifically formal
or otherwise peculiar kind of language as “computer talk”. In our data, it
turns out that neither of these expectations is met in any consistent manner.
Instead, we encounter a range of variability in the ways that speakers con-
ceptualize their task, and therefore choose systematically different strategies
to solve it. These are directly reflected in their linguistic choices. In the fol-
lowing, I present a qualitative linguistic analysis concerning the variability
in the linguistic descriptions with respect to choice of strategy, granularity
level, presuppositions, underspecification and vagueness, and spatial refer-
ence to locatum, relatum, and origin. Also, results of a qualitative language
comparison are presented.

With respect to strategy choice, a basic distinction can be identified
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that has already proved to be specifically stable across discourse tasks, also in
previous work within our research group (e.g., [3, 7]): a part of the utterances
describe entities (goals) and their positions, while others simply refer to the
path or direction how to get there. In the first task of the present scenario,
many speakers combine both strategies, as in:

(1) so I need to go right again (...) and I am going to go over to the
computer

The fact that a substantial amount of utterances? is direction-based
rather than goal-referring is astonishing, because our users were not asked
to describe their own movements. It therefore reflects something else, for
instance, a strategy towards achieving their aim: via knowledge about the
spatial movements and directions, the robot is supposed to be able to in-
fer the positions of objects and to establish spatial relationships. However,
this is a particularly difficult task for a robot to achieve, since spatial direc-
tions are notoriously vague and involve a high number of complexities with
respect to implementation. In the second task, users only employ the goal-
based strategy, which is reasonable because they are not moving throughout
this task. However, in the third task (describing the places in the hallway)
users are even more inclined than before to simply describe their movements,
such as:

(2) go slightly to my left, okay straight ahead, and then to my left

This may be due to the nature of this spatial task, which involves naviga-
tion within a hallway environment with a clear structure (unlike the previous
tasks which took place inside a room without pre-defined paths). Also the
route instructions in task 4 contain a high number of such “incremental”
instructions. Interestingly, many of these utterances do not refer to entities
at all, in spite of the fact that the general task scenario focused on infor-
mation conveyance about the locations of entities. Clearly, the contents of
the speakers’ utterances depend very much on their conceptualizations of
the task, especially with respect to what they think might be useful for the
interaction partner (in this case, the robot). While this phenomenon might
be specifically obvious where an unfamiliar interlocutor with unknown abili-
ties is involved, we consider this result as reflecting a more general discourse

2Numbers or relative frequencies presuppose a valid general and objective measure
against which a suitable comparison could be made, which is a non-trivial endeavour that
we are currently pursuing. For the moment, the qualitative insight should suffice that
speakers do use both strategies, and combined ones, rather frequently.
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factor which certainly comes into play — albeit in much more subtle ways
— in any kind of discourse context (e.g., [1]). In our framework, the main
challenge in this respect is to (subtly and unobtrusively) influence users’ con-
ceptualizations in such a way as to trigger suitable linguistic representations
(see below).

The second aspect of analysis concerns the levels of granularity re-
flected in the descriptions. Some users refer to objects by their basic level
class name and leave it at that, such as:

(3) bin jetz’ am Tisch, fahre jetz’ zum Sessel (I'm at the table now, now
driving to the armchair)

However, this coarse level of granularity was actually quite rare. Most
speakers conveyed information on a much more specific level of detail. Here
we can distinguish between two main foci: some users concentrate on percep-
tual or object-oriented, others on functional aspects. Functional utterances
often contain information with respect to what to do with the objects:

(4) when you feel like taking a break, you can relax, and watch TV

(5) there’s a plant on the table, and it’s important not to forget to water
it

(6) this is the dining table, this is also a very important part in a house
because this is where people get together to eat

Perceptual (object-oriented) utterances, on the other hand, describe the
objects in much detail. This might be the case either with respect to a single
object, as in:

(7) auf dem Tisch liegt eine lila Tischdecke, kariert lila weifl mit Streifen,
an den Seiten, mit Pflanzen blau und griin und pink
(on the table there’s a purple tablecloth, checkered purple white with
stripes at the sides, with plants blue and green and pink)

or with respect to descriptions of small items that happen to be present:

(8) there’s a ruler here on the table which is to the right hand side, and
there is a light and a staple, and some folders
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Generally, and again surprisingly, functional utterances prevail, in spite
of the fact that the wheelchair will probably not be able to utilize this kind
of information. With regard to this level of analysis, our conclusion is that
speakers attend to a high degree to the affordances and functions of the
objects about which information is to be conveyed. These must therefore
be taken into account in any model or system concerned with real world
scenarios involving natural objects.

With respect to the analysis of presuppositions, one finding is fairly
remarkable throughout the data. Speakers seldom introduce entities as new,
independent of whether they have been encountered before. Instead, they
switch freely between the true introduction of entities as in:

(9) there’s an armchair in front of me

and referring to them by definite articles as though they were already
known, as in:

(10) T want you to go to the remote control, which is lying on the table

which was uttered almost at the start of the study, without prior mention
of a table or remote control. This may reflect a general speaker tendency
to refer to present entities as known, or to make use of exophoric reference
(presupposing the recognition of present entities) if possible. However, in
our situation the actual task is to introduce a robot to the entities; even here,
speakers do not consistently express this linguistically. This lack of linguis-
tic signposting may be specifically problematic for a robot, as the robot’s
perceptual abilities and functionalities differ systematically from those of
the human. Therefore, the identification of present objects cannot be pre-
supposed in the same way as with humans.

Furthermore, utterances are both highly underspecified and vague.
This concerns mainly the spatial descriptions involved, which were a major
factor of the given discourse task. Many utterances do not contain a spatial
term at all, but simply point to the existence of an object, as in:

(11) there’s also a candle

The spatial terms that do occur are typically not precise, but simply give
a vague spatial direction, as in:

(12) to my left here there’s another computer
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This finding is in accord with some of our own earlier results which
point to the fact that speakers seldom modify spatial terms by precisifiers,
as long as there are no competing objects nearby that would fit the same
description [12]. However, since in the present task the users were expected
to inform the wheelchair about spatial positions, it could have been expected
that they provide more specific descriptions even in the absence of competing
objects. This was overwhelmingly not the case, except for a number of
utterances that contain metric information about estimated distances:

(13) separated by about twenty feet

and some attempts at providing more precise angles, for which there
is of course no guarantee concerning correctness, yielding hesitations and
self-corrections:

(14) sixty-five degrees is the coffee-table, no that’s like more like eighty,
eighty degrees seventy-five or eighty degrees to the right is the coffee-
table

In addition to vagueness, there is underspecification: most spatial terms
are relational and thus require a relatum, a different entity that serves as the
basis for a spatial description (such as “my” in “to my left”). This relatum
is often not provided on the linguistic surface, as in:

(15) the first computer on the left

Finally, we turn to the variability involved on the language surface,
which is specifically important for linguistic text type analyses as well as
the automatic processing of natural language utterances. Here, of course,
variability is already predicted by the range of variation with respect to
strategy and granularity levels as just described. In addition to that, even
one single speaker may switch freely between illocutionary acts and syntactic
constructions without any apparent reason, as exemplified in the following
sequence:

(16) T want to go over to the sofa (...) so go right (...) I want you to go
to the remote control (...) so I'm at the small table that’s the coffee
table (...) just to my left is the television (...) I need you to turn
round (...) if I need to to sit in the sofa (...) and there’s an armchair
in front of me, and it is just to the right of the coffee table
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Remarkably, this speaker switches between describing her own actions
and desires, instructing the robot (which can’t move autonomously), de-
scribing the scene, and describing hypothetical actions. All of these result
in different surface forms. They may reflect the speakers’ uncertainty as to
how to address a robotic wheelchair, although the task itself seemed to be
clear and was not often misunderstood by the participants.

A comparison between English and German language structures yields
interesting results with respect to the occurrence and syntactic distribution
of the three components of a projective spatial relationship; namely, locata,
relata, and origins. A locatum is the object the location of which is being
described, a relatum is another object in relation to which the locatum is
described, and an origin is the point of view taken for the spatial description
(see [14] for a systematic account). Although all projective terms (i.e., left,
right, front, back, and so forth) presuppose the existence of these three
elements, not all spatial descriptions contain all of them explicitly. Most
often, the origin (or perspective) is omitted, as it is taken for granted by the
speakers. This is not surprising in light of the fact that, in this scenario,
there is essentially only one perspective available, as the speaker shares the
view direction with the robot wheelchair they are sitting in. Altogether, the
perspective is mentioned explicitly 17 times in the German data, but only
twice throughout the English data. This result is consistent with results in
other settings in which German speakers also tended to mention perspective
more often than English speakers, and primarily so if there is a potential
conflict [13].

Furthermore, there is a notable difference in information structure be-
tween the two languages whenever the relatum is mentioned (which is not
always the case). In German, the relatum (which is assumed to be known
in the context and now serves as a point of departure for the new object
or location) is typically (in about 65% of cases) mentioned first, while the
newly introduced object (the locatum) appears at the end of the utterance
(as “news”). Examples for this structure are:

(17) sehe ich auf der linken Seite einen Kiihlschrank, auf dem Kiihlschrank
liegt ein kleines Héakeldeckchen
(on the left side I see a fridge, on the fridge lies a small doily)

(18) daneben ist ein Kiihlschrank, daneben ist ein Tisch, direkt daneben...
(beside it there’s a fridge, beside it there’s a table, directly beside it...)

This kind of structure has been suggested in the literature as a default
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strategy for spatial descriptions [5, p119]. Some speakers also use themselves
as locatum and the introduced objects as relatum:

(19) jetzt steh ich vor einem groflen Tisch
(now I am in front of a big table)

In English, in contrast, the locatum is mentioned first in about 75% of
cases. Thus, the focused (new) element comes first, followed by the descrip-
tion of its spatial relation — even if the relatum has just been mentioned.
An example is:

(20) the plant is to the right of the cookies; the computer is to the right of
the plant

From our data, we can therefore tentatively conclude that Herrmann &
Grabowski’s proposed default strategy may indeed be a prominent strat-
egy for Germans (in scenarios like the present one in which the strategy
is suitable), but not to the same degree for English speakers. It would be
interesting to follow this hypothesis up with more controlled experimental
studies or broader corpus investigations; to my knowledge, this has not been
done.

In general, the results of our study point to a broad range of systematic
variability in the language directed to a robot within the given scenario of a
map augmentation task. In order to enable successful verbal human-robot
interaction, the system needs to be designed to account for this variability.
This is not in all cases easy to achieve, since speakers’ utterances contain
a high number of complexities and underspecifications that are difficult to
handle for the system [11]. However, robotic output that is specifically tai-
lored on the basis of these results may induce users to modify their linguistic
choices in a way that could be better suited for their artificial interaction
partner. The results of our recent follow-up study indicate how this may be
achieved, which is briefly outlined next.

3 Experimental Study 11

3.1 Method

The same four tasks as in Study I were carried out, this time in a “Wizard-
of-Oz” scenario. In this by now well-established paradigm, a person hidden
behind a screen triggers pre-recorded robot utterances suitable for the sit-
uation, while the experimental participants are induced to believe that the
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robot responds autonomously. The idea behind this approach is that sys-
tem requirements and planned functionalities can be tested even before the
system is fully developed. Furthermore, speakers are influenced to a high
degree by robotic output, and they can therefore be influenced towards using
the kind of language that the robot will be able to understand. This process
works, for example, on the basis of interactive alignment mechanisms as de-
scribed by [8]. The specific aims of this follow-up study were therefore, on
the one hand, to investigate in how far the features of speakers’ spontaneous
language productions are influenced by the robotic output, and on the other
hand, to test the suitability of the Rolland’s pre-determined utterances to
influence the speakers’ choices in a useful way. An important goal here is
to reduce variability in speakers’ utterances while still refraining from pro-
viding the user with a list of possible commands, and to induce them to
use conceptual options that match the robotic system. Our earlier results
already proved that speakers change their conceptualizations, and therefore
their linguistic choices, based on the robot’s utterances, to the degree that
they can integrate this information suitably with their own conceptions [4].
Thus, there are limits to users’ adaptations; robotic output must therefore
be carefully controlled and tested.

3.2 Procedure

This time, the task was carried out within various conditions (mostly con-
cerning the participants mother tongue in relation to the language used in
the study) that will not be analysed in detail here. Participants were 17
German native speakers talking German, 11 English native speakers talking
English, 14 German native speakers talking English, and 8 German native
speakers talking English in a sub-condition in which the Rolland gave far
less information concerning the desired strategy choice and level of granu-
larity than in the other conditions. Here I consider only the native-speaker
data (17 German and 11 English speakers).

3.3 First Results

Here is a typical example dialogue, showing the very beginning of a user’s
interaction with the robot:

(21) ROBOT: you can take us now to a place you want to name.
USER: to the sofa, turning right moving straight ahead
ROBOT: where are we going to?
USER: we’re going to the sofa. We’re passing the table on our right
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Generally, as in this example, the goal-based strategy turned out to be
much more dominant than in Study I. Speakers included information about
movements, but only to supplement their goal-based utterances. Also, the
level of granularity was much more suitable for the robot. Many details
(functional or object-related) did not occur at all or were mentioned far less
frequently.

As in Study I, speakers again frequently treated new entities linguistically
as “Given”. The robotic output was not specifically tailored to change
this particular aspect of speakers’ choices. Also, spatial descriptions are
still vague and partly underspecified. In this respect, the robot’s questions
sometimes triggered spatial descriptions when none had been given earlier, or
even a re-adjustment of the actual positioning with respect to the described
object:

(22) ROBOT: am I in front of it?
USER: almost [4 seconds pause with movement] yes

In subsequent utterances, speakers in some cases re-used the kind of
spatial description that had been asked for:

(23) ROBOT: am I in front of it?
USER: yes
ROBOT: oh okay, I see which object you mean.
USER: and now the couch, now I'm in front of it

In phase 4, the robot asked clarification questions if utterances were
underspecified. As expected, this led to improved clarity, as in the following;:

(24) USER: turn left, follow the hallway and then take another left
ROBOT: Is this the first possibility to turn?
USER: yes. Then continue left continue down that hallway
ROBOT: Up to which point do I go straight?
USER: you go straight until the last room on the left side

Especially in phase 1, the speech act variability is greatly reduced. This
seems to indicate that speakers are no longer uncertain to the same degree
as in Study I in addressing the robot, since they get feedback. This time,
the syntax of users’ utterances is often reduced to sparse constructions:

(25) ROBOT: where are we going to?
USER: table
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Further analyses of this study, specifically with respect to the dialogue
flow in relation to the robot utterances, are published in [15]. Also, this
study is still under analysis with respect to a range of details that will
be published elsewhere. However, these first results already indicate that
the robot’s utterances have a great impact on the users’ linguistic choices,
concerning the more limited range of variability as well as the decisively
increased proportion of utterances that match suitably with the robot’s as-
sumed knowledge.

4 Conclusion

I have presented a qualitative linguistic analysis of one experimental study in
monologic HRI together with first results of a follow-up study involving dia-
logue. Results show that there is a broad variability of possible choices and
strategies available to speakers, which can be reduced decisively by suitable
robotic output. Another interesting result is a systematic difference between
the German and English data with respect to the information structure in
spatial descriptions (in Study 1): German speakers tend to begin with known
objects, while English speakers start with the newly introduced entity.

The development of a dialogue system that incorporates our results is
underway [10]. Also within our project group, empirical HRI investigations
with a real system rather than Wizard-of-Oz are carried out (e.g., [7]). These
incorporate detailed knowledge about spatial language usage and resolution
of underspecified spatial reference. Technologically, the crucial point is to
enable the robot to map linguistic and perceptual information with its in-
ternal knowledge. The contribution of linguistic analysis to this endeavour
is based on the fact that intelligent HRI dialogue can solve many upcoming
problems. Suitable clarification questions and triggers of the desired kind of
language systematically help to meet the robot’s requirements, if sufficient
knowledge about speakers’ spontaneous choices and typical reactions can be
built on.
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Abstract

Talking to robots is an upcoming research field where one of the
biggest challenges are misunderstandings and problematic situations:
Dialogues are error-prone and errors and misunderstandings often re-
sult in error spirals from which the user can hardly escape. Therefore,
mechanisms for error avoidance and error recovery are essential. By
means of a data-driven analysis, we evaluated the reasons for errors
within different testing conditions in human-robot communication and
classified all the errors according to their causes. For the main types
of errors, we implemented mechanisms to avoid them. In addition, we
developed an error correction detection module which helps the user
to correct problems. Therefore, we are developing a new generation
strategy which includes detecting problematic situations, helping the
user and avoiding giving the same information to the user several times.
Furthermore, we evaluate the influence of the user strategy on the com-
municative success and on the occurrence of errors within human-robot
communication. In this way, we can increase user satisfaction and have
more successful dialogues within human-robot communication.

1 Introduction

We developed a household robot which helps users in the kitchen [9]. It
can get something from somewhere, set the table, switch on or off lamps
or air conditioners, put something somewhere, tell the user what is in the
fridge, tell some recipes, etc. The user can interact with the robot in natural
language and tell it what to do. A first semantico-syntactic grammar has
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been developed and we now enhance this dialogue grammar by means of
user tests and data collections.

Since the real robot consists of many different components, such as the
speech recognizer, the gesture recognizer, the dialogue manager, the motion
component, etc., we decided to restrict the user tests for the beginning to
the dialogue management component. This means that we do not use a real
robot to accomplish the tasks, but only a text-based interface where the
dialogue manager informs the user what the robot is doing. In this way,
we can skip problems resulting from other components and can focus on
understanding and dialogue problems. We are aware of the fact that the
findings cannot be directly applied to spoken communication with the real
robot. However, this text-based paradigm was used for a first systematic
investigation and is transferred to spoken robot communication in future
studies.

In this paper, we discuss two methods how to improve human-robot
communication: By analysing human-robot dialogues and avoiding the most
important problems and on the other hand by changing the communicative
strategy of the user. The second section deals with related work. Section
three explains our household robot, the dialogue system and its particular
characteristics. The fourth section is about user tests within different testing
conditions which results in an error classification. Section five addresses the
question whether communicative strategies affect the human-robot commu-
nication both in the subjective evaluation by the users and in the objectively
measurable task success. Section six gives a conclusion and an outlook on
future work.

2 Related Work

2.1 Errors in Man-Machine Dialogues

Most of the research about errors within man-machine dialogues deal with
speech recognition errors: Some researchers evaluate methods for dialogue
state adaptation to the language model to improve speech recognition [21,
11]. Work on hyperarticulation concludes that speakers change the way they
are speaking when facing errors in principle so that the language model has
to be adapted [19, 12]. Also Choularton et al. and also Stifelman are looking
for general strategies on error recognition and repair to prepare the speech
recognizer for the special needs of error communication [4, 19].
Furthermore, Schegloff et al. came up with a model which describes
the mechanisms the dialogue partners use to handle errors in human-human
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dialogue [17]. Also, within conversation analysis dialogues are evaluated
concerning the rules and procedures how an interaction takes place [16].
These insights from human-human communication are essential for a natural
human-robot communication.

However, the present study concentrates on semantic errors and classify
them according to their reasons. For every error class, we develop methods
to avoid it. Furthermore, we examine repair dialogues and their similarity to
human-human repair dialogues in order to be able to perform efficient error
handling strategies so that it will be easier for the user to correct errors
which could not be avoided.

2.2 Effects of the User Strategy on Dialogue Success

In the field of humanoid robots and human-robot interaction the researchers
concentrate on questions such as how to design the robot as similar as possi-
ble to a human regarding its outer appearance as well as its communicative
behaviour [2, 1, 5]. In contrast, the present study concentrates on the human
user and his communication strategies. This in turn would shape the expec-
tations on how the dialogue should work and how errors could be avoided
by another user strategy.

Furthermore, different evaluation methodologies of dialogue systems ex-
ist, starting from methodologies using the notion of a reference answer [13]
to the most prominent approach for dialogue system evaluation which is
Paradise [20] which uses a general performance function covering different
measures such as user performance, number of turns, task success, repair
ratio, etc. In the present study, objective measures were calculated from the
participants’ responses and success measures were assessed after each block
in form of a questionnaire in order to get a deeper insight in the relationship
between subjective and objective measures of success.

3 Owur Household Robot

3.1 The Dialogue Manager

For dialogue management we use the TAPAS dialogue tools collection [14]
which is based on the approaches of the language and domain independent
dialogue manager ARIADNE [6]. This dialogue manager is specifically tai-
lored for rapid prototyping. Possibilities to evaluate the dialogue state and
general input and output mechanisms are already implemented which are
applied in our application. We developed the domain and language depen-
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Figure 1: Our Household Robot

dent components, such as an ontology, a specification of the dialogue goals,
a data base, a context-free grammar and generation templates.

The dialogue manager uses typed feature structures [3] to represent se-
mantic input and discourse information. At first, the user utterance is parsed
by means of a context-free grammar which is enhanced by information from
the ontology defining all the objects, tasks and properties about which the
user can talk. In our scenario, this ontology consists of all the objects avail-
able in the kitchen and their properties and all the actions the robot can do.
The parse tree is then converted into a semantic representation and added to
the current discourse. If all the necessary information to accomplish a goal
is available in discourse, the dialogue system calls the corresponding service.
But if some information is still missing, the dialogue manager generates
clarification questions to the user. This is realized by means of generation
templates which are responsible for generating spoken output.

3.2 Rapid prototype

We developed a rapid prototype system. This system includes about 32 tasks
the robot can accomplish and more than 100 ontology concepts. Ontology
concepts can be objects, actions or properties of these objects or actions.
By means of this prototype we started user tests and continue to develop
new versions of the grammar and domain model. The rapid prototype of
our dialogue component is integrated in the robot (cf. figure 1) and also
accessible via the internet for the web-based tests (cf. figure 2).
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Human-Robot-Communication in the Kitchen

You Good morning

Robbi Hello! My name is Eobbie. I am a little robot who can help you in the
lritchen. What do you want me to do?

You make me a cup of tea

Robbi Do you want millc?

Talk with me:

no thanksl

Sendl

Figure 2: The web-based Interface of our Humanoid Robot

4 Analysis of Human-Robot Dialogues

4.1 Different Testing Conditions

As mentioned by Dybkjaer and Bernsen [7], predefined tasks covered in a
user test will not necessarily be representative of the tasks real users would
expect a system to cover. In addition, scenarios in user tests should not
prime users on how to interact with the system which can only be avoided
in a user test without predefined tasks or in a general user questionnaire.
On the other hand, such a free exploration is much more complicated for
the user and can be very frustrating, if the system does not understand the
user intention. Therefore, we rely on two different testing conditions:

User tests with predefined tasks: Every user got five predefined tasks to
accomplish by means of the robot. Since the tasks are given, it is
easier for the user, but we do not get any information on the tasks a
user really needs a robot for.

User tests without predefined tasks: The users were just told that they
bought a new household robot which can support them in the house-
hold. They can freely explore and interact with the robot. This situa-
tion is much more realistic, but at the some time much harder for the
user because he does not know what the robot can do in detail.
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Robot | Web-based
With Tasks 22.57% | 49.94%
Without Tasks | 57.03% | 50.93%

Table 1: Turn Error Rates Within Different Testing Conditions.

In addition, we had two different testing conditions: Web-based user
tests (see Figure 2) which have the advantage that lots of users all over the
world can participate whenever they like to [18, 15] and also multimodal
user tests with the robot (see Figure 1) to see how the user can get along
with the real robot. The tests with the web-interface are of course different
from the ones with the real robot, but within the web tests we can also use
more dialogue capabilities concerning tasks the robot cannot accomplish
until now.

4.2 Experimental Details and Results

We defined all the user turns which could not be transformed to the correct
semantics by the dialogue system as errors so that the turn error rate gives
the rate of error turns on the whole number of user turns. As expected, the
turn error rate for tests with tasks is lower than without tasks (cf. Table 1)
given the fact that the user has less clues what to say. Especially the tests
with predefined tasks with the robot results in much less errors which might
be due to the fact that these tasks were easier than in the web-based test
and that the users could watch the robot interacting.

Nevertheless, within all the testing conditions, we can find the same error
classes according to the following reasons for failure:

e New Syntactic and Semantic Concepts: New Formulations, New
Objects, New Goals, Metacommunication

e Ellipsis & Anaphora: Elliptical Utterances, Anaphora, Missing
Context

e Concatenated Utterances

e Input Problems: Punctuation & Digits, Background Noise, Gram-
matically Wrong Utterances

In addition, the rates for the error classes are very similar so that most of
the errors can be found in the area of new syntactic and semantic concepts,
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secondmost errors are input errors, thirdmost ellipsis and the fewest errors
belong to the class of concatenated utterances.

Since the manual integration of new concepts is very time and cost-
intensive, we developed a mechanism for dynamic vocabulary extension with
data from the internet [10]. In addition, we implemented mechanisms to
deal with ellipsis and anaphora [8] and handle complex user utterances. To
resolve metacommunication, we grouped all the user utterances dealing with
metacommunication according to the user intention:

e Clarification Questions from the user: The user wants to know,
whether the robot understood him, what the robot is doing, etc.

e Repair of a user utterance: The user corrects the preceding utterance
of the robot explicitly or implicitly.

e Test of the Robot: The user tests the abilities of the robot by giving
instructions for tasks the robot can probably not accomplish; also
insults are in this category.

Clarification questions from the user and tests of the robot indicate that
the user does not know what the robot can do, has no idea on how to go on
and what to say. Therefore, we implemented communication strategies so
that the robot explains its capabilities to the users and help them in the case
of problems. Different factors can indicate communication problems, such as
that the user utterance is inconsistent with the current discourse, it cannot
be completely parsed, it does not meet the system expectations, the user
says the same utterance several times. These factors leads to an increase
in error correction necessity and let the robot finally initiate a clarification
dialog to help the user.

5 Influence of the User Strategy on the Commu-
nicative Success
5.1 Experimental Details

To evaluate the influence of the user strategy on the communicative success
and the occurrence of errors, we conducted a web-based experiment with
two different instructions for each participant:

e 7Child instruction”: The users were asked to talk to the robot in the
same way as they would do to a little child.
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e "Non-child instruction”: The users got no detailed instruction on how
to talk to the robot.

Each participant got predefined tasks. During the user interaction with the
system, we measured the objective success per user by means of the turn
error rate, the number of successfully accomplished tasks and the number
of user turns necessary to accomplish resp. abort a task. After the partici-
pants had finished the task set under each instruction, they filled in a short
user questionnaire about their general impression of the system and their
experience during the experiment.

5.2 Results and Discussion

The effects of the instruction child vs. non-child are reflected in both qual-
itative and quantitative measures. Within quantitative measures, the in-
struction affected above all the mean utterance length, ie. number of words
per user utterance. Participants had a numerically lower mean utterance
length with instruction child (mean = 5.02) as compared to the non-child
instruction (mean = 5.64). Interestingly, the effect of smaller mean utter-
ance lengths in the child instruction occurs predominantly when the child
instruction is given in the second block (the modulatory effect of the order
of the instruction was marginally significant, p = .053). This might be due
to the fact that participants who got the child instruction in the first block
continued with this strategy also in the second block, irrespective of the
instruction. This fact is also reported by some participants in the post-test
questionnaires. Also within qualitative measures, about half of the partici-
pants reported to use short, simple sentences within the child instruction.

Pairwise comparisons were performed for possible effects of the instruc-
tion on subjective or objective measures of communicative success. For
all variables, the effects of the instruction were non-significant, although
we found a tendency towards more user satisfaction in the child instruction.
This might be due to the fact that the present instructions were given rather
implicitly and left some space for individual interpretations.

As expected, when comparing subjective and objective measures, a sig-
nificant correlation was observed for the subjective measure ”willingness to
use the system again” and the objective measure ”overall number of accom-
plished tasks” (p-value smaller than .05). Even though all other correlations
did not reach significance, the numerical tendencies imply that the more
tasks are accomplished, the higher the ratings are for subjective variables.

Findings from analyses of the user answers in free text also suggest that
we have a rather strong influence of the participants’ general attitude to-
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wards robots which has a more dominant effect on the task success than the
instruction. Since the conversation style of the user seems to be affected
to a larger extent by the general attitude, future studies might address the
question, how a dialogue system has to be designed to find out different
user attitudes, support them and their different characteristics to improve
the communication and avoid errors.

6 Conclusion and Outlook

We used a date-driven method to evaluate the reasons for errors in human-
robot communication and implemented the following strategies to avoid resp.
deal with them:

e dynamic extension of linguistic resources

e anaphora resolution

e handling complex as well as elliptical utterances
e meta communication

We evaluated the influence of the user strategy on the communicative
success and found out that even though the user strategy had qualitative
and quantitative effects on the communicative behavior, it was not system-
atically related to the communicative success in objective and subjective
measures. However, the general attitude of the user towards robots has a
more dominant effect on the task success than the instructed user strategy.

Future studies could further address the question, whether these findings
are also true for extended grammars and tests with the real robot instead
of the web interface.
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Abstract

If no specific precautions are taken, people talking to a computer
can — the same way as while talking to another human — speak aside,
either to themselves or to another person. On the one hand, the com-
puter should notice and process such utterances in a special way; on the
other hand, such utterances provide us with unique data to contrast
these two registers: talking vs. not talking to a computer. By that, we
can get more insight into the register ‘Computer-Talk’. In this paper,
we present two different databases, SmartKom and SmartWeb, and
classify and analyse On-Talk (addressing the computer) vs. Off-Talk
(addressing someone else) found in these two databases.

Enter Guildenstern and Rosencrantz. [...]

Guildenstern My honoured lord!

Rosencrantz My most dear lord! [...]

Hamlet [...] You were sent for [...]

Rosencrantz To what end, my lord?

Hamlet That you must teach me |[.../

Rosencrantz [Aside to Guildenstern] What say you?

Hamlet [Aside] Nay then, I have an eye of you! [Aloud.] If you love me, hold not off.

Guildenstern My lord, we were sent for.

1 Introduction

As often, Shakespeare provides good examples to quote: in the passage from
Hamlet above, we find two ¢Asides’, one for speaking aside to a third person
and by that, not addressing the dialogue partners; the other one for speaking
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to oneself. Implicitly we learn that such asides are produced with a lower
voice because when Hamlet addresses Guildenstern and Rosencrantz again,
the stage direction reads Aloud.

Nowadays, the dialogue partner does not need to be a human being but
can be an automatic dialogue system as well. The more elaborate such a
system is, the less restricted is the behaviour of the users. In the early
days, the users were confined to a very restricted vocabulary (prompted
numbers etc.). In conversations with more elaborated automatic dialogue
systems, users behave more natural; thus, phenomena such as speaking aside
can be observed and have to be coped with that could not be observed
in communications with very simple dialogue systems. In most cases, the
system should not react to these utterances, or it should process them in
a special way, for instance, on a meta level, as remarks about the (mal-)
functioning of the system, and not on an object level, as communication
with the system.

In this paper, we deal with this phenomenon Speaking Aside which
we want to call ‘Off-Talk’ following [15]. There Off-Talk is defined as
comprising ‘every utterance that is not directed to the system as a question,
a feedback utterance or as an instruction’. This comprises reading aloud
from the display, speaking to oneself (‘thinking aloud’), speaking aside to
other people which are present, etc.; another term used in the literature is
‘Private Speech’ [14]. The default register for interaction with computers is,
in analogy, called ‘On-Talk’. On-Talk is practically the same as Computer
Talk [9]. However, whereas in the case of other (speech) registers such
as ‘baby-talk’ the focus of interest is on the way how it is produced, i.e.
its phonetics, in the case of Computer Talk, the focus of interest so far
has rather been on what has been produced, i.e. its linguistics (syntax,
semantics, pragmatics).

Off-Talk as a special dialogue act has not yet been the object of much
investigation [1, 8] most likely because it could not be observed in human—
human communication. (In a normal human-human dialogue setting, Off-
Talk might really be rather self-contradictory, because of the ‘Impossibility
of Not Communicating’ [21]. We can, however, easily imagine the use of Off-
Talk if someone is speaking in a low voice not to but about a third person
present who is very hard of hearing.)

For automatic dialogue systems, a good classification performance is
most important; the way how to achieve this could be treated as a black-box.
In the present paper, however, we report classification results as well but
want to focus on the prosody of On- vs. Off-Talk. To learn more about the
phonetics of Computer-Talk, On-Talks vs. Off-Talk is a unique constellation



because all other things are kept equal: the scenario, the speaker, the system,
the microphone, etc. Thus we can be sure that any difference we find can
be traced back to this very difference in speech registers — to talk or not to
talk with a computer — and not to some other intervening factor.

In section 2 we present the two systems SmartKom and SmartWeb and
the resp. databases where Off-Talk could be observed and/or has been
provoked. Section 3 describes the prosodic and part-of-speech features that
we extracted and used for classification and interpretation. In section 4,
classification results and an interpretation of a principal component analysis
are presented, followed by section 5 which discusses classification results, and
by section 6 which discusses impact of single features for all databases.

2 Systems

2.1 The SmartKom System

SmartKom is a multi-modal dialogue system which combines speech with
gesture and facial expression. The speech data investigated in this pa-
per are obtained in large-scaled Wizard-of-Oz-experiments [10] within the
SmartKom ‘public’ scenario: in a multi-modal communication telephone
booth, the users can get information on specific points of interest, as, e.g.,
hotels, restaurants, cinemas. The user delegates a task, for instance, find-
ing a film, a cinema, and reserving the tickets, to a virtual agent which is
visible on the graphical display. This agent is called ‘Smartakus’ or ‘Al-
addin’. The user gets the necessary information via synthesized speech pro-
duced by the agent, and on the graphical display, via presentations of lists
of hotels, restaurants, cinemas, etc., and maps of the inner city, etc. The
dialogue between the system and the user is recorded with several micro-
phones and digital cameras. Subsequently, annotations are carried out. The
recorded speech represents thus a special variety of non—prompted, sponta-
neous speech typical for human—machine-communication in general and for
such a multi-modal setting in particular. More details on the system can
be found in [20], more details on the recordings and annotations in [15, 17].

In the annotation, two different types of Off-Talk are labelled: read
Off-Talk ROT and other Off-Talk OOT; every other word is via default
annotated with the label NOT as no Off-Tulk, i.e. On-Talk. If the user
reads aloud words presented on the display, this is labelled as ROT; it was
decided not to tell apart all other types of Off-Talk, e.g., speaking aside to
another person or speaking to oneself, because these decisions are often not
easy to make. Moreover, such a detailed labelling system would end up with



a small number of tokens for each sub-type which anyhow had to be mapped
onto higher classes in order to process them automatically.

In the following example, a user wants to reserve two tickets for the cin-
ema,; first, the German original is presented, then an English translation.
In the German example, <P> denotes pauses, +/ and /+, respectively, be-
ginning and end of a repair, and <hm> a filled pause. Off-Talk is labelled
adjacent to the pertinent word, without blanks. Most of the annotated
phenomena are, however, filtered out of the German example; the English
translation contains only the wording; here, ROT is given in capitals, and
OOT boldface and recte.

system: in diesem Kino kénnen Sie nur telefonisch reservieren

user: kannst du mich dahin verbinden <P> Aladdin

system: diese Funktion ist momentan leider nicht verfiigbar <P> kann ich Ihnen auch
anders helfen

user: <hm> <P> das<OOT> is’<OOT> doof<OOT> <hm> <P> <A> geh doch
noch mal zurick <P> Aladdin <P> zurickgehen

system: einen Augenblick bitte

user: ja <P> +/wie sieht d=/+ wie sieht das aus mit dem Kino Schloss <P>
dreiundzwanzig finfundvierzig <P> zwei Karten Aladdin <P> hoffentlich< OOT> nich’
<O0O0T> wieder<OOT> telefonisch< OOT> doch< OOT>

system: in diesem Kino konnen Sie nur telefonisch reservieren

user: <hm> das<OOT> is’<O0T> natirlich< OOT> auch<OOT> doof<OOT>
< P> gibt es noch eine andere Mdoglichkeit <P> sicher< OO T> nicht< OOT> < P> zuriick
system: Reservierungen konnen nur im Kino StudioFEuropa durchgefihrt werden

user: aha na dann <P> gib mir doch mal das <P> Kino Furopa <P> Kino Europa ah
das sieht doch schon gut aus gut dann nehmen wir mal <P> <hm> <P> AmericanHis-
toryX zwoundzwanzig finfundvierzig <P> aha<OOT> Reservierung< ROT> bestdtigen
<ROT> da<OOT> kommen<OOT> wir< OOT> doch< OOT>

schon< OOT> der<OOT> Sache<OOT> niher<OOT>

system: For this cinema, only reservation by phone is possible.

user: Can you connect me, Aladdin?

system: I'm afraid, at the moment, this is not possible.

user: That’s bad - well — please go back, Aladdin — go back!

system: One moment please!

user: Well, what about, what about the Castle Cinema, 10.45 pm, Armageddon — two
tickets, Aladdin — I hope it’s not again reservation by phone.

system: For this cinema, only reservation by phone is available.

user: Again, that’s bad. Is there another possibility? 1 guess not! Go back!



Table 1: Cross-tabulation of On-/Off-Talk vs. On-/Off-View

On-View Off-View
NOT On-Focus, Interaction (unusual)
(On-Talk) with the system
ROT Reading from the display —
POT (unusual) Reporting results from
SmartWeb
SOT Responding to an Responding to an
interruption interruption

system: Reservations are only possible for the Studio Furope.

user: Well, okay, Studio Europe, Studio Europe, that’s fine, well, then let’s take — uh —
AmericanHistory, 10.45 pm, okay, CONFIRM RESERVATION, now we are com-
ing to the point.

At least in this specific scenario, ROT is fairly easy to annotate: the
labeller knows what is given on the display, and knows the dialogue history.
OOT, however, as a sort of wast-paper-basket category for all other types
of Off-Talk, is more problematic; for a discussion we want to refer to [17].
Note, however, that the labellers listened to the dialogues while annotating;
thus, they could use acoustic information, e.g., whether some words are
spoken in a very low voice or not. This is of course not possible if only the
transliteration is available.

2.2 The SmartWeb System

In the SmartWeb-Project [19] — the follow-on project of SmartKom — a mo-
bile and multimodal user interface to the Semantic Web is being developed.
The user can ask open-domain questions to the system, no matter where he
is: carrying a smartphone, he addresses the system via UMTS or WLAN
using speech [16]. The idea is, as in the case of SmartKom, to classify au-
tomatically whether speech is addressed to the system or e.g. to a human
dialogue partner or to the user himself. Thus, the system can do with-
out any push-to-talk button and, nevertheless, the dialogue manager will
not get confused. To classify the user’s focus of attention, we take advan-
tage of two modalities: speech-input from a close-talk microphone and the



video stream from the front camera of the mobile phone are analyzed on
the server. In the video stream we classify On-View when the user looks
into the camera. This is reasonable, since the user will look onto the display
of the smartphone while interacting with the system, because he receives
visual feedback, like the n-best results, maps and pictures, or even web-cam
streams showing the object of interest. Off-View means, that the user does
not look at the display at all'. In this paper, we concentrate on On-Talk vs.
Off-Talk; preliminary results for On-View vs. Off-View can be found in [11].

For the SmartWeb-Project two databases containing questions in the
context of a visit to a Football World Cup stadium in 2006 have been
recorded. Different categories of Off-Talk were evoked (in the SWgpont
database?) or acted (in our SWoeeq recordings®). Besides Read Off-Talk
(ROT), where the subjects read some system response from the display,
the following categories of Off-Talk are discriminated: Paraphrasing Off-
Talk ((POT) means, that the subjects report to someone else what they
have found out from their request to the system, and Spontaneous Off-Talk
((SOT) can occur, when they are interrupted by someone else. We expect
ROT to occur simultaneously with On-View and POT with Off-View. Table
1 displays a cross-tabulation of possible combinations of On-/Off-Talk with
On-/Off-View.

In the following example, only the user turns are given. The user first
asks for the next play of the Argentinian team; then she paraphrases the
wrong answer to her partner (POT) and tells him that this is not her fault
(SOT). The next system answer is correct and she reads it aloud from the
screen (ROT). In the German example, Off-Talk is again labelled adjacent to
the pertinent word, without blanks. The English translation contains only
the wording; here, POT is given boldface and in italic, ROT in capitals, and
SOT boldface and recte.

user: wann ist das ndchste Spiel der argentinischen Mannschaft
user: nein <dhm> die<POT> haben<POT> mich<POT> jetzt< POT> nur<POT>

'In [12] On-Talk and On-View are analyzed for a Human-Human-Robot scenario. Here,
face detection is based on the analysis of the skin-color; to classify the speech signal,
different linguistic features are investigated. The assumption is that commands directed
to a robot are shorter, contain more often imperatives or the word “robot”, have a lower
perplexity and are easy to parse with a simple grammar. However, the discrimination
of On-/Off-Talk becomes more difficult in an automatic dialogue system, since speech
recognition is not solely based on commands.

2designed and recorded at the Institute of Phonetics and Speech Communication,
Ludwig-Maximilians-University, Munich

3designed and recorded at our Institute



Table 2: Three databases, words per category in %: On-Talk (NOT), read
(ROT), paraphrasing (POT), spontaneous (SOT) and other Off-Talk (OOT)

# Speakers | NOT ROT POT SOT OOT [%]
SWapont 28 48.8 13.1 21.0 17.1 -
SWcted 17 33.3 23.7 - - 43.0
SKspont 92 93.9 1.8 - - 4.3

dariber< POT> informiert< POT> wo<POT> der<POT> ndchste< POT>
Tazistand< POT> ist<POT> und<OOT> nicht<POT> ja<SOT> ja<SOT>
ich<SOT> kann<SOT> auch<SOT> nichts<SOT> dafir<SOT>

user: bis wann fahren denn nachts die offentlichen Verkehrsmittel

user: die<ROT> reguliren< ROT> Linien< ROT> fahren< ROT> bis< ROT>
2wei< ROT> und<ROT> danach<ROT> verkehren< ROT> Nachtlinien< ROT>

user: When is the next play of the Argentinian team?

user: no uhm they only told me where the next taxi stand is and not — well ok
— it’s not my fault

user: Until which time is the public transport running?

user: THE REGULAR LINES ARE RUNNING UNTIL 2 AM AND THEN,
NIGHT LINES ARE RUNNING.

2.3 Databases

All SmartWeb data has been recorded with a close-talk microphone and
8kHz sampling rate. Recordings of the SWgpont data took place in situ-
ations that were as realistic as possible. No instruction regarding Off-Talk
were given. The user was carrying a mobile phone and was interrupted by
a second person. This way, a large amount of Off-Talk could be evoked.
Simultaneously, video has been recorded with the front camera of the mo-
bile phone. Up to now, data of 28 from 100 speakers (0.8 hrs. of speech)
has been annotated with NOT (default), ROT, POT, SOT and OOT. OOT
has been mapped onto SOT later on. This data consists of 2541 words; the
distribution of On-/Off-Talk is given in Table 2. The vocabulary of this part
of the database contains 750 different words.

We additionally recorded acted data (SWcted, 1.7 hrs.) to investigate
which classification rates can be achieved and to show the differences to
realistic data. Here, the classes POT and SOT are not discriminated and
combined in Other Off-Talk (OOT, cf. SK¢pont). First, we investigated the



SmartKom data, that have been recorded with a directional microphone:
Off-Talk was uttered with lower voice and durations were longer for read
speech. We further expect that in SmartWeb nobody using a head-set to
address the automatic dialogue would intentionally confuse the system with
loud Off-Talk. These considerations result in the following setup: The 17
speakers sat in front of a computer. All Off-Talk had to be articulated with
lower voice and, additionally, ROT had to be read more slowly. Further-
more, each sentence could be read in advance so that some kind of “spon-
taneous” articulation was possible, whereas the ROT sentences were indeed
read utterances. The vocabulary contains 361 different types. 2321 words
are On-Talk, 1651 ROT, 2994 OOT (Table 2).

In the SmartKom (SKspont) database?, 4 hrs. of speech (19416 words)
have been collected from 92 speakers. Since the subjects were alone, no
POT occurred: OOT is basically “talking to oneself” [7]. The proportion of
Off-Talk is small (Table 2). The 16kHz data from a directional microphone
was downsampled to 8kHz for the experiments in section 5.

3 Features used

The most plausible domain for On-Talk vs. Off-Talk is a unit between
the word and the utterance level, such as clauses or phrases. In the present
paper, we confine our analysis to the word level to be able to map words
onto the most appropriate semantic units later on. However, we do not use
any deep syntactic and semantic procedures, but only prosodic information
and a rather shallow analysis with (sequences of) word classes, i.e. part-of-
speech information.

The spoken word sequence which is obtained from the speech recognizer
is only required for the time alignment and for a normalization of energy
and duration based on the underlying phonemes. In this paper, we use the
transcription of the data assuming a recognizer with 100 % accuracy.

It is still an open question which prosodic features are relevant for differ-
ent classification problems, and how the different features are interrelated.
We try therefore to be as exhaustive as possible, and we use a highly redun-
dant feature set leaving it to the statistical classifier to find out the relevant
features and the optimal weighting of them. For the computation of the
prosodic features, a fixed reference point has to be chosen. We decided in
favor of the end of a word because the word is a well-defined unit in word

4designed and recorded at the Institute of Phonetics and Speech Communication,
Ludwig-Maximilians-University, Munich



Table 3: 100 prosodic and 30 POS features and their context

context size

2|-1]0 ] 1] 2
95 prosodic features:
DurTauLoc; EnTauLoc; FOMeanGlob °
Dur: Norm,Abs,AbsSyl o | o
En: RegCoeff, MseReg,Norm,Abs,Mean,Max,MaxPos o | o
F0: RegCoeff,MseReg,Mean,Max,MaxPos,Min,MinPos o | o
Pause-before, PauseFill-before; FO: Off,Offpos o | o
Pause-after, PauseFill-after; FO: On,Onpos o | o
Dur: Norm,Abs,AbsSyl ° °
En: RegCoeff,MseReg,Norm,Abs,Mean ° °
F0: RegCoeff,MseReg . °
FO: RegCoeff,MseReg; En: RegCoeff,MseReg; Dur: Norm °
5 more in the set with 100 features:
Jitter: Mean, Sigma; Shimmer: Mean, Sigma; °
RateOfSpeech °
30 POS-features:
API,LAPN,AUX,NOUN,PAJ,VERB ‘ ° ‘ ° ‘ ° ‘ . ‘ .

recognition, and because this point can be more easily defined than, for
example, the middle of the syllable nucleus in word accent position. Many
relevant prosodic features are extracted from different context windows with
the size of two words before, that is, contexts -2 and -1, and two words after,
i.e. contexts 1 and 2 in Table 3, around the current word, namely context 0
in Table 3; by that, we use so to speak a ‘prosodic 5-gram’. A full account
of the strategy for the feature selection is beyond the scope of this paper;
details and further references are given in [2]. Table 3 shows the 95 prosodic
features used in section 4 and their context; in the experiments described in
section 5, we used five additional features: global mean and sigma for jit-
ter and shimmer (JitterMean, JitterSigma, ShimmerMean, ShimmerSigma),
and another global tempo feature (RateOfSpeech). The six POS features
with their context sum up to 30. The mean values DurTauLoc, EnTaulLoc,
and FOMeanGlob are computed for a window of 15 words (or less, if the




utterance is shorter); thus they are identical for each word in the context of
five words, and only context 0 is necessary. Note that these features do not
necessarily represent the optimal feature set; this could only be obtained by
reducing a much larger set to those features which prove to be relevant for
the actual task, but in our experience, the effort needed to find the optimal
set normally does not pay off in terms of classification performance [3, 4].
A detailed overview of prosodic features is given in [5]. The abbreviations
of the 95 features can be explained as follows:

duration features ‘Dur’: absolute (Abs) and normalized (Norm); the nor-
malization is described in [2]; the global value DurTauLoc is used to
scale the mean duration values, absolute duration divided by number
of syllables AbsSyl represents another sort of normalization;

energy features ‘En’: regression coefficient (RegCoeff) with its mean square
error (MseReg); mean (Mean), maximum (Max) with its position on
the time axis (MaxPos), absolute (Abs) and normalized (Norm) val-
ues; the normalization is described in [2]; the global value EnTauLoc
is used to scale the mean energy values, absolute energy divided by
number of syllables AbsSyl represents another sort of normalization;

FO features ‘FO’: regression coefficient (RegCoeff) with its mean square
error (MseReg); mean (Mean), maximum (Max), minimum (Min), on-
set (On), and offset (Off) values as well as the position of Max (Max-
Pos), Min (MinPos), On (OnPos), and Off (OffPos) on the time axis;
all FO features are logarithmised and normalised as to the mean value
FOMeanGlob;

length of pauses ‘Pause’: silent pause before (Pause-before) and after
(Pause-after), and filled pause before (PauseFill-before) and after (Pause-
Fill-after).

A Part of Speech (POS) flag is assigned to each word in the lexicon,
cf. [6]. Six cover classes are used: AUX (auxiliaries), PAJ (particles, arti-
cles, and interjections), VERB (verbs), APN (adjectives and participles, not
inflected), API (adjectives and participles, inflected), and NOUN (nouns,
proper nouns). For the context of +/- two words, this sums up to 6x5, i.e.,
30 POS features, cf. the last line in Table 3.



4 Preliminary Experiments with a Subset of the
SmartKom Data

The material used for the classification task and the interpretation in this
chapter is a subset of the whole SmartKom database; it consists of 81 di-
alogues, 1172 turns, 10775 words, and 132 minutes of speech. 2.6% of the
words were labelled as ROT, and 4.9% as OOT.

We computed a Linear Discriminant (LDA) classification: a linear com-
bination of the independent variables (the predictors) is formed; a case is
classified, based on its discriminant score, in the group for which the pos-
terior probability is largest [13]. We simply took an a priori probability of
0.5 for the two or three classes and did not try to optimize, for instance,
performance for the marked classes. For classification, we used the leave-
one—case-out (loco) method; note that this means that the speakers are seen,
in contrast to the LDA used in section 5 where the leave-one-speaker-out
method has been employed. Tables 4 and 5 show the recognition rates for the
two—class problem Off-Talk vs. no—Off-Talk and for the three—class problem
ROT, OOT, and NOT, resp. Besides recall for each class, the CLass—wise
computed mean classification rate (mean of all classes, unweighted average
recall) CL and the overall classification (Recognition) Rate RR, i.e., all cor-
rectly classified cases (weighted average recall), are given in percent. We
display results for the 95 prosodic features with and without the 30 POS
features, and for the 30 POS features alone — as a sort of 5-gram modelling
a context of 2 words to the left and two words to the right, together with
the pertaining word 0. Then, the same combinations are given for a sort
of uni-gram modelling only the pertaining word 0. For the last two lines in
Tables 4 and 5, we first computed a principal component analysis for the
5-gram- and for the uni-gram constellation, and used the resulting princi-
pal components PC with an eigenvalue > 1.0 as predictors in a subsequent
classification.

Best classification results could be obtained by using both all 95 prosodic
features and all 30 POS features together, both for the two—class problem
(CL: 73.7%, RR: 78.8%) and for the three-class problem (CL: 70.5%, RR:
72.6%). These results are emphasized in Tables 4 and 5. Most information
is of course encoded in the features of the pertinent word 0; thus, classifi-
cations which use only these 28 prosodic and 6 POS features are of course
worse, but not to a large extent: for the two—class problem, CL is 71.6%,
RR 74.0%; for the three—class problem, CL is 65.9%, RR 62.0%. If we
use PCs as predictors, again, classification performance goes down, but not



Table 4: Recognition rates in percent for different constellations; subset of
SmartKom, leave—one—case—out, Off-Talk vs. no-Off-Talk; best results are
emphasized

constellation predictors Off-Talk | no-Off-Talk | CL ‘ RR
# of tokens 806 9969 10775
5-gram 95 pros. 67.6 77.8 72.7 | T7.1
raw feat. values 95 pros./30 POS 67.7 79.7 73.7 | 78.8
5-gram, only POS 30 POS 50.6 72.4 61.5 | 70.8
uni-gram 28 pros. 0 68.4 73.4 709 | 73.0
raw feat. values 28 pros. 0/6 POS 0 68.6 74.5 71.6 | 74.0
uni-gram, only POS | 6 POS 40.9 714 56.2 | 69.1
5-gram, PCs 24 pros. PC 69.2 75.2 72.2 | 74.8
uni-gram, PCs 9 pros. PC 0 66.0 714 68.7 | 71.0

drastically. This corroborates our results obtained for the classification of
boundaries and accents, that more predictors — ceteris paribus — yield better
classification rates, cf. [3, 4].

Now, we want to have a closer look at the nine PCs that model a sort of
uni-gram and can be interpreted easier than 28 or 95 raw feature values. If
we look at the functions at group centroid, and at the standardized canonical
discriminant function coefficients, we can get an impression, which feature
values are typical for ROT, OOT, and NOT. Most important is energy,
which is lower for ROT and OOT than for NOT, and higher for ROT than
for OOT. (Especially absolute) duration is longer for ROT than for OOT -
we’ll come back to this result in section 6. Energy regression is higher for
ROT than for OOT, and FO is lower for ROT and OOT than for NOT, and
lower for ROT than for OOT. This result mirrors, of course, the strategies of
the labellers and the characteristics of the phenomenon ‘Off-Talk’: if people
speak aside or to themselves, they do this normally in lower voice and pitch.

5 Results

In the following all databases are evaluated with an LDA-classifier and leave-
one-speaker-out (loso) validation. All results are measured with the class-




Table 5: Recognition rates in percent for different constellations; subset of
SmartKom, leave—one—case—out, ROT vs. OOT vs. NOT; best results are

emphasized
constellation predictors ROT | OOT | NOT || CL ‘ RR
# of tokens 277 529 | 9969 10775
5-gram 95 pros. 54.9 | 65.2 | 71.5 || 63.9 | 70.8
raw feat. values 95 pros./30 POS 71.5 | 67.1 | 73.0 || 70.5 | 72.6
5-gram, only POS 30 POS 73.3 | 52.9 | 54.7 || 60.3 | 55.1
uni-gram 28 pros. 0 53.1 | 67.7 | 64.0 || 61.6 | 63.9
raw feat. values 28 pros. 0/6 POS 0 || 69.0 | 67.1 | 61.5 | 65.9 | 62.0
uni-gram, only POS | 6 POS 80.1 | 64.7 | 18.2 || 54.3 | 22.1
5-gram, PCs 24 pros. PC 49.5 | 67.7 | 65.3 || 60.8 | 65.0
uni-gram, PCs 9 pros. PC 0 45.8 | 62.6 | 60.0 || 56.1 | 59.8

wise averaged recognition rate CL-N (N = 2, 3, 4) to guarantee robust
recognition of all N classes (unweighted average recall). In the 2-class task
we classify On-Talk (NOT) vs. rest; for N = 3 classes we discriminate NOT,
ROT and OOT (= SOT U POT); the N = 4 classes NOT, ROT, SOT, POT
are only available in SWpong-

In Table 6 results on the different databases are compared. Classifica-
tion is performed with different feature sets: 100 prosodic features, 30 POS
features, or all 130 features. For SW,.cq POS-features are not evaluated,
since all sentences that had to be uttered were given in advance; for such a
non-spontaneous database POS evaluation would only measure the design
of the database rather than the correlation of different Off-Talk classes with
the “real” frequency of POS categories. For the prosodic features, results
are additionally given after speaker normalization (zero-mean and variance
1 for all feature components). Here, we assume that mean and variance
(independent whether On-Talk or not) of all the speaker’s prosodic feature
vectors are known in advance. This is an upper bound for the results that
can be reached with adaptation.

As could be expected, best results on prosodic features are obtained for
the acted data: 80.8% CL-2 and even higher recognition rates for three
classes, whereas chance would be only 33.3% CL-3. Rates are higher for
SKpont than for SWypone (72.7% vs. 65.3 % CL-2, 60.0% vs. 55.2% CL-




Table 6: Results with prosodic features and POS features; leave-one-speaker-
out, class-wise averaged recognition rate for On-Talk vs. Off-Talk (CL-2),
NOT, ROT, OOT (CL-3) and NOT, ROT, POT, SOT (CL-4)

‘ ‘ features ‘ CL-2 CL-3 CL-4 ‘
SKspont 100 pros. 72.7 60.0 -
SKgpont | 100 pros. speaker norm. 74.2 61.5 -
SKspont 30 POS 58.9 60.1 -
SKspont 100 pros. + 30 POS 74.1 66.0 -
SWapont 100 pros. 65.3 55.2 48.6
SWipont | 100 pros. speaker norm 66.8 56.4 49.8
SWapont 30 POS 61.6 51.6 46.9
SWgpont 100 pros. + 30 POS 68.1 60.0 53.0
SWacted 100 pros. 80.8 83.9 -
SWcted | 100 pros. speaker norm 92.6 92.9 -

3).% For all databases results could be improved when the 100-dimensional
feature vectors are normalized per speaker. The results for SWycieq rise
drastically to 92.6 % CL-3; for the other corpora a smaller increase can be
observed. The evaluation of 30 POS features shows about 60 % CL-2 for
both spontaneous databases; for three classes lower rates are achieved for
SWgpont- Here, in particular the recall of ROT is significantly higher for
SKgspont (78 % vs. 57%). In all cases a significant increase of recognition
rates is obtained when linguistic and prosodic information is combined, e.g.
on SWypont three classes are classified with 60.0 % CL-3, whereas with only
prosodic or only POS features 55.2 % resp. 51.6 % CL-3 are reached. For
SWepont 4 classes could be discriminated with up to 53.0 % CL-4. Here,
POT is the problematic category that is very close to all other classes (39 %
recall only).

Fig. 1 shows the ROC-evaluation for all databases with prosodic features.
In a real application it might be more “expensive” to drop a request that
is addressed to the system than to answer a question that is not addressed
to the system. If we thus set the recall for On-Talk to 90 %, every third
Off-Talk word is detected in SWypont and every second in SKpont. For the
SW.ctea data, the Off-Talk recall is nearly 70 %; after speaker normalization

5The reason for this is most likely that in SmartKom, the users were alone with the
system; thus Off-Talk was always talking to one-self — no need to be understood by a
third partner. In SmartWeb, however, a third partner was present, and moreover, the
signal-to-noise ratio was less favorable than in the case of SmartKom.
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Figure 1: ROC-FEwvaluation On-Talk vs. Off-Talk for the different databases

Table 7: Cross wvalidation of the three corpora with speaker-normalized
prosodic features. Diagonal elements are results for Train=Test (leave-one-
speaker-out in brackets). All classification rates in % CL-2

Test
S Wacted S Wspont SK. spont
SWacted 93.4 (92.6) 63.4 61.9
Training | SWpont 85.2 69.3 (66.8) 67.8
SKspont 74.0 61.1 76.9 (74.2)

it rises to 95 %.

To compare the different prosodic information used in the different cor-
pora and the differences in acted and spontaneous speech, we use cross
validation as shown in Table 7. The diagonal elements show the Train="Test
case, and in brackets the loso result from Table 6 (speaker norm.). The
maximum we can reach on SWgpont is 69.3 %, whereas with loso-evaluation
66.8 % are achieved; if we train with acted data and evaluate with SWgpont,
the drop is surprisingly small: we still reach 63.4 % CL-2. The other way
round 85.2 % on SWcteq are obtained, if we train with SWgpont. This shows,
that both SmartWeb corpora are in some way similar; the database most
related to SKgpont is SWepont -



Table 8 SWypont: Best single features for NOT vs. OOT (left) and NOT
vs. ROT (right). Classification rate is given in CL-2 in %. The dominant

feature group is emphasized.

“©

for this type given in this column

o” denotes that the resp. values are greater

SWpont NOT | OOT | CL-2 | SWgpont NOT | ROT | CL-2
EnMax ° 61 EnTauLoc ° 60
EnTauLoc ° 60 DurAbs 58
EnMean ° 60 FOMazx Pos 58
PauseFill-before ) 54 FOOnPos . 57
JitterSigma ° 54 DurTauLoc ° 57
EnAbs ° 54 EnMaz Pos ° 56
FOMax ° 53 EnMean ° 56
ShimmerSigma . 53 EnAbs ° 56
JitterMean ° 5 FOOff Pos ° 55
Pause-before ° 53 FOMinPos ° 53
Table 9: SWcteq: Best single features for NOT vs. OOT (left) and NOT
vs. ROT (right)
SWacted NOT | OOT | CL-2||SW.cted NOT | ROT | CL-2
EnTauLoc ° 68 || DurTauLoc ° 86
EnMazx ° 68 ||EnMaxPos ° 73
RateOfSpeech . 65 ||DurAbs . 71
FOMeanGlob ° 65 ||EnMean ° 71
EnMean ° 63 ||FOMaxPos ° 69
ShimmerSigma ° 63 ||EnMaz ° 69
FOMazx ° 61 || DurAbsSyl ° 68
EnAbs ° 61 |[|FOOnPos ° 68
FOMin ° 60 ||FOMinPos . 65
ShimmerMean . 60 ||RateOfSpeech ° 62




6 Discussion

As expected, results for spontaneous data were worse than for acted data
(section 5). However, if we train with SWeteq and test with SWqpone and
vice versa, the drop is just small. There is hope, that real applications can be
enhanced with acted Off-Talk data. Next, we want to reveal similarities in
the different databases and analyze single prosodic features. To discriminate
On-Talk and OOT, all ROT words were deleted; for On-Talk vs. ROT, OOT
is deleted. The top-ten best features are ranked in Table 8 for SWypont,
Table 9 for SWycted, and Table 10 for SKgpont. For the case NOT vs. OOT
the column CL-2 shows high rates for SWyctea and SKgpons with energy
features; best results for NOT vs. ROT are achieved with duration features
on SWactod-

Most relevant features to discriminate On-Talk (NOT) vs. OOT (left
column in Table 8, 9, 10) are the higher energy values for On-Talk, as well
for the SW¢ieq data as for both spontaneous corpora. Highest results are
achieved for SKgpont, since the user was alone and OOT is basically talking to
oneself and consequently with extremely low voice. Also jitter and shimmer
are important, in particular for SK¢pont. The range of FO is larger for On-
Talk which might be caused by an exaggerated intonation when talking to
computers. For SW.eq global features are more relevant (acted speech is
more consistent), in particular the rate-of-speech that is lower for Off-Talk.
Further global features are EnTauLoc and FOMeanGlob. Instead, for the
more spontaneous SWpone data pauses are more significant (longer pauses
for OOT). In SKpont global features are not relevant, because in many cases
only one word per turn is Off-Talk (swearwords).

To discriminate On-Talk vs. ROT (right columns in Tables 8, 9, 10)
duration features are highly important: the duration of read words is longer
(cf. FOMax, FOMin). In addition, the duration is modeled with Pos-features:
maxima are reached later for On-Talk.® Again, energy is very significant
(higher for On-Talk). Most features show for all databases the same be-
havior but unfortunately there are some exceptions, probably caused by the
instructions for the acted ROT: the global feature DurTauLoc is in SW ,¢ted
smaller for On-Talk, and in SWgpont and SKgpont smaller for ROT. Again,
jitter is important in SKgpont-

To distinguish ROT vs. OO, the higher duration of ROT is significant

SNote that these Pos-features are prosodic features that model the position of promi-
nent pitch events on the time axis; if FOMaxPos is greater this normally simply means that
the words are longer. These features should not be confused with POS, i.e. part-of-speech
features which are discussed below in more detail.



as well as the wider FO-range. ROT shows higher energy values in SWpont
but only higher absolute energy in SWieq Which always rises for words with
longer duration.” All results of the analysis of single features confirm our
results from the principal component analysis in section 4.

For all classification experiments we would expect a small decrease of
classification rates in a real application, since we assume a speech recognizer
with 100 % recognition rate in this paper. However, when using a real speech
recognizer, the drop is only little for On-Talk/Off-Talk classification: in
preliminary experiments we used a very poor word recognizer with only
40 % word accuracy on SKgpont. The decrease of CL-2 was 3.2 % relative.
Using a ROC evaluation, we can set the recall for On-Talk to 90 % as above
by higher weighting of this class. Then, the recall for Off-Talk goes down
from ~ 50 % to ~ 40 % for the evaluation based on the word recognizer.

Using all 100 features, best results are achieved with SW¢ieq. The clas-
sification rates for the SKypont WoZ data are worse, but better than for the
SWypont data since there was no Off-Talk to another Person (POT). There-
fore, we are going to analyze the different SWypone speakers. Some of them
yield very poor classification rates. It will be investigated, if it is possible for
humans to annotate these speakers, without any linguistic information. We
expect further that classification rates will rise if the analysis is performed
turn-based. Last but not least, the combination with On-View/Off-View
will increase the recognition rates, since especially POT, where the user does
not look onto the display, is hard to classify from the audio signal. For the
SWepont video-data, the two classes On-View/Off-View are classified with
80 % CL-2 (frame-based) with the Viola-Jones face detection algorithm [18].
The multimodal classification of the focus of attention will result in On-
Focus, the fusion of On-Talk and On-View.

The most important difference between ROT and OOT is not a prosodic,
but a lexical one. This can be illustrated nicely by Tables 11 and 12
where percent occurrences of POS is given for the three classes NOT, ROT,
and OOT (SKgpont) and for the four classes NOT, ROT, POT, and SOT
(SWepont). Especially for SKgpont there are more content words in ROT
than in OOT and NOT, especially NOUNs: 54.9% compared to 7.2% in
OOT and 18.9% in NOT. It is the other way round, if we look at the func-
tion words, especially at PAJ (particles, articles, and interjections): very few
for ROT (15.2%), and most for OOT (64.7%). The explanation is straight-
forward: the user only reads words that are presented on the screen, and

"In this paper, we concentrate on Computer-Talk = On-Talk vs. Off-Talk; thus we do
not display detailed tables for this distinction ROT vs. OOT.



these are mostly content words — names of restaurants, cinemas, etc., which
of course are longer than other word classes. For SWgpont, there is the same
tendency but less pronounced.

7 Concluding Remarks

Off-Talk is certainly a phenomenon the successful treatment of which is get-
ting more and more important, if the performance of automatic dialogue
systems allows unrestricted speech, and if the tasks performed by such sys-
tems approximate those tasks that are performed within these Wizard-of-Oz
experiments. We have seen that a prosodic classification, based on a large
feature vector yields good but not excellent classification rates. With addi-
tional lexical information entailed in the POS features, classification rates
went up.

Classification performance as well as the unique phonetic traits discussed
in this paper will very much depend on the types of Off-Talk that can be
found in specific scenarios; for instance, in a noisy environment, talking aside
to someone else might display the same amount of energy as addressing the
system, simply because of an unfavourable signal-to-noise ratio.

We have seen that on the one hand, Computer-Talk (i.e. On-Talk) in
fact is similar to talking to someone who is hard of hearing: its phonetics is
more pronounced, energy is higher, etc. However we have to keep in mind
that this register will most likely depend to some — even high — degree on
other factors such as overall system performance: the better the system
performance turns out to be, the more ‘natural’ the Computer-Talk of users
will be, and this means in turn that the differences between On-Talk and
Off-Talk will possibly be less pronounced.
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Table 10: SKpont
vs. ROT (right)

: Best single features for NOT vs. OOT (left) and NOT

SKspont NOT | OOT | CL-2 || SKgpont NOT | ROT | CL-2
EnMax ° 72 JitterMean ° 62
EnMean . 69 DurAbs ° 61
JitterMean . 69 DurTauLoc ° 61
JitterSigma ) 69 FOMax Pos ° 61
FOMax ° 69 EnTauLoc ° 69
ShimmerSigma ) 68 FOMinPos ° 59
ShimmerMean . 68 JitterSigma ° 59
FO0OnPos ° 67 EnMean ° 59
EnAbs ° 66 EnMax ° 58
EnNorm ° 61 FOMax ° 58

Table 11: SKgpont: POS classes, percent occurrences for NOT, ROT, and

00T
POS | # of tokens | NOUN API APN | VERB AUX | PAJ
NOT 19415 18.1 2.2 6.6 9.6 8.4 55.1
ROT 365 56.2 7.1 18.1 2.2 2.2 14.2
ooT 889 7.2 2.6 10.7 8.9 6.7 63.9
total 20669 18.3 2.3 7.0 9.4 8.2 54.7

Table 12: SWpont: POS classes, percent occurrences for NOT, ROT, POT,

and SOT
POS | # of tokens | NOUN API APN | VERB AUX | PAJ
NOT 2541 23.2 5.1 3.8 6.9 8.5 52.5
ROT 684 27.2 5.7 18.6 7.4 7.6 33.5
POT 1093 26.3 5.1 10.3 5.4 9.5 43.3
SOT 893 8.1 1.5 5.7 11.5 10.3 62.9
total 5211 21.8 4.6 7.4 7.5 8.9 49.8
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Abstract

This paper describes a study on the kinds of dialogue human users
are willing to have with the virtual human Max in a real-world sce-
nario. Max is employed as guide in a public computer museum, where
he engages with visitors in embodied face-to-face communication and
provides them with information about the museum or the exhibition.
Visitors can input natural language input using a keyboard. Logfiles
from interactions between Max and museum visitors were analyzed.
Results show that Max engages people in interactions where they are
likely to use a variety of normal human communication strategies and
the language this entails, also indicating attribution of sociality to the
agent.

1 Introduction

During the last 15 years or so natural language interaction with computer
systems has been increasingly augmented with ways of using non-verbal
modalities along with speech. Embodied conversational agents (ECA, in
short) can be seen as the most ambitious form of such interfaces, namely,
virtual humans that are to be capable of understanding and generating all
of the communicative behaviors that humans show in natural face-to-face
dialog. When we ask how people talk to computers, it makes thus sense
to further ask how they would interact with such virtual humans, and how
the embodied appearance and multimodal behavior of a virtual interlocutor
affects user behavior. Unfortunately, current ECAs have very rarely made
the step out of the laboratories into real-world settings so that we have only
little data on how people would interact with these agents in real-world ap-
plications. In this paper we present results on how human users interact
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with the virtual human Max, under development at the A.I. group at Biele-
feld University [7]. The interactions that have been analyzed took place
not under controlled laboratory condtions, but in public place and without
being monitored by experimenters: Max is applied as an information kiosk
in the Heinz-Nixdorf-MuseumsForum (HNF; see Fig. 1), a public computer
museum in Paderborn (Germany), where he engage visitors in face-to-face
smalltalk conversations and provides them with information about the mu-
seum, the exhibition, and other topics daily since January 2004. Visitors can
give natural language input to the system using a keyboard, whereas Max
is to respond with a synthetic German voice and appropriate nonverbal be-
haviors like manual gestures, facial expressions, gaze, or locomotion. Using
log files from more than 3.500 conversations we have studied the communi-
cations that take place between Max and the visitors. In particular, we were
interested in the kind of dialogs that the museum visitors — unbiased people
with various backgrounds, normally not used to interact with an ECA — are
willing to have with Max and whether these bear some resemblance with
human-human dialogues.

Figure 1: Max in the Heinz-Nixdorf-MuseumsForum.
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1.1 How people talk to computers

Several studies have shown social effects of embodied agents, i.e. emotional,
cognitive, or behavioral reactions similar to those reactions shown during
interactions with human beings. In general, humans tend to apply their
strategies of perceiving and understanding other people also when inter-
acting with computers. For example, just like other humans, agents are
evaluated to be more intelligent when they criticise others, or to be more
likeable when giving positive feedback [8] (Nass, Steuer & Tauber, 1994).
Trust and credibility of a computer system is increased when an anthropo-
morphic interface is used [10, 12, 9]. Also, effects of impression management
and self-presentation were shown to be present in interactions with com-
puters. That is, people tend to present themselves in a more favourable
way [10, 5], when being observed by an artificial character. Likewise, they
try harder and perform better when a computer has human-like features [12],
but can also by more anxious and tend to make more mistakes when feeling
monitored by an agent [9].

As for how people communicate with computer systems, it has been
noted that humans are willing to apply human-like communication strate-
gies in such interactions. This occurs even when talking to disembodied chat-
terbots [2, 6], although such dialogues vary in length, topic, and style, and
people tend to use a simpler language. Nevertheless, one finds greetings,
thanks, direct and indirect expressions of courtesy, attribution of moods,
feelings and intentions to the system. Further, people ask intimate ques-
tions, assuming that the system has inner states to reveal (self-disclosure).
These effects are even increased when embodied agents with a human-like
appearance are encountered as interlocutors. It has been shown that such
agents prompt communication per se and trigger the use of natural language
interaction, as opposed to other direct forms of operating the system [4].
That is, embodied agents lead to higher expectations as to what interacive
capabilities the system may have, as evident, e.g., in reciprocal commu-
nication attempts such as correcting comments or resignation utterances.
When the agents make good use of nonverbal behavior, a facilitative effect
on the communication has been reported. For example, the face of an agent
is being attended to and interpreted for communicative feedback [11]. Re-
markably, when the agent gives turn-taking feedback, displays attentional
cues, and marks utterances with beat gestures, human users give higher sub-
jective ratings of the system’s language capability and communicate more
smoothly, i.e. with fewer repetitions and hesitations [1]. These findings
clearly show the benefits that embodied characters could potentially have
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for spoken language man-machine interaction when they show consistent
and pertinent nonverbal behaviors.

2 The virtual human Max

This section briefly explains the model of interactive behavior that underlies
Max’s behavior in the multimodal dialogues he has with visitors (see [3, 7]
for more details). Max is construed as a general cognitive agent, based on
an architecture that allows perception, action, and deliberative reasoning
to run in parallel. Perception and action are directly connected through a
reactive component, affording reflexes and immediate responses to situation
events or input by a dialogue partner. Reactive processing is realized by a
behavior generation component that is in charge of realizing all behaviors
requested by other components. This includes feedback-driven reactive be-
haviors like gaze tracking the current interlocutor, or secondary behaviors
like eye blink and breathing. Moreover, to realizes multimodal utterances by
combining the synthesis of prosodic speech and animation of emotional fa-
cial expressions, lip-sync speech, and coverbal gestures, with the scheduling
and synchronous execution of all verbal and nonverbal behaviors.

Deliberative processing of all events takes place in a central component.
It determines when and how the agent acts, either driven by internal goals
and intentions or in response to incoming events which, in turn, may orig-
inate either externally (user input, persons that have newly entered or left
the agent’s visual field) or internally (changing emotions, assertion of a new
goal etc.). These deliberative processes are carried out by a BDI interpreter,
which continuously pursues multiple, possibly nested plans (intentions) to
achieve goals (desires) in the context of up-to-date knowledge about the
world (beliefs). It draws on long-term knowledge about former dialogue
episodes with visitors as well as a dynamic knowledge base that includes a
discourse model, a user model, as well as a self model that comprises the
agent’s world knowledge as well as current goals and intentions.

All capabilities of dialogue management, language interpretation and
behavior generation are represented as plans of two kinds. Skeleton plans
realize the agent’s general, domain-independent dialogue skills like negoti-
ating initiative or structuring a presentation. These plans are adjoined by
a larger number of smaller plans implementing condition-action rules that
define both, the broad conversation knowledge (e.g., dialogue goals that can
be pursued, possible interpretations of input, small talk answers) as well
as the deeper knowledge about possible presentation contents. Condition-
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action rules test either user input or the dynamic memories; their actions can
alter dynamic knowledge structures, raise internal goals and thus invoke cor-
responding plans, or trigger the generation of an utterance by stating the
words, semantic-pragmatic aspects, and a markup of the focus part. Us-
ing these rules, the deliberative component interprets an incoming event,
decides how to react depending on current context, and produces an appro-
priate response. It is thereby able to conduct longer, coherent dialogues and
to act proactively, e.g. to take over the initiative, instead of being purely
reactive as classical chatterbots are. In its current state, Max is equipped
with roughly 900 skeleton plans and 1.200 rule plans of conversational and
presentational knowledge.

Max is further equipped with an emotion system that continuously runs
a dynamic simulation to model the agent’s emotional state. The emotional
state is available anytime and modulates subtle aspects of the agent’s be-
haviors, namely, the pitch, speech rate, and band width of his voice and the
rates of breathing and eye blink. The weighted emotion category is mapped
to Max’s facial expression and is sent to the agent’s deliberative processes,
thus making him cognitively aware of his own emotional state and subjecting
it to his further deliberations. The emotion system, in turn, receives input
from both the perception (e.g., seeing a person triggers a positive stimulus)
and the deliberative component. For example, obscene or politically incor-
rect wordings in the user input lead to negative impulses on Max’s emotional
system.

3 How Humans Talk To Max

In the HNF scenario, we were able to unobtrusively gather a tremendous
amount of data on the interactions between Max and the visitors to the mu-
seum. This data comprise transcripts of what Max and the human user said,
as well as information about which nonverbal actions Max performed and
when he did so. We analyzed these data to see (1) if Max’s conversational
capabilities suffice to fluent interactions with the visitors to the museum,
and (2) whether the dialogs bear some resemblance with human-human di-
alogs, i.e. if Max is perceived and treated as human-like communication
partner.

3.1 Study 1

A first screening was done after the first seven weeks of Max’s employment in
the Nixdorf Museum (15 January through 6 April, 2004). Statistics is based
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on digital logfiles, which were recorded from dialogues between Max and
visitors to the museum. During this period, Max on average had 47 conver-
sations daily, where ”conversation” was defined to be the discourse between
an individual visitor saying hello and good bye to Max. Altogether there
were 3351 conversations, i.e. logfiles screened. About two-thirds of these
were conversations with male visitors and about one-third were conversa-
tions with female visitors, as identified by given names and Max’s names
dictionary. On the avarage, there were 15.33 visitor inputs recorded per
logfile, totaling to 51,373 inputs recorded in the observation period.

Data were evaluated with respect to the successful recognition of commu-
nicative functions by Max, that is, whether Max associated a visitor’s want
(not necessarily correctly) with an input. We found that, Max was able to
recognize a communicative function in 32,332 (i.e. 63%) cases. This finding
suggests that in roughly two-thirds of all cases, Max conducted sensible di-
alogue with visitors, reverting to smalltalk behavior in the remaining cases
where no communicative function could be recognized. Among those cases
where a communicative function was recognized, with overlap possible, a
total of 993 (1.9%) inputs were classified as polite ("please”, "thanks”), 806
(1.6%) inputs as insulting, and 711 (1.4%) inputs as obscene or politically
incorrect, with 1430 (2.8%) no-words altogether. In 181 instances (about 3
times a day), accumulated negative emotions resulted in Max leaving the
scene ”very annoyed”.

A qualitative conclusion from the findings of this first screening is that
Max apparently ”ties in” visitors of the museum with diverse kinds of social
interaction. Thus we conducted a second study with the particular aim
to investigate in what ways and to what an extent Max is able to engage
visitors in social interaction.

3.2 Study 2

We conducted a detailed content analysis of the users’ statements during
their dialogue with Max. Specifically, we wanted to know whether people
would use human-like communication strategies (greetings, farewells, com-
monplace phrases), and whether they would use utterances or pose questions
that indicate the attribution of sociality to the agent, e.g., by asking an-
thropomorphized questions that only make sense when directed to a human
being. We analysed logfiles of one week in March 2005 (15th through 22nd)
that contained all utterances of the agent as well as of the user. The data
comprised 205 dialogs. The numbers of utterances, words, words per utter-
ance, and specific words such as I/me or you were counted and compared
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for agent and user. Additionally, the content of the users’ utterances was
coded according to psychological content analysis (Mayring, 2000). Using
one third of the log file protocols, a category scheme was developed (e.g.,
questions, feedback to agent, requests to do something, etc., including cor-
responding values; see table 1). Subsequently, the complete material was
coded by two coders and the frequency of each value was counted. Multiple
selections were possible, e.g., one utterance may be coded as proactive as
well as anthropomorphic question.

Quantitative analyses showed that the agent is more active than the
user is. While the user makes 3665 utterances during the 205 dialogues (on
average 17.88 utterances per conversation), the agent has 5195 turns (25.22
utterances per conversation). This is reflected in the words used. Not only
does the agent use more words in total (42802 in all dialogues vs. 9775 of
the user; 207.78 in average per conversation vs. 47.68 for the user), but
he also uses more words per utterance (7.84 vs. 2.52 of the user). Thus,
the agent in average seemed to produce more elaborate sentences than the
user does, which may be a consequence of the use of a keyboard as input
device. Against this background, it is also plausible that the users utters less
pronouns such as I/me (user: 0.15 per utterance; agent: 0.43 per utterance)
and you (user: 0.26 per utterance; agent: 0.56 per utterance). These results
might be due to the particular dialogue structure that is, for some part,
designed to be determined by the agent’s questions and proposals (e.g., it
includes an animal guessing game that leaves the user stating yes or no). On
the other hand, the content analyses reveal that 1316 (35.9 %) of the user
utterances are proactive (see table 1).

In order to analyse user reactions it is important to look at the content
of user utterances. Table 1 shows the frequencies of different categories and
the corresponding values. Concerning human-like strategies of beginning
and ending conversations, it becomes apparent that especially greeting is
also popular when confronted with an agent (used in 57.6% of dialogues).
Greetings, which may be directly triggered by the greeting of the agent,
are uttered more often than farewells. But, given that the user can end the
conversation by simply stepping away from the system, it is remarkable that
29.8% of the people said goodbye to Max. This tendency to use human-like
communicative structures is also supported by the fact that commonplace
phrases,common small talk questions like 'How are you?’ are still uttered
154 times (4.2% of utterances). As with all publicly available agents or chat-
terbots, we observed flaming (406 utterances; 11.1%) and implicit testing of
intelligence and interactivity (303; 8.3%). The latter happens via questions
(146; 4%), obviously wrong answers (61; 1.7%), answers in foreign languages
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(30; 0.82%), or utterances to test the system (66; 1.8%). However, direct
user feedback to the agent is more frequently positive (51) than negative
(32). Most elucidating with regard to whether interacting with Max has
social aspects are the questions addressed to him: There were mere com-
prehension questions (139; 18.6% of questions), questions to test the system
(146; 19.6%), questions about the system (109; 14.6%), the museum (17;
2.3%), or something else (49; 6.6%). The vast amount of questions are
social, either since they are borrowed from human small talk habits (com-
monplace phrases; 154; 20.6%) or because they directly concern social or
human-like concepts (132; 17.7%). Thus, more than one-third of the ques-
tions presuppose that treating Max like a human is appropriateor try to
test this very assumption. Likewise, the answers of the visitors (30% of all
utterances) show that people seem to be willing to get involved in dialogue
with the agent: 75.8% of them were expedient and inconspicuous, whereas
only a small number gave obviously false information or aimed at testing
the system. Thus, users seem to engage in interacting with Max and try to
be cooperative in answering his questions.

4 Conclusion

Current embodied conversational agents have for the most part stayed within
their lab environments and there is little data on how people interact with
such conversational characters in real-world applications. One could expect
the often described, general disposition of humans to approach an artifact
like a social being, even more so when the artifact is an agent with human-
like appearance and animated behaviour. Our study seems to support this.
However, the behaviour of the users also shows that they are not at all
sure in how far this expectation can be met by the system. It is an open
question as to what degree the language employed by users accommodates
these beliefs, and how it changes over discourse with growing evidence on
Max’s capabilities and limitations. A study is underway to take a more
detailed look at the linguistic aspects of the user language. Nevertheless,
we found evidence that the visitors to the HNF tend to apply a variety of
human-like communication strategies when conversing with Max (greeting,
farewell, smalltalk elements, insults), and they do so using short, yet close
to everyday natural language utterances. This becomes apparent in partic-
ular when people try to fasten down the degree of Max’s human-likeness
employing normal language. It seems that they do not wonder about the
language capability of the system as much as they wonder about its world
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Catgeory and values Examples N
Proactive utterance 1316 (36%)
Reactive utterance 1259 (34%)
Greeting and farewell

Informal greeting Hi, hello 114
Formal greeting Good morning! 4
No greeting 87
Informal farewell Bye 56
Formal farewell Farewell 5
No farewell 144
Flaming 406 (11%)
Abuse, name-calling Son of a bitch 198
Pornographic utterances Do you like to ****? 19
Random keystrokes 114
Senseless utterances http.http, dupa 75
Feedback to agent 83 (2%)
Positive feedback I like you; You are cool 51
Negative feedback I hate you; Your topics are boring 32
Questions 746 (20%)
Anthropomorphic questions Can you dance? Are you in love? 132
Questions concerning the system Who has built you? 109
Questions concerning the museum Where are the restrooms? 17
Commonplace phrases How are you? 154
Questions to test the system How’s the weather? 146
Checking comprehension Pardon? 139
Other questions 49
Answers 1096 (30%)
Inconspicuous answer 831
Apparently wrong answers [name] Michael Jackson, [age] 125 61
Refusal to answer I do not talk about private matters 8
Proactive utterances about oneself I have to go now 76
Answers in foreign language 30
Utterances to test the system You are Michael Jackson 66
Laughter 24
Requests 108 (3%)
General request to say something Talk to me! 10
Specific request to say something Tell me about the museum! 13
Request to stop talking Shut up! 24
Request for action Go away! Come back! 61

Table 1: Results of the content analysis of user dialogues with Max in the

HNF.
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knowledge or general intelligence. In how far this impression is induced by
Max’s appearance or the way he acts and reacts remains to be investigated
in more controlled studies.
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Abstract

Communication with artificial interaction partners differs in many
ways from communication among humans, and often so in the very
first utterance. That is, in human-computer and human-robot interac-
tion users address their artificial communication partner on the basis
of preconceptions. The current paper addresses the nature of speakers’
preconceptions about robots and computers and the role these precon-
ceptions play in human-computer and human-robot interactions. That
is, I will show that a) two types of preconceptions as opposing poles of
the same dimension of interpersonal relationship can be distinguished,
b) these types can be readily identified on the basis of surface cues in
the users’ utterances, b) these preconceptions correlate with the users’
linguistic choices on all linguistic levels, and d) these preconceptions
also influence the speakers’ interactional behaviour, in particular, with
respect to which their linguistic behaviour can be influenced, that is,
in how far speakers align with the computer’s and robot’s linguistic
output.

1 Introduction

When we look at the literature available on how people talk to computers and
robots, it soon becomes clear that people talk to artificial communication
partners differently from how they talk to other humans. This has led to the
proposal that speech directed at artificial communication partner constitutes
a register, so-called computer talk [27, 14]. When we keep looking, however,
it turns out that in fact we know very little both about the exact nature of
users’ preconceptions about artificial communication partners and the effect
these preconceptions have on human-computer, or human-robot, interaction
situations.

In this paper I will propose that there are two prototypes of users’ pre-
conceptions, which can be reliably identified on the basis of linguistic surface
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cues and which have systematic effects on the linguistic properties of users’
utterances. Thus, I show that the speakers’ recipient design, i.e. their
choosing of linguistic properties on the basis of their concept of their com-
munication partner, is pervasive and plays a central role in the formulation
both of every single utterance and with respect to all linguistic levels.

Previous research has shown that recipient design [22, 23] and audience
design [1] play a major role in the communication among humans. Recently,
there is an ongoing debate about how much knowledge about the commu-
nication partner exactly speakers take into account [9, 10] and under what
circumstances; however, it is clear that speakers take their communication
partners into account to some degree [24]. How such models are being built
up, what exactly speakers take into account when building up such models,
and how these models influence the speech produced for the respective part-
ner is so far an unresolved issue (see also the contributions by Branigan and
Pearson, this volume; Wrede et al., this volume; Andonova, this volume).
Thus, particularly in human-computer and human-robot interaction, we yet
don’t know much about the preconceptions on the basis of which users tailor
their speech for their artificial communication partners and in which ways.

Moreover, users in human-computer interaction are usually treated as
a homogeneous group (see, for example, the studies in [14] or Gieselmann
and Stenneken, this volume; Kopp, this volume; Batliner et al., this vol-
ume; Porzel, this volume). If at all, external sociolinguistic variables, such
as age or gender, domain knowledge or familiarity with computers are be-
ing considered: “Explicit data capture involves the analysis of data input
by the user, supplying data about their preferences by completing a user
profile. Examples of explicit data captured are: age, sex, location, purchase
history, content and layout preferences.” [2], where implicit data elicitation
is taken to involve the examination of server logs and the implementation
of cookies for the identification of users’ “different goals, interests, levels of
expertise, abilities and preferences” [12]. User modeling should however not
be restricted to factors related to the task or domain, since, as I am going
to show, the users’ preconceptions about such interfaces themselves cause
considerable differences in users’ linguistic behaviour.

Another open issue is the influence of the speakers’ preconceptions on
the interactional dynamics; the question is whether, besides influencing the
users’ linguistic choices, their recipient design also determines the discourse
flow. I am going to demonstrate that such concepts have considerable in-
fluence on the users’ alignment behaviour [20, 19], see also Branigan and
Pearson, this volume.
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2 Methods and Data

The procedure taken here is to analyse first speakers’ preconceptions of their
artificial communication partners as they become apparent in several cor-
pora of human-computer and human-robot interaction. There are various
possibilities to study speakers’ concepts about their communication part-
ner; one is to elicit speakers’ ideas about their communication partner by
means of questionnaires; this method is used, for instance, by Andonova,
this volume, and by Wrede et al., this volume. In contrast, the methodology
used here is essentially ethnomethodological; that is, I focus on speakers’
common sense reasoning underlying their linguistic behaviour by orienting
to their own displays of their understanding of the affordances of the situ-
ation. For instance, speakers will produce displays of their concepts about
the communication partner in their clarification questions, but also in their
reformulations. For example, the question directed at the experimenter does
it see anything? shows that the user suspects the robot to be restricted in its
perceptual capabilities and, moreover, that the speaker regards the robot as
an it, a machine, rather than another social interactant. The reformulation
in example (1) shows that the speaker suspects the robot to understand an
extrinsic spatial description if it doesn’t understand a projective term:

(1) S: go left
R: error
S: go East

From such displays, especially if they turn out to be systematic and
recurrent both between speakers as well as within the same speaker’s speech
through time, we can infer what preconceptions the speakers hold about
their artificial communication partner and what strengths and weaknesses
they ascribe to it.

In addition, I use quantitative analyses to identify differences in distri-
butions of particular linguistic properties as effects of the speakers’ differing
preconceptions about computers and robots.

The corpora I use were elicited in Wizard-of-Oz scenarios in order to
ensure that all users are confronted with the same computer or robot be-
haviour. That is, the linguistic and other behaviour of the artificial sys-
tem is produced by a human wizard but on the basis of a fixed schema
of behaviours. In this way I can control for inter- and even intrapersonal
variation [6]. Speakers (just) get the impression that the system is not
functioning well. Besides comparability, another advantage is therefore that
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the repeated use of system malfunction encourages the users to reformulate
their utterances frequently and thus to reveal their hypotheses about their
artificial communication partner.

Human-Computer Appointment Scheduling Corpus This corpus
consists of 64 German and 8 English human-computer appointment schedul-
ing dialogues (18-33 min each). The corpus was recorded in a Wizard-of-Oz
scenario in the framework of the Verbmobil project [26]. Speakers are con-
fronted with a fixed pattern of (simulated) system output which consists of
sequences of acts, such as messages of failed understanding and rejections
of proposals, which are repeated in a fixed order. The fixed schema of se-
quences of prefabricated system utterances allows us to identify how each
speaker’s reactions to particular types of system malfunctions change over
time. It also allows the comparison of the speakers’ use of language inter-
personally. The impression the users have during the interaction is that of
communicating with a malfunctioning automatic speech processing system,
and the participants were indeed all convinced that they were talking to
such a system. The data were transcribed and each turn was labelled with
a turn ID that shows not only the speaker number, but also the respective
position of the turn in the dialogue. Subsequently, the data were annotated
for prosodic, lexical, and conversational properties. <P>, <B>, <L> stand
for pause, breathing, and sylable lengthening respectively.

Human-Robot Distance Measurement Corpus The second corpus
used here was elicited in a scenario in which the users’ task was to instruct
a robot to measure the distance between two objects out of a set of seven.
These objects differed only in their spatial position. The users typed in-
structions into a notebook, the objects to be referred to and the robot being
placed on the floor in front of them. The relevant objects were pointed at
by the instructor of the experiments. There were 21 participants from all
kinds of professions and with different experience with artificial systems.
The robot’s output was generated by a simple script that displayed answers
in a fixed order after a particular ‘processing’ time. Thus, the dialogues
are also comparable regarding the robot’s linguistic material, and the users’
instructions had no impact on the robot’s linguistic behaviour. The robot,
a Pioneer 2, could not move either, but the participants were told that they
were connected to the robot’s dialogue processing system by means of a wire-
less LAN connection. Participants did not doubt that they were talking to
an automatic dialogue processing system, as is apparent from their answers
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to the question: ”If the robot didn’t understand, what do you think could
have been the cause?”. The robot’s output was either "error” (or a natural
language variant of it) or a distance in centimeters. Since by reformulating
their utterances the users display their hypotheses about the functioning of
the system (see above), error messages were given frequently.

The user utterances are typed and thus transcription was not neces-
sary; typos were not corrected. The turn IDs show the speaker number, for
instance, usr-20, and the number of the turn in the dialogue.

Human-Robot Spatial Instruction Corpus This corpus was elicited
with three different robots, Sony’s Aibo, Pioneer, another commercially
available robot, and Scorpion, built by colleagues at the University of Bre-
men [25]. Since we used a Wizard-of-Oz scenario, we were able to confront all
users again with identical non-verbal robot behaviours, independent of the
users’ utterances. We elicited 30 English dialogues, using the same speakers,
scheduling the recordings at least three months apart, and 66 German dia-
logues, in which we recruited naive users for each scenario. Here, we elicited
12 dialogues with Aibo, 33 with pioneer and 21 with scorpion.

The users’ task was to instruct the respective robot to move to objects
which were placed on the floor in front of them and which were pointed at
by the experimenter. All robots moved between the objects in the same,
predefined, way (there was no linguistic output).

The dialogues were transcribed and analysed with respect to their lin-
guistic properties. Each turn ID shows whether the robot addressed was
Aibo (A), Scorpion (S), or Pioneer (P). Transcription conventions are the
following: (at=prominent) word (/a) means that the word is uttered in a
prosodically prominent way, + indicates a word fragment, - means a short
pause, — a longer pause, and (1) indicates a pause of one second; punctuation
indicates the intonation contour with which the utterance was delivered.

Human-Aibo Interaction with and without Verbal Feedback For
the comparison with the human-Aibo dialogues from the previous corpus,
we elicited another corpus in the same scenario as before, just that Aibo also
replied with verbal behaviours. The robot utterances were pre-synthesized
and were played in a fixed order. The utterances were so designed as to give
no clue as to what may have gone wrong in order to avoid prompting partic-
ular error resolution strategies from the users. However, in these utterances,
three design features were used which previous studies [15, 3, 6] had revealed
to be quite rare in human-robot interaction if the robot does not give feed-
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back: First, we made the robot ask for and propose spatial references using
object naming strategies. Second, we made the robot use an extrinsic refer-
ence system. Third, as an indicator of high linguistic capabilities, the robot
made extensive use of relative clauses.

The robot’s utterances are, for instance, the following: Ja, guten Tag,
wie geht es Thnen? (yeah hello, how do you do?) Soll ich das blaue Objekt
ansteuern? (do you want me to aim at the blue object?) Soll ich mich zu dem
Objekt begeben, das vorne liegt? (do you want me to move to the object
which lies in front?) Meinen Sie das Objekt, das 30 Grad westlich der Dose
liegt? (do you mean the object that is 30 degrees west of the box?) Ich habe
Sie nicht verstanden. (I did not understand.) Entschuldigung, welches der
Objekte wurde von Thnen benannt? (exzcuse me, which object was named by
you?) Ich kann nicht schneller. (I can’t go faster.)

The corpus comprises 17 German human-Aibo dialogues recorded un-
der circumstances exactly as in the corpus described above, just that the
fixed schema of robot behaviours was paired with a fixed schema of robot
utterances, both independent of what the speaker is saying.

3 Concepts about Computers and Robots

There are some beliefs about computers and robots that surface frequently
and in all of the corpora under consideration. The first one is the concept of
the computer or robot as linguistically restricted. This view of the artificial
communication partner is in fact only encouraged in the human-computer
interaction corpus when the system produces I did not understand. In the
corpora in which the robot does not produce any speech, no such clues are
given. Similarly, in the distance measurement corpus, only error-messages
are produced, and thus the idea that the robot could be linguistically chal-
lenged is likely to stem from the speakers’ preconceptions. Even more cru-
cially, also in another corpus in which the linguistic capabilities of the robot
were actually very good and in which communicative failure resulted from
mismatches in instruction strategies [15], not in restricted linguistic capa-
bilities, speakers overwhelmingly suspected the problem to have been that
they weren’t able to find those words that the robot would have been able
to understand.

This preconception of artificial communication partners as linguistically
restricted can turn out to be very problematic in the future; if our systems
are getting better and the interfaces more natural, yet users continue to
expect great linguistic problems, the interactions with such systems may
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turn out very strange, as can be seen in the following example:

(2) R: yes, hello, how do you do?
A031: (4) oh okay. - um - um go forward, to, -

Here, the user does not react at all to the polite interaction proposed
by the system. The rejection of such speech acts has to be attributed to
the user’s preconceptions, since at that point there is no evidence of mis-
communication or communicative failure. This corresponds to findings by
Krause [13] as well as to observation regarding politeness by [16, 21] and [11].

Another aspect is the suspected formality of artificial communication
partners. In the following example, the speaker reformulates her utterance
by using exact measurements:

(3) A003: nun zu den, zwei, Dosen, — links. (5) (now to the, two, boxes,
— left)
R: Ich habe Sie nicht verstanden. (I did not understand.)
A003: (1) links zu den zwei Dosen circa 30 (at=lengthening) Grad(/a)
Drehung (22) (left to the two boxes about 30 degrees turn)

In the appointment scheduling dialogues, often the year is added:

4) €4012101: what about Monday, the fourth of January? <P> from
eight <P> till fourteen-hundred.
$4012102: blurb appointment right blurb mist. [nonsense]
e4012102: okay. what about Tuesday, the fifth of January? <P>
from<L> <P> eight to fourteen-hundred?
s4012103: please make a proposal.
e4012103: <Smack> <P> okay. <;low voiced> do you have time
on Monday, the eleventh of January nineteen-ninety-nine?
s4012201: this date is already occupied.
e4012201: what about Tuesday, the twelfth of January nineteen-
ninety-nine?

These preconceptions seem to be very common in HCI and HRI. In [6],
I furthermore show that speakers generally believe that robots can be easily
disturbed by orthographical matters, that they have problems with basic
level and colloquial terminology and metaphorical concepts, and that they
have to learn skills in the same order as humans do. Besides these generally
shared ideas, users also seem to have very different concepts of their artificial
communication partner and the situation, e.g. in the human-robot dialogues:
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(5) P075: I was g+ I was wondering, whether it whether it understood
English. - (laughter)

(6) S037: scorpion, - turn - ninety - left. (2) turn left (at=prominent)nine-
ty(/a). - - now is that one command or two, - -

(7) A001: good (at=laughter)dog(/a), (1) now pee on ’em (laughter)
— sit, (laughter) —

(8) A004: go on, - you are doing fine,

Such utterances indicate two fundamentally different attitudes towards
robots, one in which the robot is treated as a mechanical device that needs
commands and which is not expected to understand natural language, and
the other in which the robot is expected to function like an animal or needs
positive encouragement. Similar differences can be found in the distance-
measurement corpus:

(9) usrl-2: wie weit entfernt ist die rechte Tasse? (how far away is the
right cup?)
sys:ERROR
usrl-3: Tasse (cup)
sys:ERROR 652-a: input is invalid.
usrl-3: die rechte (the right one)

(10) usr3-3: wie heift du eigentlich (what’s your name, by the way)

(11) usr4-25: Bist du fiir eine weitere Aufgabe bereit? (are you ready
for another task?)

Examples from the appointment scheduling corpus are the following:

(12) €0045206: konnen Sie denn Ihre Mittagspause auch erst um vierzehn
Uhr machen? (could you take your lunch break as late as 2pm?)

(13) e0387103: Sprachsysteme sind dumm. (language systems are stupid)

An important observation is that these different attitudes towards the
computer or robot correspond to different ways of opening the dialogue
with the artificial communication partner. These different dialogue openings
reveal different preconceptions about what the human-computer or human-
robot situation consists in. For example, one such first move is to ignore
the contact function of the system’s first utterance completely and to start
with the task-oriented dialogue immediately:
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(14) S: ja, guten Tag, wie geht es Thnen? (yes, hello, how do you do?)
e0440001: ich mochte gerne einen Termin einen Arzttermin mit
Ihnen absprechen. (I want to schedule an appointment a doctor’s
appointment with you.)

This group of speakers only minimally reacts to the interpersonal infor-
mation provided by the system or even refuse communication at that level.
Instead they treat the computer as a tool, at best, in any case not as a social
actor. I refer to this group as the non-players.

In contrast, the players will take up the system’s cues and pretend to have
a normal conversation. I call these speakers players because the delivery of
the respective utterances show very well that the speakers find them unusual
themselves, as in the following example where the user breathes and pauses
before asking back:

(15) S: ja, guten Tag, wie geht es Ihnen? (hello, how do you do?)

e0110001: guten Tag. danke, gut. <B> <P> und wie geht’s ITh-
nen? (hello, thanks, fine. <B> <P> and how do you do?)

Thus, it is not the case that these users would mindlessly [18, 17] transfer
social behaviours to the human-computer situation. For them, it is a game,
and eventually it is the game system designers are aiming at. Thus, these
users talk to computers as if they were human beings.

Also in the human-robot dialogues with written input in which the user
has the first turn, the same distinction can be found:

(16) usrl7-1: hallo roboter (hello robot)
sys:ERROR
usrl7-2: hallo roboter (hello robot)
sys:ERROR
usrl7-3: Die Aufgabe ist, den Abstand zu zwei Tassen zu messen.
(The task is to measure the distance between two cups.)

In this example, the speaker proposes a greeting himself and even repeats
it. Then, he provides the system with an overview of the task. In contrast,
user 19 in the following example first types in the help command, which
is current practice with unix tools; when he does not get a response, he
starts with a low-level, task-oriented utterance without further elaboration
or relation-establishing efforts:
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usrl9-1: hilfe (help)

sys:ERROR

usrl9-2: messe abstand zwischen zweitem becher von links und
zweitem becher von rechts (measure distance between second mug
from left and second mug from right)

The same two prototypes can be found in our human-robot dialogues in
which Aibo uses the same initial utterance as in the appointment scheduling

corpus:

(18)

R: Ja guten Tag, wie geht es Thnen? (yes hello, how do you do?)
A011: (1) &h, geradeaus gehen. (breathing) — (uh, going straight)
R: Welches Objekt soll ich ansteuern? (which object should I aim
at?)

A011: (1) links. (7) (left)

In this example, the speaker immediately produces a very basic spatial
instruction. The next utterance is not syntactically or semantically aligned
with the robot’s question. In contrast, in the next example, the speaker asks
the robot back politely. Her next utterance takes up both the term and the
syntactic construction of the robot’s utterance, and thus her utterance can
be understood as the second part of an adjacency pair:

(19)

R: Ja guten Tag, wie geht es Thnen? (yes hello, how do you do?)
A014: Mir geht es sehr gut und selbst? (laughter) (1) (I'm fine and
how about you?)

R: Welches Objekt soll ich ansteuern? (which object should I aim
at?)

A014: (2) das Objekt ah hinten links. (6) (the object uh at the back
left.)

Further examples of dialogue beginnings illustrate the spectrum of possi-
ble dialogue openings. Thus, the two behaviours identified, the task-oriented
response (by the non-players) and the polite complementary question about
the system’s well-being (by the players) constitute prototypes, which are
located at the opposite poles of the same dimension of social relationship:

(20)

R: Ja guten Tag, wie geht es Thnen? (yes hello, how do you do?)
A009: (laughter) - guten Tag, - &hm, vorwarts, (2) losgehen? (1)
(hello, um, straight, start?)
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(21)

R: Ja guten Tag, wie geht es Thnen? (yes hello, how do you do?)
A022: (1)(at=quiet)gut?(/a) (1) (laughter) (1) (fine?)

R: Welches Objekt soll ich ansteuern? (which object should I aim
at?)

A022: (1) &h vorne links? (4) stopp, - links, (uh front left? stop,
left,)

R: Soll ich mich zu dem Objekt begeben, das vorne liegt? (do you
want me to move to the object which is in front?)

A022: (2) nein, - weiter links, (2) (no, - further left,)

R: Ja guten Tag, wie geht es Thnen? (yes hello, how do you do?)
A012: (1) gut, danke, (2) (fine, thanks)

R: Welches Objekt soll ich ansteuern? (which object should I aim
at?)

A012: (1) die Schale, - ganz links. (6) (the bowl, very far left.)

R: Ja guten Tag, wie geht es Thnen? (yes hello, how do you do?)
A025: (at=prominent)ja,(/a) (hnoise) ganz gut. (at=quiet) und
du? - ah(/a) - so, getz, (yes, quite fine. and how about you? - uh
- so, now,)

R: Welches Objekt soll ich ansteuern? (which object should I aim
at?)

A025: (1) dhm dieses Miislischélchen was da ganz links steht. - da
sollst du hingehen. (um this muslibowl which is very much to your
left - there you have to go to.)

In general, then, irrespective of particular communication situations be-
tween humans and artificial communication partners, we can distinguish
two different prototypes of preconceptions: the computer as a tool versus
the computer as a social actor. These prototypes are easily classifiable with
automatic means since they correlate with a set up surface cues [8].

4 Effects of the Users’ Preconceptions

Now that we have established the prototypical preconceptions in human-
computer and human-robot interaction, the question is whether and how
these preconceptions influence the way users talk to their artificial commu-
nication partners.
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4.1 The Predictability of Linguistic Features from Precon-
ceptions

For the appointment scheduling dialogues, it was found that the occur-
rence of conversational and prosodic peculiarities is significantly related
to the users’ preconceptions as evident from the different dialogue open-
ings [6]. That is, there are significant correlations between dialogue be-
ginning and the use of linguistic strategies on the conversational as well as
the prosodic level. The conversational peculiarities comprise reformulations,
meta-linguistic statements, new proposals without any relevant relationship
to the previous utterances, thematic breaks, rejections, repetitions, and eval-
uations. In contrast to, for instance, sociolinguistic variables, such as gender,
the distinction between players and non-players has a consistent effect on
the use of the above conversational strategies. Similarly, the occurrence of
phonetic and prosodic peculiarities, in particular, hyper-articulation, sylla-
ble lengthening (e.g. Mon<L>day), pauses (between words and syllables,
e.g. on <P> Thurs <P>day), stress variation, variation of loudness, and
the variation of intonation contours, can be predicted by the dialogue be-
ginnings [6].

Also in the distance-measurement corpus, the dialogue openings can be
used to predict the linguistic strategies used. In this case, we have found
a systematic relationship with the occurrence of clarification questions [7].
That is, whether speakers began dialogues with a greeting or some other
kind of contact-establishing move, as in the following example, or whether
they started the task immediately could be used to predict the occurrence of
clarification questions, in particular questions concerning the recipient de-
sign, such as the robot’s perception, functionality and linguistic capabilities,
for instance:

(24)  wusrll-1: hallo# (hello#)
sys:ERROR
usrl1-2: siehst du was (do you see anything)
sys:ERROR
usrl1-3: was siehst du (what do you see)

Also for the three German human-robot corpora with Aibo, Scorpion
and Pioneer, results show a very significant effect between dialogue opening
and emotional expression, sentence mood, structuring cues, and reference
to the robot. Emotional expression was coded by distinguishing interjec-
tions, e.g. oh, ah, contact signals, e.g. hello, and displays of relationship,
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e.g.my friend. Regarding structuring cues, we distinguish implicit, such as
now, from explicit cues, e.g. the first task. For sentence mood, particularly
relevant are imperative vs. infinitive vs. declarative mood vs. no verb at
all. Finally, we coded whether speakers talked about the robot at all, and
if so whether they referred to the robot as he or as it. For these linguis-
tic features, significant differences could be found, depending on the first
utterance in the dialogue [5].

To sum up, in the emotional HCI-corpus, the users’ concept of the com-
munication partner as tool or as a conversation partner was significantly
related to the prosodic properties of their utterances and to the conversa-
tional strategies taken. In the distance-measurement corpus, the number of
clarification questions asked can be significantly related to different dialogue
openings as well [7]. In the three comparable HRI-dialogues, the effect of
the conceptualisation of the robot as a tool or as a conversation partner (as
apparent from the dialogue opening) was found to be the most important
predicting factor for features as diverse as emotional expression, the sen-
tence mood chosen, the kind of structuring cues used and the way the robot
is referred to.

We can conclude that the preconception of the artificial communication
partner as a tool versus as a social actor plays an important role in predicting
the linguistic features empoyed by the users.

4.2 The Constraining Effect of Preconceptions for Align-
ment and Shaping

We may now want to ask how stable these preconceptions are and whether
they may influence the course of the dialogue and particularly the users’
alignment behaviour. This is not only theoretically interesting, but also of
great practical interst since due to the restrictedness of current systems, it
may be very useful to be able to subtly guide users into using those linguistic
structures and strategies that the system can process best [28]. As predicted
by [20], as well as Branigan and Pearson, this volume, speakers may align
with the robot’s output. In particular, we find:
Lexical Alignment

(25) R: Was kann ich fiir Sie tun? (what can I do for you?)
A004: (1) geh zur linken Tasse (...) links nach links (1) (go to the

left cup (...) left to the left)
R: Soll ich mich zu dem Objekt begeben, das vorne liegt? (do you

want me to move to the object which is in front?)
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A004: — nein 4hm zu dem Objekt was links liegt (no um to the
object which is to your left)

In the example, user A004 initially employs a basic level term to describe
the object, namely cup. After the robot uses the more abstract term object,
the user aligns with that term. She furthermore aligns with the syntactic
constrction the robot employs, namely the relative clause. In the following
example, the speaker also aligns with the robot’s construction by expanding
it in the reply:

Constructional Alignment

(26)  R: Welches Objekt soll ich ansteuern? (which object should I aim
at?)
A003: (2) (at=breathing)hm, (/a) (3) (...) (at=quiet)dhm, (/a) —
ja (2) das (3) zweite. — (um, well the second one.)

In the example below, the user employs the extrinsic reference system
that the robot had introduced turns before:
Alignment of Reference System

(27)  A003: (2) zu der Tasse, nord-ostlich. (2) (to the cup, north-east)
R: Soll ich mich zu dem Objekt begeben, das vorne liegt? (do you
want me to go to the object that is in front?)

A003: (4) nord-west. (laughter) mein Fehler. (laughter) (north-
west. my mistake.)

Alignment of Instructional Strategies

(28)  AO058: gehe vorwérts. (go straight.)
Robot: Soll ich mich zu dem Glas begeben? (do you want me to
go to the jar?)
A058: nein, geh zu dem Plastikbehélter in der Mitte vor Dir. (no,
go to the plastic container in the middle in front of you.)

In the previous example, the speaker changes from his previous path-
based instructional strategy to a goal-based strategy, aligning with the
robot’s orientation towards objects. In the follwong example, the user picks
up the robot’s formal form of address:

Alignment of Form of Address

(29) R: Welches Objekt meinten Sie? (which object did you mean? (for-
mal form of address))
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A029: - bitte, fahren Sie erstmal geradeaus. (1) (please, first drive
straight (formal form of address))

Thus, speakers may take up the linguistic structures presented to them
by the system. Moreover, a comparison between human-Aibo interaction
with and without linguistic output shows that after the robot’s initial ut-
terance hello, how do you do many linguistic differences can be found,
some of which can be attributed to alignment, some of which must how-
ever be due to changes in the conceptualization of the robot due to the fact
that the robot produces verbal output. Thus, it seems that the concept
of a language-generating robot is more sophisticated than that of an only
language-understanding robot. In [4], T have shown the effect on spatial
language; for example, the amount of consistent use of higher level spatial
instructions increased from 15.4% to 41.2% in the comparison of the two
conditions without and with verbal robot output. Similarly, the number of
relative clauses rises significantly as well as the complexity of the syntac-
tic structures used. Thus, the robot’s linguistic behaviour contributes to
speakers’ conceptualization about it.

However, the speakers’ preconcepts may also define the limits to this
kind of adaptation, as can be seen in the following example:

(30) R: Ja guten Tag, wie geht es Thnen? (yes hello, how do you do?)
A008: (2) geh vorwérts. — (go straight)
R: Was kann ich fiir Sie tun? (what can I do for you?)
A008: - gehe vorwérts. (7) (go straight)
R: Soll ich mich zu dem Objekt begeben, das vorne liegt? (do you
want me to go to the object that is in front?)
A008: (1) nein. gehe vorwérts. (10) (no. go straight.)

The speaker does not adapt to the robot’s utterances from the start. A
bit later in the dialogue, the effect persists such that the speaker takes up
neither the linguistic constructions nor the object-naming strategy presented
by the robot. In the last utterance of the excerpt, he minimally aligns with
the first part of the adjacency pair produced by the robot by providing the
answer 'the box’, but immediately after that he switches back to path-based
instructions:

(31) R: Soll ich mich zum Glas begeben? (do you want me to move to
the jar?)
A008: (3) gehe vorwirts. - (go forward)
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R: Entschuldigung, welches der Objekte wurde von Ihnen benannt?
(excuse me, which of the objects did you name?)

A008: (1) die Dose. (5) gehe links. (5) gehe links. (2) (the bozx. go
left. go left.)

We can thus conclude that alignment, though a natural mechanism in
HRI as much as in human-to-human communication, crucially depends on
the users’ concepts of their communication partner. That is, the less they
regard the computer or robot as a social actor, the less they align. This
is generally in line with the reasoning in Branigan and Pearson’s article
(this volume), who also argue that alignment is affected by speakers’ prior
beliefs. However, they hold users to align with computers only because
they consider them to be lingistically limited in their linguistic capabilities,
not because they would treat computers as social actors. In contrast, the
findings presented here show that users do not constitute a homogeneous
group, since speakers’ beliefs about their artificial communication partners
may vary considerably; those who regard computers as social actors will
indeed align with them.

5 General Conclusions

To sum up, the users’ concepts of their communication partner turned out to
be a powerful factor in the explanation of inter- and intrapersonal variation
with respect to linguistic features at all linguistic levels. In particular, two
prototypical preconceptions could be identified, one of the artificial commu-
nication partner as a tool, one as another social actor. These prototypes
can be reliably identified on the basis of the speakers’ first utterances which
display their orientation towards a social communication or a tool-using sit-
uation. These preconceptions have significant correlations with linguistic
behaviour on all linguistic levels. Thus, speech directed to artificial com-
munication partners is not constitute a homogeneous variety, and should
thus not be referred to as a register [14], unless it is captured in terms
of microregisters as suggested by Bateman (this volume). Moreover, de-
pending on their attention to social aspects even in the human-computer or
human-robot situation, speakers are inclined to align to their artificial com-
munication partners’ utterances. Thus, the users’ preconceptions constrain
the occurrence of, and define the limits for, alignment in human-computer
and human-robot interaction.
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On Changing Mental Models of a
Wheelchair Robot
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SFB/TRS Spatial Cognition, University of Bremen
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1 Introduction

Human-robot interaction has emerged as a field of investigation in its own
right in which the more basic questions relating to how people converse with
robots have been explored with a view to designing and improving specific
applications. Given the combination of theoretical and applied concerns,
it is not surprising that the field has been evolving rapidly in an attempt
to go beyond the mere description of interactions and into investigation of
how people can be influenced to conduct those in particular and predictable
ways. One line of research that is currently pursued explores the phenom-
ena of speaker adaptation, or influencing users into adapting to the robotic
dialogue system, as well as vice versa. While a number of interactive phe-
nomena are well-established by now, e.g., lexical overlap across speakers,
referring expressions becoming shorter and more similar over time, the ex-
act sources of these effects are still being debated. Thus, the key tenet of the
theory of interactive alignment [4] is that alignment occurs primarily via an
automatic psychological priming mechanism. On this view, mental models
are not involved much in this process as they are costly to update and un-
necessary in the default case. However, the assumption that mental models
are strategically maintained and consciously accessed during interlocutors’
interactions may be undermined by the lack of clear empirical evidence that
mental models exact a cognitive cost during interaction, on the one hand,
and by studies of speech accommodation as a form of adaptive behaviour.
The jury is still out on the issue of the automatic vs. strategy-based charac-
ter of accommodative verbal behaviour; for example, studies have suggested
that the actual focus of accommodation may not be the addressees’ commu-
nicative style in the specific interaction but a rather stereotypical model of
the interlocutor which would be important in both convergent and divergent
acts [2]. From this perspective, the degree to which interactive alignment
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— as a form of adaptive behaviour — is mediated by speakers’ mental mod-
els remains an open question and is part of a long-term research agenda in
human-robot interaction where variability in users’ speech patterns, includ-
ing degrees and forms of alignment, can be examined with respect to their
mental models of interlocutors.

While most research has focused on interactive alignment in human-to-
human dialogue, recently the relationship between alignment and mental
models was explored in the domain of human-computer interaction in an
experimentally controlled setting where participants were shown to display
greater alignment with a computer program when they were led to believe
that their conversational partner was a computer rather than a human being,
and further, when they thought that their computer interlocutor had rather
basic capabilities instead of advanced ones [1]. Clearly, speakers’ mental
models provide at least a partial source of variability in aligning one’s speech
with a computer agent.

These considerations bring to the fore the need for systematic examina-
tion of speakers’ mental models and their co-relationship with features of
dialogic speech, an area that has remained under-researched. In Bremen, a
long-term agenda on human-robot interaction has developed around a small
set of highly specific spatially-embedded interactional scenarios such as route
instructions or internal map augmentation. Within this programme, speak-
ers’ mental models have been inferred from the specific features, choices,
and constraints attested during their interaction with robots (e.g., Aibo,
the robotic wheelchair Rolland, the non-axial robotic Box, etc.). As part
of this programme, the study described here aimed at examining mental
models by means of explicit assessment of their features. Mental models re-
fer to people’ s conceptual frameworks which support their reasoning about
the world, about other people, and in the case of human-robot interaction
(HRI), about robots as well. Users’ mental models can be manipulated by
implicit means (variations in the appearance, voice, speech, other capaci-
ties, etc. of the robot), or more overtly, by explicit instructions preceding or
accompanying the HRI situation, e.g., by providing a name for the robot (fe-
male, male), origin (Hong Kong vs. New York), definition of capacities, etc.
Mental models of robots have recently been investigated more directly via
users’ behavioural responses to targeted assessment tools. A series of stud-
ies, Kiesler and Goetz [3] have contributed to developing a methodology of
measurement and increasing our understanding of the involvement of mental
models in human-robot interaction. [5] have also conducted an assessment
of robotic mental models based on the Big Five personality model.

In this study, we focus on the relationship between mental models and
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users’ experience of an HRI situation. The specific situation involved in-
teraction with the Bremen robotic wheelchair called Rolland which could,
allegedly, understand and produce speech. The mental models’ assessment
took place twice — before and after the HRI task — so that both the initial
pre-conceptions of robots and the impact of the interaction on the partici-
pants’ perception of a specific robot could be examined. Our first research
question concerned the contents of users’ mental models of robots. We also
aimed at establishing the relative stability or flexibility of participants’ men-
tal models as a function of the specific human-robot interaction that they
were involved in — how do mental models of robots compare before and after
the interaction with a talking wheelchair robot? Finally, the relationship
between participants’ general assessment of the HRI and the mental model
features was examined.

2 Method

The study used a before-after questionnaire procedure where participants
were asked to provide their judgments on how accurately each of a number
of features describes what they think of robots in general before the human-
robot interaction and of the specific robot after the HRI session on a five-
point Likert scale where a score of 5 was associated with ’highly accurately’
and a score "highly inaccurately.’

The interaction was conducted in a Wizard-of-Oz setup in a sequence
of spatially-embedded scenarios involving participants describing a room, a
corridor environment, and offering Rolland route directions to locations in
that same corridor area. This was done while each participant was seated in
and navigated manually the wheelchair. Pre-designed and pre-synthesized
male-voice robotic utterances were heard by participants as originating with
Rolland.

The participants in the experiment were 11 English native speakers (7
women, 4 men, average age 36.5, age range 20-60), 11 German native speak-
ers (8 women, 3 men, average age 23.4, age range 19-40), and 9 German-
English bilinguals (8 women, 1 man, average age 21.7, age range 20-25).
The bilinguals were asked to use their second language (English) in their
communication with Rolland, and the others used their native language.

The mental model measures were partially based on the Big Five in-
ventory (the most widely accepted taxonomy of personality traits since the
late 1980s) with its five scales of extraversion, agreeableness, conscientious-
ness, emotional stability, and creativity /openness to new experiences, and
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partially designed specifically for the scenarios of HRI, including scales of
sociability, intelligence, partnership, mechanistic vs. anthropomorphic mod-
els. Participants also rated the robot’ s accuracy and logic. There was also
an additional section only following the HRI session which covered more
general questions on mutual liking, degree of difficulty of the task and the
interaction, degree of stress, enjoyment, satisfaction, interest involved and
readiness to participate again.

3 Results

The analysis of participants’ judgments in this study shows that they were
perfectly able to distinguish among the five scales of personality in their
mental representations of robots. In both before- and after-session ques-
tionnaires, participants gave high ratings for conscientiousness (4.03 and
4.23, respectively) and emotional stability (3.87/3.74) of robots in general
and of Rolland in particular. At the same time, they had rather low expec-
tations of robots on the openness/creativity (1.89/1.98) and agreeableness
(1.97/2.50) scales. High estimates of robots’ accuracy (3.47/3.90) and logic
(4.42/4.06) were accompanied by low values on the anthropomorphism scale
(1.58/1.94). Thus, the fact that participants differentiated among the five
personality scales and did not provide similarly bland and non-committing
estimates of robotic traits indicates that they entered and left the HRI sit-
uation with a mental model of robots and of Rolland. This also applies to
their estimates of the additional measures on sociability, logic, accuracy, etc.
Establishing participants’ ability to differentiate among the five personality
scales and the additional measures is in line with previous research (Goetz
and Kiesler, 2002, Kiesler and Goetz, 2002). The before-after procedure,
however, also allowed us to go one step further and assess the dynamics of
these mental models and to what extent they were influenced by the specific
HRI interaction that participants were involved in. Their initial expecta-
tions could thus be teased apart from the effect of the HRI experience. The
analyses revealed that participants entered their interaction with Rolland
with mental models of robots that already at that point indicated differ-
entiation among the five personality scales, including high expectations of
robots’ conscientiousness (see above), emotional stability or lack of emo-
tional instability (see above), and of their logic (M=4.42). On the contrary,
robotic openness/creativity (see above), agreeableness (see above) and the
additional measure of human-likeness or anthropomorphism (M=1.58) were
estimated rather conservatively.
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A comparison of the ratings given by participants before the HRI with
the score following the interaction provides an insight into how stable or
unstable such estimates and mental models of robots are. The analyses re-
vealed a set of stable features which remain unchanged as a result of the
HRI, namely, the highly positive estimates of emotional stability (or lack
of instability) and conscientiousness, as well as the relatively positive val-
ues for accuracy and logic, on the one hand, and the negative perception
of robots on the openness/creativity and extraversion scales, on the other
hand. Stable values show consistency across time of assessment and the
modest degree of impact produced by the specific HRI. Obviously, these are
deeply entrenched beliefs about robots which are shared at least by the par-
ticipants in the study. They may also be shared by the designers of robotic
interactants, of their verbal output, embedded in the design of the HRI sce-
narios as such. However, these beliefs appear to be shared on an even wider
scale by the society and culture at large. After all, cultural artefacts involv-
ing robots, past experience with robotic applications, etc., have taught us
that expected and desirable robotic features include mostly accuracy, logic,
conscientiousness, and not behaviour which is errorful, random, emotional
or humorous, as in our own everyday system of beliefs on intelligent agents,
a higher value is placed on utility. Naturally, on the basis of this study alone,
we cannot say if people’ s mental models vary across interactions with differ-
ent robots. We expect, however, to find a subset of stable features in these
models in addition to features that are more malleable by the particular
circumstances of the HRI, the robotic appearance, etc.

In this study, the most fluid features of the mental models were those
on the agreeableness scale and the measure of anthropomorphism (how
machine-like vs. human-like the robotic wheelchair was perceived to be)
on both of which more positive evaluations were received after the interac-
tion than before. In fact, there was no re-arrangement at the bottom of the
evaluation hierarchy — the measures with initial low estimates continued to
occupy similar bottom ranks in the same hierarchical order as before. The
'movers and shakers’ produced changes at the top ranks of the hierarchy:
(a) conscientiousness instead of logic became the most positively perceived
robotic feature; (b) emotional stability was rank-demoted at the expense of
accuracy and partnership.

All in all, participants’ perception of the robotic wheelchair was more
favourable after participation in the HRI tasks with Rolland than their ex-
pectations of robots prior to the interaction. Out of all 11 measures, only
three (extraversion, emotional stability, and logic) suffered a numerical drop
in scores as a result of the HRI session (.18, .13, and .35 points, respectively),
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all other scales showed an improved opinion of Rolland in comparison with
general perceptions of robots. However, some changes were quite dramatic
while others seemed somewhat superficial. This was confirmed by a sta-
tistical analysis of the significance of these changes performed by means
of a series of paired t-tests (used to compare two population means where
the observations in one of the two samples can be paired with observations
in the other sample as in a before-after procedure), revealing that signifi-
cant changes in participants’ perception of robots before and after the HRI
occurred on the measures of agreeableness (mean values of 1.97 and 2.50,
respectively; paired t-test, t = 3.02, p = .01), anthropomorphism (mean
values of 1.58 and 1.94, respectively; paired t-test, t = 2.48, p = 0.02), part-
nership (mean values of 3.37 and 3.84, respectively; paired t-test, t = 3.41, p
< 0.001) and sociability (mean values of 2.89 and 3.21, respectively; paired
t-test, t = 2.06, p = 0.05), all positive increases. As a whole, however, after
the HRI, participants continued to maintain their negative stereotypical no-
tions of robots while at the same time re-arranging the positive attributions
in their evaluations.

Having established the contents and changes in participants’ mental
models of robots, we now turn to the general perception of Rolland, the
task, and the overall experience of the HRI as assessed by the short end-
of-session survey which included questions on mutual liking (How much did
you like the robot? How much did the robot like you?), difficulty of the task
and of working with Rolland, stress, enjoyment, interest, satisfaction, and
willingness to participate in a similar experimental task later. The responses
to these questions were moderately to highly correlated (coefficients ranging
from .27 to .72). For example, a positive correlation was established between
responses on the questions referring to mutual liking — the more the partici-
pants liked the robot, the more they thought the robot liked them, too (r =
.33). Similarly, stress was associated with the difficulty of the task and how
hard it was to work with the robot; enjoyment, satisfaction, interest, will-
ingness to participate again were highly correlated, etc. However, is there a
relationship between participants’ general perception of the HRI task and of
Rolland and their pre-conceived ideas of robotic personality and capabilities
as established in the before-HRI assessment? Do their initial expectations
of a cold and rational robotic assistant affect how they feel about their expe-
rience with human-robot interaction at the end of the experimental session?
To answer this question, an analysis of correlations between responses on
each of the general survey questions and each of the before-HRI measure
ratings was conducted. The results of the analysis revealed that almost all
of the survey general responses were moderately correlated with a measure
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from the initial assessment (the one exception were responses to the question
regarding how hard the task was). They were, however, significant correla-
tions with only three of the measures used in the assessment before the HRI,
i.e., the ratings of accuracy, anthropomorphism, and the openness/creativity
scale. Note that it is only the latter that belongs to the Big Five personality
inventory, that is, how extravert, agreeable, conscientious, and emotionally
stable robots were in participants’ mental models did not affect their gen-
eral reactions to the HRI experience. Furthermore, it became evident that
positive evaluations at the end of the experimental session were associated
with lower ratings on the initial assessment of mental models. Thus, initial
estimates of openness/creativity were negatively correlated with the degree
to which participants liked our robot (r = -.37), or thought that the robot
liked them (r = -.31), as well as the level of fun (r = -.35), interest (r =
-.34), and willingness to repeat (r = -.34) that they had (the probability
level was set to .05 for all correlations reported in the paper). On the other
hand, initial low ratings of robots’ accuracy were associated with higher
levels of overall satisfaction (r = -.30) and participants liking the robot (r
= -.39). Anthropomorphism or human — likeness estimates were negatively
correlated with how hard it was to work with Rolland and the general level
of stress they had during the HRI task. Perhaps somewhat paradoxically,
the worse participants thought of robots’ potential for creativity /openness
to new experiences, accuracy and human-likeness, the more impressed and
satisfied they were with the human-robot experience. Their initial schema of
most robotic personality traits (robots seen as highly conscientious and un-
emotional, rather introverted and disagreeable) was not obviously involved
in their general HRI assessment at the end. Whether this pattern can be
generalized to account for interactions with further robotic partners and in
other scenarios, is an open question that remains to be explored.

4 Conclusion

The conclusions that emerge from the analysis of the data on mental models
from this study lead to our understanding of the existence of a stable set
of features which remain unchanged as a result of the HRI, namely, highly
positive estimates of the emotional stability and conscientiousness, accuracy
and logic of robots, and at the same time, negative perceptions of robots’
openness/creativity, extraversion, and agreeableness. Generally, robots are
perceived as machine-like (not particularly anthropomorphic) both before
and after interactions with Rolland in the scenarios used here. The general
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image of robots is one of cold rationality, lacking in emotion and flexibility.
To reiterate, such stable judgments may be representative of shared and
deeply entrenched beliefs about robots not only by the participants here,
but more widely, as part of the cultural expectations in our society at large.

In this study, the relative flexibility of some features of robotic mental
models was established, namely, agreeableness, anthropomorphism, partner-
ship (cooperation and reliability) and sociability. The significant changes ob-
served were all in the positive direction; Rolland was not rated down after the
HRI session in comparison with the initial conception of robots. With very
few exceptions (openness/ creativity, accuracy), participants’ initial mental
models were hardly involved in their general perception of the human-robot
interaction. However, the more machine-like they thought robots were to
begin with, the higher their satisfaction level rose after the interaction. It
remains to be seen if this is a 'novice user’ effect with all the surprise and
excitement which would wear off with repeated interactions by long-term
users.

Finally, the next step on our research agenda would take us to the in-
vestigation of the relationship between mental models and dialogic feature
patterns, including individual and group variability. This will bring us closer
to an understanding whether interactive alignment can be enhanced by ma-
nipulating speakers’ mental models of robots and whether increased levels
and scope of alignment are beneficial for efficiency and success in human-
robot interaction beyond the enhancement of dialogue.
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Abstract

There is strong evidence that speakers in Human-Human Inter-
action (HHI) are influenced by their interlocutors, both directly via
the linguistic content of their interlocutors utterances (alignment),
and indirectly via their beliefs about their interlocutors knowledge
state, interests and so on (audience design). We discuss a series of
experiments that investigated whether alignment effects also occur in
Human-Computer Interaction (HCI). Our results suggest that not only
does alignment occur in HCI, it is in many circumstances stronger than
in HHI. Differences in alignment in HCI versus HHI appear to arise
from differences in speakers’ a priori beliefs about the capabilities of
their interlocutor, suggesting a strategic component to alignment. Fur-
thermore, speakers do not update their a priori beliefs about computer
interlocutors on the basis of feedback, unlike in HHI, where feedback
leads to the rapid updating of beliefs about (human) interlocutors.

1 Introduction

In order to understand how people behave in Human-Computer Interaction
(HCI), it is often valuable to examine how they behave in Human-Human
Interaction (HHI). Understanding HHI can help us to predict and simulate
human behaviour in HCI. Perhaps more interestingly, it may be able to help
us modify human (user) behaviour in HCI. In this paper we are concerned
with how a computers linguistic behaviour, specifically its lexical and syn-
tactic choices, may impact on the lexical and syntactic choices made by a
human user who interacts with it. We will begin by considering how a hu-
man addressee can influence a speakers choices, and examine how this might
map onto HCI, before discussing a number of experiments that directly in-
vestigated these issues by comparing human linguistic behaviour in the same
task in HCI versus HHI.
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2 Audience Design

There is overwhelming evidence that addressees influence speakers’ linguistic
behaviour both indirectly and directly in HHI. Indirectly, they affect speak-
ers through Audience Design, the process by which speakers design their
utterances with their addressee in mind (Bell, 1984). Thus speakers take
into account their beliefs about the addressees current state of knowledge,
beliefs, abilities etc when they formulate their utterances. For example,
Fussell and Krauss (1992) demonstrated that speakers used their a priori
assumptions about the social distribution of knowledge (e.g., that people
are more likely to know movie stars than industrialists) to alter the way in
which they referred to entities. In this experiment, speakers participating
in a referential communication task that involved describing people from
various domains (e.g., politicians, film stars, business people) produced de-
scriptions that reflected their a priori beliefs about how likely the addressee
was to be able to identify the referent, using proper names when they judged
a referent to be easily identifiable by their addressee (e.g., Clint Eastwood),
but more detailed descriptions when they judged a referent to be less easily
identifiable by their addressee (e.g., Ted Turner). Such a priori beliefs can
affect the form of speakers utterances, as well as their content. For exam-
ple, beliefs about the linguistic competence of the addressee may cause the
speaker to speak more slowly or use less complex syntax when addressing
a young child than when addressing another adult, for example (Ferguson,
1975).

Speakers may also dynamically accommodate their addressees’ changing
state of knowledge. Haywood, Pickering, and Branigan (2005) reported a
study in which pairs of participants took turns directing each other to move
an object in an array, such as moving a toy penguin into a cup. They
manipulated the array such that it contained potential ambiguities. For
example, when two penguins were present, the utterance Put the penguin in
the cup... was ambiguous. Speakers were more likely to produce that’s more
often (Put the penguin that’s in the cup...), thus removing the ambiguity,
when there were two penguins than where was only one penguin. Hence
speakers chose syntactic structures that were most easily understood by
addressees, by accommodating the addressees’ current state of knowledge.

Audience Design can also be based on direct evidence from the addressee
(i.e., feedback) about the addressees’ state of knowledge. In a referential
communication task that involved describing New York City landmarks,
Isaacs and Clark (1987) showed that a speakers’ a priori assumptions about
an addressees’ knowledge can be dynamically adjusted as their addressees
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level of knowledge becomes apparent. Non-native New Yorkers were more
likely to initially use a description based on visual cues, such as building with
a tall pointy roof and a spike on top, but become more likely to use the name
of the landmark over the course of the dialogue if the addressee gave evidence
of being a native New Yorker. By contrast, native New Yorkers were more
likely to initially use a name, such as Chrysler building, but become more
likely to give extra identifying information over the course of the dialogue if
the addressee gave evidence of being a non-native New Yorker.

3 Alignment in HHI

As well as addressees indirectly influencing a speakers linguistic behaviour
through the speakers beliefs about an addressee, they may directly influence
a speaker through their own linguistic behaviour. Evidence for this comes
from demonstrations of alignment, the phenomenon whereby people tend to
converge on the same linguistic features as a previous speaker. Alignment
effects appear to be robust and highly pervasive in dialogue: Speakers have
been found to align at many linguistic levels, including those as diverse as
rhetorical structure, speech rate, pronunciation, word choice and syntactic
structure (e.g., Giles, Coupland & Coupland, 1991; Schenkein, 1980), as well
as at entirely non-linguistic levels, such as bodily movements, where it has
been termed the chameleon effect (Chartrand & Bargh, 1999).

One important aspect of alignment is that it can be implicit. It al-
most always arises without explicit negotiation, and on those occasions
where speakers do explicitly negotiate a term to use, they frequently end
up aligning on a different expression (Garrod & Anderson, 1987). Further-
more, speakers are usually unaware of aligning with a conversational partner.
Post-experimental debriefing has shown that speakers are very rarely aware
of alignment of form; they sometimes though more frequently do not report
awareness of alignment at levels related to meaning.

Alignment occurs at levels of structure concerned with meaning, such as
choice of reference frame (Watson, Pickering, & Branigan, 2005) and situ-
ation models (Garrod and Anderson, 1987). Similarly, speakers align their
lexical choices, using the same words in same ways (e.g., using square to refer
to a single node or a configuration of nodes; Garrod and Anderson, 1987).
In at least some circumstances, such alignment can occur even for lexical
choices that are rare or unusual. Bortfield and Brennan (1997) showed that
native speakers adjusted their preferred terminology to match non-native
interlocutors’ non-standard terminology (e.g., The chair that can go back
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and forth to refer to a rocking chair) if the non-natives exhibited evidence
of comprehension difficulties, although there was no difference in the degree
of alignment to a non-native than a native partner.

Such alignment may be linked to differences in meaning. For example,
aligning on a term such as rainbow trout versus coloured fish may reflect
alignment of interlocutors perspectives, or ways of thinking about the world.
But other alignment seems to be unrelated to convergence on types of mean-
ing, such as alignment of speech rate, or alignment of syntax when both
alternatives express the same meaning. Branigan, Pickering and Cleland
(2000) showed that speakers align syntactic structure. A naive participant
and a confederate (who followed a script) took turns to describe pictures to
each other. Experimental pictures depicted ditransitive events and could be
described using a Prepositional Object (PO) (e.g., The pirate handing the
cake to the sailor), or a Double Object (DO) form (e.g., The pirate handing
the sailor the cake). Nave participants tended to produce target descriptions
that had the same syntactic structure as the confederates preceding prime
description, even when the prime and target pictures involved unrelated
events, though effects were larger when the same verb was repeated (77%
aligned descriptions, versus 63% aligned descriptions when the verb was not
repeated). Similar effects have been found for other structures (e.g., NP
structure; Cleland & Pickering, 2003), in multi-party dialogues (Branigan,
Pickering, McClean & Cleland, in press), and in special populations such
as bilinguals, L2 learners, children etc. (Flett, Branigan & Pickering, sub-
mitted; Hartsuiker, Pickering & Veltkamp, 2004; Huttenlocher, Vasilyeva &
Shimpi, 2004).

Alignment can co-occur alongside audience design. Haywood et al. (2005)
found that not only did participants show audience design effects in their
production of ambiguous versus disambiguated structures, they also showed
alignment effects: participants were more likely to produce disambiguated
instructions like Put the penguin that’s in the cup after hearing the confed-
erate produce an instruction like Put the sheep that’s on the plate, indepen-
dently of the content of the array.

Alignment effects have been explained in many ways. Some such effects
may have a more or less consciously affective element; speakers who converge
with respect to breadth of vocabulary are judged more favorably than those
who do not, for example (Bradac, Mulac, & House, 1988). There is a sub-
stantial body of research that investigates alignment effects (termed accom-
modation effects) within such a social psychological framework (e.g., Giles,
Coupland, & Coupland, 1991; Giles & Powesland, 1975; Giles & Smith,
1979). For example, reciprocity effects may explain why speakers align lin-
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guistic form in the absence of differences in meaning (Gouldner, 1960). In
such accounts, the perceived social identity of the addressee is critical. For
example, alignment in order to display politeness towards an addressee is
only relevant for addressees that are perceived as social agents.

Other research explains alignment as a manifestation of audience de-
sign. In such accounts, alignment is a strategic behaviour in which speakers
choose to adopt the other persons perspective in order to enhance communi-
cation: by choosing the same description schema or referential expression as
their conversational partner, the speaker maximises the chances of effective
communication (e.g., Brennan & Clark, 1996). Such approaches provide a
plausible explanation for alignment of aspects of language associated with
differences in meaning (e.g., lexical choice), but do not adequately explain
why alignment of linguistic form occurs (in the absence of meaning differ-
ences).

A third approach explains the effects primarily with reference to the
cognitive processes that are involved in language processing. For example,
Pickering and Garrod (2004) suggested that alignment is an automatic, de-
fault behaviour. In support of this proposal, they noted that children show
a stronger tendency to align than adults; notably, they align linguistic form
even when this leads to misunderstanding, such as using the same term
with different reference (e.g., using square to mean different things; Garrod
& Clark, 1994). Garrod and Clark therefore suggested that children align
as their default behaviour, and that part of becoming a mature language
user involves learning to suppress the tendency towards alignment when
necessary. In keeping with this, Pickering and Garrod (2004) suggested that
alignment is based on automatic priming mechanisms. That is, alignment
reflects the facilitation of particular linguistic representations and processes
following their prior use. For example, lexical alignment may reflect basic
priming processes of the sorts that have long been identified in models of
language processing. Similarly, syntactic alignment is hypothesised to occur
because prior production or comprehension of a particular syntactic struc-
ture raises the activation of the relevant syntactic representations and/or
processes, making them a better candidate for subsequent use (Branigan,
Pickering & Cleland, 2000).

Pickering and Garrod argued that alignment is fundamental to efficient
communication. In their account, efficient communication arises when in-
terlocutors come to have the same understanding of relevant aspects of the
world, through alignment of their situation models (e.g., Zwaan & Radvan-
sky, 1998). Such alignment itself arises from alignment of other aspects of
language (e.g., syntax, lexical choice): alignment is hypothesised to perco-
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late upwards, such that alignment at one level promotes alignment at others.
Hence lexical alignment promotes syntactic alignment, which in turn pro-
motes semantic alignment.

Of course, these different types of explanation are not mutually exclu-
sive. Rather, there is good reason to believe that multiple factors underline
alignment. It seems most likely that there is at least some implicit element,
given that participants generally report lack of awareness of alignment. But
other factors may also contribute to the overall effect, such that the basic
(automatic) alignment effect may be enhanced by other, social factors, such
as the social status of an interlocutor. Such factors may influence alignment
at some levels of structure more than at others. For example, in the same
way that levels of structure associated with differences in meaning appear
to be more amenable to audience design effect, such levels might also be
more amenable to non-implicit or strategic alignment effects. Hence we sug-
gest that observable alignment of linguistic behaviour, by which we mean
convergence on common linguistic features, is most likely to contain both
automatic and strategic components.

4 Possible Patterns of Alignment in HCI

All of the evidence reviewed above relates to alignment in HHI. But if align-
ment is a default linguistic behaviour whose occurrence may at least in part
arise as a consequence of the architecture of human language processor, then
it should occur in any communicative context. Hence we might expect to
find alignment effects in HCI.

If alignment effects arise purely from automatic priming of linguistic
representations, then alignment would occur whenever a linguistic structure
is encountered, irrespective of context. However, there are reasons to expect
that the pattern of any alignment in HCI might differ from that found in
HHI. In particular, it seems likely that there may be a strategic component to
alignment that would affect alignment differentially in HHI and HCI. Some
element of this may relate to social factors such as community membership.
In that case, speakers might be influenced by their a priori beliefs about
the social identity of the computer. If systems are not treated as social
agents just like humans, then alignment in HCI might differ from alignment
in HHI; for example, in that case we might expect less alignment in HCI
contexts if a substantial component of alignment relates to social factors
such as reciprocity and politeness. Conversely, if systems are treated as
social agents just like humans (Reeves & Nass, 1996), then alignment with
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a computer could occur in the same way as it does with a human.

But as we have seen, speakers’ linguistic choices in HHI, including their
lexical and syntactic choices, are also influenced by both their a priori beliefs
and the direct evidence that they encounter concerning, their addressees’
knowledge, capability etc. Extrapolating from this, it seems plausible that
peoples beliefs about the knowledge, capability etc. of a computer might
influence the extent to which they align with it. For example, people might
assume computers to be (generally and/or specifically linguistically) less ca-
pable than humans. This might increase their likelihood of aligning with
computers for essentially strategic reasons (i.e., to increase the likelihood
of successful communication), relative to their likelihood of aligning with
another human, to the extent that people might overcome their default
preferences to use particular terms or structures in order to align with a less
preferred one that has just been used by a computer interlocutor. If there is
such a strategic component to alignment, then we might find variations in
magnitude of alignment associated with variations in the perceived capabil-
ity of the computer, such that alignment is stronger with a computer that is
perceived to be of lower capability than with one perceived to be of higher
capability.

Research on HHI has shown that speakers can rapidly update their a
priori beliefs on the basis of feedback from the addressee concerning com-
municative success (or lack thereof), so we might expect that a priori beliefs
about the capability or otherwise of a computer might similarly be quickly
overridden in the light of feedback. Hence we might expect an initial ten-
dency towards stronger alignment in HCI to rapidly disappear if the com-
puter gives evidence of successful comprehension.

In sum, then, alignment is potentially a highly important phenomenon
in HCI but there are many factors that might affect patterns of behaviour.
Specifically, there are many reasons why alignment in HCI might differ from
alignment in HHI. One important issue that any study of such effects must
address is the extent to which any differences between HCI and HHI are an
artefact of the communicative situation, in other words, the involvement of a
computer in the communication rather than arising from genuine differences

between HCI and HHI.
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5 Experimental Investigations of Alignment in HHI
and HCI

Our research investigates lexical and syntactic alignment in HCI in a way
that excludes such an explanation by using a modified version of the con-
federate scripting paradigm (Branigan, Pickering & Cleland, 2000), which
allows investigation of alignment in dialogue under controlled conditions.
Pairs of participants play a picture-matching and -describing game, alter-
nately describing a picture to their interlocutor, and selecting a picture that
matches their interlocutors description. In fact, only one participant is an
experimental participant; unbeknownst to the naive participant, the other
participant is a confederate of the experimenter who produces descriptions
scripted by the experimenter. The form of the confederates’ description is
systematically manipulated and the form of the participants subsequent de-
scription is examined to see whether it has the same linguistic features (i.e.,
aligns) or not with the confederates immediately prior description. In exper-
iments investigating syntactic alignment, we were concerned with whether
the participant chose the same syntactic structure as the confederate had
just used, when they had a choice of two denotationally identical alternatives
(PO vs DO) to describe a ditransitive event; in experiments investigating
lexical alignment, we were concerned with whether the participant chose the
same word as the confederate had just used, when they had a choice of (at
least) two quasi-synonymous words to describe a single object.

In our version of the confederate scripting paradigm, participants were
led to believe that they were playing the picture-matching and -describing
game with their interlocutor via a networked computer terminal, interact-
ing with their unseen interlocutor by typing. We manipulated participants’
beliefs about identity of their interlocutor: participants were led to believe
that they were interacting with a computer interlocutor or with a human
one. In fact, there was no interlocutor: participants always interacted with a
computer program that produced pre-scripted utterances (Reverse Wizard-
of-Oz). Using this methodology enables the experimenter to systematically
control the interlocutors’ utterances that participant encounters. In the
studies we report here, the actual linguistic behaviour that they experi-
enced from their interlocutor was always identical in all conditions. In other
words, the human and computer interlocutors behave identically. Indeed, all
aspects of the experiment were identical apart from the participants’ beliefs
about the interlocutor with which they were interacting. Clearly, then, any
differences in participants’ linguistic behaviour must be due to differences
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in participants’ beliefs about their interlocutor. In this way we can inves-
tigate how beliefs about the nature of ones interlocutor affect participants
likelihood of aligning to their interlocutor.

In Branigan, Pickering, Pearson, McLean and Nass (2003), we inves-
tigated the role of a priori beliefs about an addressee on syntactic align-
ment. This study was similar to Branigan et al. (2000), but using typed
communication. We manipulated the syntactic structure of the description
that participants received, ostensibly from their interlocutor: experimen-
tal pictures depicting ditransitive events were described using two different
syntactic forms, a PO or a DO form. We examined how this affected the
syntactic structure that they produced for the immediately subsequent de-
scribing turn. We also manipulated whether these two descriptions involved
the same verb or different verbs. In addition, we also manipulated partici-
pants beliefs about the nature of their interlocutor: Participants interacted
with what they believed to be another person or a computer.

Given that Branigan et al. (2000) and other researchers have found a
strong tendency in HHI for speakers to use the same structure as the ut-
terance they had just heard, which increased when the verb was repeated
between descriptions, what predictions might one make for syntactic align-
ment in HCI? Alignment at the level of syntactic form seems to occur with-
out any awareness on the part of speakers (see Pickering & Branigan, 1999
for a review). Branigan et al. (2000) interpreted their results in terms of the
activation of syntactic information: Comprehending a particular structure
activates associated syntactic rules and thus raises the likelihood of their ap-
plication in subsequent speech. If syntactic alignment is a largely automatic
process, then we would expect it to be relatively impervious to beliefs about
an interlocutor. That is, an utterance with particular syntactic characteris-
tics should bring about the same effect on the addressee, regardless of the
identity of the producer. For example, comprehending a PO sentence will
automatically activate the syntactic rule(s) associated with the PO struc-
ture. However, we noted above that alignment in HCI might be subject
to social factors (e.g., reciprocity, politeness) or to strategic effects related
to differences in a priori beliefs about computers versus humans, either of
which could give rise to different patterns of behaviour in HCI versus HHI.

In our study, a participant’s description was coded as aligned if it had
the same syntactic structure as the structure of their interlocutor’s imme-
diately preceding description (either PO or DO), or as misaligned if it had
a different syntactic structure. We found that, as in earlier studies of HHI
(Branigan et al., 2000), alignment occurred whether the verb in the inter-
locutors’ descriptions and the verb in the participants’ subsequent descrip-
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tions were the same or different, but it was significantly stronger if the verb
was repeated than if it was not. This suggests that alignment processes in
typed dialogue involving no other visible interlocutor are broadly similar to
alignment processes in dialogue between co-present interlocutors who use
speech to communicate.

More interestingly, however, the results helped to distinguish between
accounts of alignment in which a priori beliefs about the nature of one’s
interlocutor are not relevant, such that the magnitude of alignment is based
solely on features of the utterances that have just been encountered; and
accounts in which alignment is influenced by beliefs about the interlocutor,
either because it is a strategy that people use because they believe it is bene-
ficial in helping both interlocutors to reach mutual understanding or because
it arises from social factors such as reciprocity and politeness, and which is,
to at least some degree, under their control. In the study, participants en-
countered identical utterances in each condition (HHI vs HCI). When the
interlocutor’s description and the participant’s description involved differ-
ent verbs, alignment occurred to the same extent for human and computer
interlocutors. Hence, participants aligned linguistically with what they be-
lieved to be a computer, and the strength of this alignment was broadly
comparable with the alignment that occurred when participants believed
themselves to be communicating with another person. By contrast, when
the interlocutors description and the participants description involved the
same verb, there was significantly greater alignment to a computer than to
a human interlocutor.

The finding of comparable alignment to both computer and human in-
terlocutors when the verb was not repeated is in line with accounts in which
alignment has a non-strategic component, in keeping with accounts stress-
ing that alignment is a basic organizing principle of dialogue (Pickering &
Garrod, 2004). It is consistent with Reeves and Nass’s (1996) claim that
people respond mindlessly to social cues, irrespective of their origin. But
the greater alignment to computer than human interlocutors when the verb
was repeated provides evidence that when people may be more aware of the
nature of their utterances, alignment can also involve strategic activation
of a decision component. In this case, the lexical repetition, together with
the use of typed responses in which their utterance was visible on-screen,
may have made participants more aware of the differences between the PO
and DO constructions, allowing for participants to chose to align or not.
This suggests that beliefs about one’s addressee can affect alignment when
speakers are aware that a strategy of alignment is available.

Existing evidence suggests that speakers’ lexical choices in HHI are af-
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fected by beliefs about one’s addressee (e.g., Fussell and Krauss, 1992). Our
finding of greater alignment to computer than human addressees when the
verb was repeated suggests that beliefs about an addressee affect syntactic
alignment in HCI when speakers are aware that a strategy of producing
aligned utterances is available. Thus, it seems likely that there may be a
strategic component to the formulation of utterances that would affect lex-
ical alignment in HCI. In Branigan, Pickering, Pearson, McLean, Nass and
Hu (2004), we investigated lexical alignment using the typed version of the
confederate scripting paradigm described above. In this study, participants
saw two objects on-screen, and had to name one of them. Experimental
objects were chosen to have one highly preferred name (e.g., bench) and
one highly dispreferred but acceptable name (e.g., seat), on the basis of the
pretest. We manipulated the lexical items that participants received, osten-
sibly from their interlocutor, so that they received with the highly preferred
or the highly dispreferred but acceptable name. We examined the lexical
form that participants produced when they subsequently named the same
picture. As before, we also manipulated participants’ beliefs about the na-
ture of their interlocutor: participants interacted with what they believed
to be another person or a computer.

Participants’ responses were coded as aligned if they used the same word
to name the picture as that just used by their interlocutor, or as misaligned
if they used a different word. The results showed that speakers lexically
aligned to both computer and human interlocutors. Hence, lexical align-
ment occurs in HCI just as in HHI. Moreover, participants aligned to a
highly dispreferred term, overriding their own lexical preferences. However,
there was significantly greater alignment to a computer than to a human
interlocutor. This follows the pattern of results found in the repeated-verb
condition of our previous study investigating syntactic alignment, and again
implies that alignment is influenced by beliefs about one’s addressee. It
provides further evidence that alignment involves strategic activation of a
decision component in contexts where speakers may be more aware of the
linguistic characteristics of their utterances or the existence of alternative
linguistic formulations for their intended message.

Why might speakers align more with computer interlocutors when they
are aware that such a strategy is open to them? Clearly, social factors such
as reciprocity and politeness are not a substantial component of alignment
in such contexts. If computers are treated as social agents just like humans,
then alignment based on reciprocity/politeness should occur in the same way
with a computer as it does with a human. If computers are not treated as so-
cial agents just like humans, then alignment based on reciprocity /politeness
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should occur to a much lesser extent with a computer than with a human.
But we found neither such pattern; instead, we found more alignment with
a computer than with a human, suggesting that even if such social factors
do influence alignment, their influence is a relatively negligible determinant
of alignment in these contexts.

We noted above that speakers’ linguistic choices in HHI, including their
lexical and syntactic choices, can be influenced by their a priori beliefs and
the direct evidence that they encounter concerning their addressees knowl-
edge, capability etc. (e.g., Bortfield and Brennan, 1997). Thus, a possible
explanation for the greater alignment to computers than human addressees
observed in our previous studies may be because people believe that comput-
ers are, in some respects, less capable (generally, or specifically linguistically)
than people. This might increase their likelihood of aligning with computers
for essentially strategic reasons (i.e., to increase the likelihood of successful
communication). If there is such a strategic component to alignment, then
we might find variations in magnitude of alignment associated with varia-
tions in the perceived capability of the computer, such that alignment is
stronger with a computer that is perceived to be of lower capability than
with one perceived to be of higher capability.

In a further study, we therefore manipulated participants beliefs about
the capability of a computer interlocutor. In Pearson, Hu, Branigan, Picker-
ing and Nass (2006), we used the same method as above to further investigate
lexical alignment. Unlike in the previous studies, participants were always
led to believe that they were interacting with a computer (i.e., there were no
human interlocutor HHI conditions). We manipulated participants’ beliefs
about the capability of the computer. Because the manipulation through
verbal instructions to induce different beliefs about an interlocutor gener-
ated strong effects, we employed a more subtle manipulation of the appar-
ent sophistication of the computer by using a start-up screen that made the
computer system appear old-fashioned and unsophisticated (basic computer
condition) or up-to-date and sophisticated (advanced computer condition).
The start-up screen for the basic condition displayed the term Basic version,
bore a 1987-dated copyright, and displayed a fictional computer magazine
review stressing its limited features but cheap price and value for money. In
contrast, the start-up screen for the advanced condition displayed the term
Advanced version: Professional edition, bore a current-year copyright, and
displayed a fictional computer magazine review stressing its expense and its
impressive range of features and sophisticated technology.

Participants’ responses were coded as aligned if they used the same name
to describe an object as their interlocutor had previously used to name the
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object, or as misaligned if they used a different name. The results showed
that participants lexically aligned to both basic and advanced computer
interlocutors, producing the dispreferred name if their interlocutor had used
it. However, there was significantly greater alignment when the interlocutor
was a basic than advanced computer, even though the interlocutor produced
identical behaviour in both conditions and even though the interlocutor
gave evidence of understanding the participant’s preferred name in both
conditions. In other words, when participants were led to believe that a
computer was of restricted capabilities, they aligned more than when they
were led to believe that it was of greater capabilities, irrespective of the
direct evidence they received about its capabilities. Hence participants made
reference to their a priori beliefs about an interlocutor’s capabilities when
choosing how to name an object; they did not update these beliefs in the
face of direct evidence that the interlocutor understood the alternative name.
These results converge with our previous findings that beliefs about one’s
interlocutor affects alignment, and provide further evidence that alignment
involves strategic activation of a decision component when speakers may
be more aware of the existence of alternative ways of encoding the same
meaning. This suggests that people believe that computers are, in some
respects, less capable than people, and that people strategically align with
computers to increase the likelihood of successful communication.

The previous study suggested that beliefs about a computer interlocu-
tor’s capability affect the magnitude of alignment in HCI. To examine whether
the same is true with respect to beliefs about a human interlocutor’s specif-
ically linguistic capability in HHI. To investigate this, we conducted a fur-
ther study that again manipulated participants beliefs about the capability
of their interlocutor. In Pearson, Pickering, Branigan, Hu and Nass (2006),
we investigated lexical alignment using a similar method as above, but this
time participants always believed that they were interacting with another
person. However, they were induced through verbal instructions to have
different beliefs about the linguistic capability of their interlocutor. Specif-
ically, participants believed that they were interacting either with a native
English-speaking or with a non-native English-speaking interlocutor. (Note
that unlike our previous studies, this study employed a within-participants
design.)

Participants’ responses were coded as aligned if they used the same name
as that used prior by their interlocutor to name the picture, or as misaligned
if they used a different name. The results showed that speakers lexically
aligned to both native and non-native English-speaking interlocutors, and
that there was no difference in alignment when the interlocutor was a na-
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tive or non-native English-speaker. These results converge with previous
findings (e.g., Isaacs and Clark, 1987) showing that a speaker’s a priori as-
sumptions about an addressees knowledge can be dynamically adjusted as
their addressees level of knowledge becomes apparent: a priori beliefs that
a non-native English-speaking interlocutor is linguistically less capable are
rapidly updated on the basis of feedback from the interlocutor concerning
communicative success. In this case, participants accommodated evidence
that the interlocutor understood the preferred term (even if the interlocutor
used the dispreferred term in their own descriptions) and continued to use
that term in their utterances. This contrasts markedly with our previous
finding in HCI that participants align more strongly with a computer that
is perceived to be of lower capability than with one perceived to be of higher
capability: a priori beliefs that a basic computer interlocutor is less capable
were not updated on the basis of feedback from the interlocutor concerning
communicative success.

6 Summary and Conclusions

To summarize our findings, we demonstrated alignment affects in HCI as
well as HHI: there was a tendency for speakers to align both syntactically
and lexically to both computer and human addressees. Hence in both HCI
and HHI, the features of an utterance that the speaker has just encountered
shape the utterances that the speaker subsequently produces. For example,
after reading an utterance with a particular syntactic structure, participants
tended to repeat that syntactic structure in a subsequent utterance involving
a different verb. In such cases, alignment was the same whether the partic-
ipants believed themselves to be interacting with a human or a computer.
This suggests that in some respects alignment processes in typed dialogue
involving no other visible interlocutor are broadly similar to alignment in
dialogue between co-present interlocutors who use speech to communicate
(e.g., Branigan et al., 2000).

However, and more importantly, we found that a speaker’s linguistic be-
haviour, and specifically the extent to which it is affected by an addressee’s
linguistic behaviour, is influenced by beliefs about an addressee. In this
respect, our results are important in demonstrating that alignment is not
an entirely automatic behaviour, but rather a behaviour that may have a
strong strategic component in addition to a basic automatic component. In
contexts where they are aware of the availability of alternative linguistic
realisations of a message, and hence of the availability of alignment as a
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strategy, participants may choose to align in order to maximise the chances
of successful communication when they believe that communication may
otherwise fail. For example, participants aligned lexically and syntacti-
cally (for utterances containing the same verb) to a greater extent when
they believed they were interacting with a computer than with a human.
Our results suggest that computers are not treated as social agents just
like humans; rather, people believe that computers are, in some respects,
less capable than people. The finding of greater lexical alignment to basic
than advanced computer addressees provides further support for this con-
clusion. Intriguingly, such a priori beliefs appear to be resistant to updating
on the basis of behavioural evidence: whereas a priori beliefs about human
addressees appear to be rapidly updated based on the addressees contribu-
tions throughout the dialogue, speakers do not appear willing to alter their
beliefs about computers on the same evidence, suggesting that they may
err on the side of caution with respect to designing utterances for computer
interlocutors.

Overall, our results suggest that not only does alignment occur in HCI,
it may be an even more important determinant of behaviour in HCI than in
HHI, because it may involve a stronger strategic component that is designed
to increase the likelihood of successful communication. It remains to be seen
whether such alignment can be exploited to develop systems that are both
robust and naturalistic.
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1 Introduction

Interactive alignment [25] is one of the currently most promising additions
that have been made to our theoretical approaches to understanding dia-
logue. The empirical investigation of alignment in dialogue has made con-
siderable progress in recent years and a broadening range of results is be-
ing gathered concerning both the nature of and conditions on alignment.
Rather less attention has, however, been given to the possible implications
that such results have for appropriate design decisions for dialogue systems
capable of supporting alignment. Often alignment models that are proposed
make little contact with large-scale computational language resources used
for sophisticated dialogue systems such as lexicons, grammars, semantics
and so on.

In this position paper, I sketch a proposal for an architecture for the
computational modelling of alignment within dialogue systems that can be
used as a repository for recording and evaluating empirical results/claims
concerning alignment behaviour. The model requires that particular features
of a linguistic system be made accessible to alignment mechanisms in order
that alignment be enforceable. The precise nature of these features, as
well as the determination of the scope of alignment over the course of a
dialogue, must be established empirically. Explicitly capturing how speakers
interact with artificial communication partners is then one crucial aspect
of defining the space of possibilities within which alignment may operate.
However, providing the level of detail required for driving such a model
still presents significant challenges for empirical investigations. Just what
collections of features are ‘at risk’ during alignment and which are not is
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still largely unexplored. And yet, without answers to these questions, it will
not be possible to construct naturally aligning dialogue agents. One focus
will therefore be on the demands that computational modelling places on
empirical investigation: what kind of empirical research is now necessary in
order to support more sophisticated dialogue systems?

To start, I set out very briefly an alternative view of the nature of in-
teractive alignment that draws on constructs from a socially-oriented view
of language rather than a psychological one. The two approaches do not,
in my view, necessarily conflict; the social processes also need to have a
grounding in psychological processes and it is to be expected that there will
be convergences in the functionalities achieved. The social orientation does,
however, add a further set of considerations to the necessity and functional-
ity of a phenomenon like alignment in discourse. In particular, we see from
a sketch of how language is considered to function from the social semiotic
perspective that it also predicts that alignment must take place to some
respect—or, at least, that it would be extremely surprising if it did not oc-
cur. This follows from what is known about the relation of language use to
situation in general and so if it were not also now available as a principle
in psycholinguistics it would be necessary to invent it. Given this perspec-
tive, I also then sketch how this could find a computational instantiation in
a natural language system drawing, again, on formalisable notions of how
situation and language use can be related.

2 Language as social semiotic: Register

The position set out in [15] argues that language is essentially a social phe-
nomenon. Language behaviour then unfolds in time and is simultaneously,
in its unfolding, a structuring and restructing of the interpersonal situta-
tion. Language is itself viewed as a stratified system (following [18]), with
relations of ‘meta-redundancy’ holding between strata. The higher (more
abstract) strata anchor directly into social context and situation; the lower
(least abstract) strata are the traditional phonology, lexicogrammar, dis-
course semantics of linguistics. The model of language use relies crucially on
a tight bidirectional relationship holding between contextual configurations
and configurations in the semantics and lexicogrammar. That is: particu-
lar lexicogrammatical configurations are indicative of particular situational
configurations.

This is already sufficent to see that something like alignment is strongly
predicted. As shown in Figures 1 and 2, the situation for the individualistic
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Figure 1: Individual view of linguistic interaction
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Figure 2: Social view of linguistic interaction

approach presents the mystery of how the two agents come to a common
understanding; in contrast, in the social approach, language use necessarily
enforces an overall common situatedness of the interlocutors. There can, of
course, be variation and differences in the situation that each agent acts in,
but this variation takes place against the backdrop of a general commonality
rather than vice versa.

The linguistic accounts developed within this tradition, primarily but
not only within systemic-functional linguistics, rely crucially on the notion
of register. Register was suggested early on in studies of situated lan-
guage [26, 27, 14] and has since become a major component of systemic
theory [22, 20]. Register is typically divided into three areas of meaning:
field, the social activities being played out; tenor, the interpersonal relation-
ships and evaluations being enacted; and mode, the channel and rhetori-
cal purposes of the interaction. Each of these areas is taken to be carried
primarily by particular identifiable resources from the semantics and lexi-
cogrammar. This is the explanatory mechanism suggested to explain why
particular situational uses of language pattern together with particular se-
lections of linguistic features.

In [2], drawing on data that also fed into forerunners of the interactive
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alignment perspective [12, 13], T extended the notion of register, holding for
a situation as a whole, to a derivative notion of microregister. The essence
of this idea is that there is nothing special about entire situation that differ
from individual utterances in discourse. Each individual utterance is linked
into a situational context in the traditional manner of register theory but,
of necessity, can also change and modify that situational context. Thus, the
trajectory of linguistic selections in a discourse is paralleled by trajectories
of contextual development.

This draws strongly on Halliday’s suggested meterological metaphor in
which register corresponds to climate and microregister corresponds to weath-
er. There is no difference in kind between these phenomena—simply one of
time depth. The daily reoccurences that we experience as weather add up
over time to be characterizeable as a climate. But the climate does not exist
independently of the unfolding daily weather. Similarly, register is the con-
textual configuration holding for an entire ‘text’; but this is nothing other
than the result of the trajectory followed through and created by the indi-
vidual contributions to that text. The proportionality at hand is depicted
in Figure 3. This also makes the connection to alignment clear: alignment
from the psychological perspective corresponds to microregister from the
social perspective.

We already know a considerable amount about the general constraints
that register, or contextual configurations, exert on language. Established
studies of register, such as that of [8] have demonstrated the effectiveness and
robustness of the constraint. If we model the language system as networks
of possible choice, as is generally done within systemic-functional linguistics,
then the consequences of register can be seen as the definition of subgram-
mars where certain choices are preferred and other dispreferred. This is
suggested graphically in Figure 4.
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3 Computational modelling

We have substantial compuational grammars available in the systemic-func-
tional framework [21, 4]. These are expressed as networks of choices that
capture functionally motivated distinctions. Formally, these networks cor-
respond to large type lattices defined over feature structures [17]. Using
register as a way of restricting the scale of these networks during actual
use for generation or interpretation was first implemented computationally
by [24]. This was initially achieved by defining networks of choices for a
contextual description and relating features of the lexicogrammar directly
to features of the context. A similar approach was also then carried out with
the generation grammar of the Penman system by [10]. Although this kind
of approach achieves a restriction of the language that occurs according to
contexts, it also demands an extremely fine description of context: prob-
ably too fine for most purposes since all lexicogrammatical decisions were
dependent on their being corresponding contextual decisions to drive them.

A further, more flexible account of the relation between register and se-
mantics and lexicogrammatical expression was developed and implemented
by [5, 6]. This approach combined the flexibility of full natural language gen-
eration according to semantic inputs and the restriction of register. In [1]
we have developed this further and propose that we need 3 distinct mecha-
nisms in a generation system in order to allow register to effectively control
phrasing;:

1. the selection of which ‘size’ (more technically, rank) of grammatical
unit is to be used for given semantic classes;

2. the construction of a subgrammar, which controls the grammatical
options available; and

3. a controlled mapping of instances in the world (i.e, concepts in a do-
main model) to a linguistic ontology which will guide the grammar
during generation.

These mechanisms are quite general and are sufficient for providing a very
rich and varied range of linguistic phrasing variation that nevertheless re-
mains under functional control.

Systemic-functional grammars are very amenable to defining subgram-
mars by pruning the type lattice of unwanted or unused features. This is dis-
cussed from the perspective of pure engineering efficiency in [3]. Now we can
consider using these techniques on a move-by-move basis in a dialogue. The
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controlled mapping of instances in the world to linguistic ontology has also
been explored on an experimental basis in previous generation systems [7].
In general, therefore, there are a number of techniques which can now be
explored further for managing the move-by-move tracking of microregisters.

4 Relations to alignment

We can consider some established phenomena of alignment in terms of the
mechanisms that are available for modelling microregisterial unfolding in
texts and interaction. For example, we can adapt one of the examples given
by [25]. If one speaker in a dialogue uses the phrase “the sheep that’s
red” rather than “the red sheep” to assign a colour to some sheep under
discussion, then alignment predicts that, via priming, the other speaker will
subsequently be more likely to use the first strategy rather than the second,
too. Within the semantic formalism that we employ, the intended meaning
for these alternatives has a common representation:!

(s / sheep
:property-ascription (r / (color red)))

Then, within our linguistic model and the description of lexico-grammar em-
ployed (essentially systemic-functional grammar as set out in Halliday and
Matthiessen [16] and described computationally for natural language gener-
ation in Matthiessen and Bateman [23]), we can characterise the production
of an associated utterance as follows.

If we do not provide any further constraints, then both of the possi-
ble utterances above (and several others) can be generated with our En-
glish grammar. However a selection between these can be forced (in this
case) by the choice between contrasting grammatical features: for example,
somewhat simplified for the purposes of discussion, ‘pre-modification’ wvs.
‘post-modification’. By default the grammar tries to make a sensible choice
between these on the basis of how much semantic material is to fit in the
property ascription (e.g., ‘the red sheep’ vs. ‘the sheep that used to be red
every other day’), but we can also choose to pre-select the relevant feature
in advance. Such pre-selection has precisely the effect of priming for one
construction rather than another that Pickering and Garrod associate with
alignment. This, then, is a minimal micro-register: we can state that the

!This semantic representation is based on the sentence planning language (SPL) origi-
nally defined by Kasper [19], and subsequently used in several natural language generation
systems.
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semantics lexicogrammar
(s / animal post-modification
:property-ascription
(r / colour ))

Table 1: A simple microregisterial setting that pairs an underspecfied se-
mantic expression with a grammatical constraint

production of this grammatical form primes for the actually selected lexico-
grammatical features rather than those that would in principal be possible
but which were not selected.

This can be made arbitrarily more complex. The actual example given
by Pickering and Garrod draws on experimental results from Cleland and
Pickering [9] which showed that the priming effect was much stronger when
ascribing a colour to a semantically similar entity. That is, “the sheep that’s
red” was produced far more often after hearing “the goat that’s red” than
it was after hearing “the book that’s red”. This shows that the micro-
register must consist not only of preselected lexico-grammatical features
but, instead, of (at least) pairs of semantic:lexico-grammatical expressions
that are contingently associated during an interaction. The micro-register
established in the current case might then be summarised by the pair shown
in Table 1.

The exact degree of specificity for the semantic types (i.e., any ‘animal’
or just ‘mammals’, any ‘colour’ or some particular range, etc.) must be as-
certained empirically; the basic mechanism for the formation of such locally
active ‘routines’ or micro-registers is, however, relatively clear. We therefore
can import accounts of ‘partially idiomatic’ expressions and fixed phrases
(all interpreted as more or less underspecified fragments of syntactic struc-
ture) and combine these with our notion of dynamically grown micro-register
pairings for tracking spontaneously created routines during dialogue. This
process is depicted graphically in Figure 5.

The description in terms of ontological partitions and lexicogrammatical
features may well provide a convenient way of expressing ongoing alignment
that is both very succinct and functionally relevant. This is, at present, a
research hypothesis and will need to be explored further in concrete compu-
tational instantiations. Furthermore, although Pickering and Garrod argue
that prioritising decontextualised sentences has made it more difficult for
theoretical accounts to see the natural processes of alignment by which dia-
logue functions, since the functional view of register adopted here is drawn
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Figure 5: Microregisterial alignment

from a linguistic orientation which insists on the centrality of relating use of
language to context, it becomes more natural to consider possible intercon-
nections between its linguistic models and Pickering and Garrod’s proposed
architecture.

5 Open questions for computational alignment

I will end this brief position statement and research suggestion with an open
question that arises very naturally in the context of concrete computational
instantiation. Although alignment has been observed to hold in various cir-
cumstances, the kinds of linguistic descriptions that have been used in these
studies are relatively unspecific compared to the more detailed descriptions
necessary for computational use. Given the following dialogue extract, taken
from our ongoing empirical work on HRI, we can suggest that alignment of

some kind has taken place.
R043f[oll]] ROBOT Is this part of the kitchen?
R043f[oll] USER This is part of the kitchen
Computationally the task looks a little different. In order to describe
the first utterance, we need 59 features (for the clause rank alone) from our
lexicogrammar. An extract of these features is shown in Figure 6.
The second utterance contains 62 features, many of which are identical
to those of the first utterance. The question for our computational approach

165



Selection expression tool

Selection Expression Commands  Toggles

Selection expression for: SEHTEHCE (gates included) COMPLETE

Is thIs 3 part of the KITCHEN (59 features)

EXPERIENTIAL Fean-CIFC UMETANTIL Fegba: NONFELETNALTRENSITI Y Feqbn RELATENALTRANETIITT Fegbn TOKE
noninternal-subject—aatter| not—phase identifying active—process
nonaccompaniment relational decoding voice—lezverb
noncause relational-noncliency| |be-intensive complemented
nonmanner real participant—identity
nonmatter thing—identification,
nonrole

no-spatial-exztent
no-spatial-location
no-temporal-extent
no-temporal-location

INTERPERSONAL Pl 0
indicative positive
finite—inserted
positive—finite
interrogative
yes—no
no-wh-—subject
nonassertive —
indicative-noninteractant
ezplicit-interrogative-subject
subject-inserted
mood-subjsct-expanded
nominative-subject
nonplural-subject
singular—finite
oblique-directcoaplensnt

LoGICAL
4] |»
TSR (6 Tyt e [ — j‘ HigEa: ot
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to alignment is then: which of these features are indications of alignment
and which not? We will need to explore in much more detail just how we
can decide which features are being maintained across speakers because of
alignment and which are reflecting other issues. We will also need to explore
over what interactional extent groups of features might be held constant:
this will most obviously be related to issues of discourse structure, topic
maintenance and the like.
A further, similar example from our data is the following:

USER and now to the table

USER and straight

ROBOT TI'm sorry, which kind of table?

USER a small table that has a cup

ROBOT s this part of the living room area?

USER yes
ROBOT am I in front of it?
USER yes

ROBOT Oh okay, I see which object you mean.

USER and now the couch

USER now I’m in front of it

The utterances in bold might also be taken as indicating alignment. This

makes it clear that we also need to consider the particular linguistic task
that is being performed as the intervening utterance of the robot “I see
which object you mean” is performing a completely different discourse task
and so does not appear to interfere with the established alignment of the
routine for expressing a spatial relationship to an object in the scene. Nev-
ertheless, in the utterance “am I in front of it”, we also have a significant
number of linguistic features: 59 features in the clause, 17 features for the
nominal phrase “I”, 17 features for the prepositional phrase “in front of it”,
and a further 25 features for the nominal phrase “it”. Just which of these
features are negotiable? Under which circumstances? And for how long?
We will also need to address issues of control: as is inherent in the systemic-
functional view of language as choice, speakers make choices about what
they say and how they say it. Often these choices are abstract and nonde-
liberative, but regardless of their status they necessarily bring about certain
situational trajectories, or discursive positions, rather than others. Here the
extent to which a speaker can ‘choose’ to align or not, or can ‘choose’ to
cooperate in the situation that their interlocutor is pursuing to not, will
need to be addressed. This will also no doubt vary according to a variety
of situational conditions, some of which have already been revealed from
empirical work [11]. This appears to be an issue for both the psychological
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and socially oriented approaches as the ‘mechanistic’ nature of the original
interactive alignment proposal is weakened. Was the speaker here choosing
to cooperate with the robot or being subjected to alignment?

For a functioning dialogue system, for example, that exhibits alignment,
these are all questions that we will need answers for.

One advantage of building such mechanisms into established natural lan-
guage technology is then that we can explore in natural contexts the conse-
quences of restricting the linguistic features that are available at a very fine
level of detail. But, conversely, that very level of detail is itself a significant
issue that we will need to learn how to deal with.
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Abstract

Dialogue based interaction with service robots of the near future
will be based on one of two paradigms: the use of a tool, or interac-
tion with a partner. In this talk I review some recent work which is
based in a school of thought that believes that the former is simply
a matter of engineering application, but that the latter is achievable,
but only through continued research into dialogue systems that suffi-
ciently leverages off linguistic knowledge. The work presented here at-
tempts to overcome limitations of the Information State Update (ISU)
approach to dialogue management through explicit dialogue modelling
and rich multi-stratal representations of the information state which do
not disregard detail for simplicity in canonical form. This work is be-
ing implemented in the context of Corella, an information-state based
dialogue management toolkit, and has been used in the development
of a spoken dialogue system for Rolland the autonomous wheelchair.

1 Introduction

The Information State Update (ISU) based approach to dialogue manage-
ment [8, 17] advocates dialogue manager construction based around dis-
course objects (e.g., questions, beliefs) and rules which encode relationships
between these objects. As such, ISU based systems may be viewed as prac-
tical instantiations of agent-based models, instantiations where the broad
notions of beliefs, actions, and plans, are replaced with more precise seman-
tic types and their inter-relationships. ISU modelling techniques provide an
open palette of modelling choices and possibilities, which while being appeal-
ing in reducing constraints on system developers, also leave many questions
left to be answered.

Following initial studies into the use of ISU based dialogue managers in
producing dialogue systems for human-robot interaction [14], some deficien-
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cies of ISU implementations and the dialogue models commonly developed
upon them were identified:

e Opacity of Control — As with all declarative rule based systems, the
use of a potentially large number of rules to define information state
transitions can lead to systems that are difficult to design and debug,
with unforeseen logic errors difficult to trace and leading to potentially
serious side-effects.

e Over Simplicity of Modeling — Furthermore, many of the dialogue
models applied to ISU systems take rather elementary views of either
dialogue structure, language semantics, or the relationship between
language and domain knowledge.

e Limited Tool Support — ISU based toolkits still provide a limited
functionality, particularly with regard to rapid prototyping, code re-
use, and debugging.

In the remainder of the talk I will describe ongoing work which attempts
to overcome these issues by developing an Information State Update mod-
elleting methodology which on one hand cleanly separates operational from
dialogue structure, while on the other uses deep, fine-grained semantics to
model linguistic and non-linguistic knowledge within the spoken dialogue
engine. [ will come to a close by describing Corella, a hybrid Information
State based dialogue management library that has been built around these
ideas, and which has been used in the development of a spoken dialogue
system for Rolland the autonomous wheelchair.

2 Separating Control and Discourse Structure

The separation of control structure from dialogue structure has been a com-
mon theme in the evolution of dialogue system design [11]. Whereas finite
state-based dialogue systems often encode both control structure and dia-
logue structure, this has been a tendency in frame-based and agent-based
models to abstract control structure from the dialogue structure or models
to be treated as resource.

However, rule based dialogue systems, including to some extent vanilla
ISU models, have a tendency to represent all aspects of the dialogue mod-
elling as the application of various 'update rules’. While these rules may
often be classed into particular update sets which in tern can be sequenced
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through a high-level control structure, the update rules themselves retain
a mixture of control structure as well as purely dialogue structure. Thus,
it is often difficult to separate out the dialogue structure or resource from
system control or process. This in turn can lead to relative simple dia-
logue structures being employed in implementations simply to cut down on
the complexity of the ISU model. An alternative approach pursued here
is to explicitly extract the dialogue structure from ISU update rules, and
guarantee that all dialogue structure may be modelled externally and im-
plemented through dedicated domain specific plans which are in no way
reliant on explicit rules. While this may seem a relatively trivial issue of
design, we believe that this issue is symptomatic of a gulf between dialogue
management and discourse modelling which is preventing dialogue system
application from leveraging off empirical studies.

The mixed treatment of dialogue model and control model can even be
seen where researchers have attempted to analyse the meaning of a dialogue
model. In [18], Xu et al view dialogue models as being categorisable into
two groups: pattern based models and plan based models. In pattern-based
models, Xu includes recurrent interaction patterns or regularities in dialogue
at the illocutionary force level of speech acts are identified [16]. While, in
the second approach, i.e. plan-based models, dialogue is modelled in terms
of speech acts and their relation to plans and mental states in the greater
agent design [2]. Thus, in Xu’s view, pattern based models describe what
happens, but care little about why. Conversely, plan-based models con-
textualise speech acts within the greater agent plans and rationality, but
are costly and care little about the actual patterns of dialogue identified in
human-human or human-computer interaction. Instead, we view this dis-
tinction as one between Generalized Dialogue Models which describe the
overall patterns of dialogue as a linguistic resource, and, from a computa-
tional perspective, dialogue plans, which inherently capture such generalized
dialogue models within application.

To develop ISU based dialogue systems which separate out dialogue mod-
elling from control and implementation issues, two questions must be ad-
dressed: (a) how do we capture dialogue models at an abstract level? and
(b) how then may such models be related to traditional ISU based method-
ologies? The first question is an issue of modelling approach which has
consequences both for formal linguistic analysis and to verification of the
linguistic properties of a system. The second question is one of implemen-
tation methodology, and how the use of cleanly defined dialogue models can
then be used to aid in the construction of flexible dialogue systems. I discuss
the first of these issues below, while the second is addressed in Section 4.
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2.1 Capturing ISU Based Dialogue Models

The structuring approaches used in Information State Update techniques
do not in themselves lead easily to the capture of the multi-tired nature of
dialogue, where clarification situations and multiple overlapping dialogue
threads which may characterise a mixed initiative human-robot interac-
tion [13]. We must first establish a distinction between the information state
based dialogue management model or paradigm, and the dialogue models
which can be implemented with such a paradigm. Broadly, we share the
view that as a paradigm, the Information State based approach is extremely
flexible and can support the implementation of a wide variety of dialogue
models. Such implementations range from simple finite state models using
registers and state transition rules, to what we refer to as IS centric dia-
logue models where the dialogue modelling approach is inextricably linked to
the modelling of the dialogue’s information state. Examples of such modes
include those models behind GoDiS, and EDIS [17].

One alternative modelling approach which has been applied extensively
for over three decades has been the use of recursive state transition networks.
One well-known example of such a modelling is the ‘Conversational Roles’
COR Model of Sitter & Stein [16], which set out as a communicative-based
approach to interaction in the relatively limited context of information-
seeking dialogues. Individual dialogue moves at the interlocutionary force
level may be achieved through either individual acts, or alternatively through
a sub-traversal of the structure — corresponding to a sub-dialogue.

One set of dialogue models which arguably has the tightest computa-
tional link to the Information State paradigm are those underlying Larsson’s
IBiS systems [7]. These IBiS models, developed to explore the area of Is-
sue Based Dialogue Management, place structural emphasis on conversation
goals as issues and questions, using them as a basis of dialogue management.
Such modelling, achieved through a rich structuring of dialogue in terms of
information state and the range of update and selection rules, results in effec-
tive dialogue management for a wide range of discourse phenomena including
grounding and accommodation — these phenomena not easily addressed by
previous dialogue modelling approaches.

Despite the apparent complexity the IBiS system descriptions, the do-
main independence of IBiS1 through IBiS4 makes it possible to extract un-
derlying dialogue structure. This can be done by examining selection and
update rules with regard to the movement of information on and off the
latest utterance record of the information state, i.e., /SHARED/LU/MOVE [7].
For example, Figure 1 depicts an abstraction of IBiS1’s underlying dialogue
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model. Once extracted, such a model can then be added to the information
state, and used to supply context information where applicable.

GREET(S,U) ASK(U S) ANSWER(S,U

-0

>0

ASK(SU) ANSWER(U.S)

Figure 1: Abstraction of IBiS1 Dialogue Model

In recent works Hui has described the use of a recursive transition net-
works to capture the structure of interaction between users and robotic
wheelchair in a shared control task [15]. While it would be possible to en-
code dialogue models through relatively arbitrary means, Hui has applied
formal specification techniques based on Hoare’s Communicating Sequential
Processes (CSP) language [4, 12], to facilitate property analysis, model com-
parison and implementation verification. In Section 4 I describe how such a
model can be used to improve ISU based human-robot interaction.

3 Fine Grained Information Structure

While linguistic and empirical studies of actual human-human or human-
robot interaction attempt to capture the precise details of any given in-
teraction in considerable detail, the same is rarely true of computational
approaches to dialogue modelling and dialogue system construction. To the
contrary, the use of canonical form is often seen as a key tool in producing
practical dialogue systems [5].

Unfortunately however, such simplifications of the information state, if
introduced at the wrong level of abstraction, can lead to considerable loss
of reasoning and linguistic control. To illustrate, consider a simple example
from the robotics domain where a user request that the robot turn left
through one of the following three utterances:

(32) a. turn to the left
b. turn left
c. take the next turn left
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All three utterances do of course seem to be equally applicable to achiev-
ing the goal of causing the system to turn to the left. Thus, a naive approach,
but one ultimately assumed by some views of information state structur-
ing would be to represent such commands within a dialogue system with a
predicate such as turn(left), and use keyword spotting of turn and left
to extract such a command from a user’s language. In practice such an
assumption is predictably enough misguided since all three utterances will
of course have very different meanings depending on their use in context:
(1a) to the most part is used in static contexts to communicate a request
for reorientation while planar location is effectively unaltered; conversely,
(1c) may often be used in dynamic contexts to achieve a vector change thus
resulting in a net planar motion; while, (1b) is slightly more ambiguous,
taking on the meaning of (1c¢) in dynamic contexts, and sometimes taking
on the meaning of (1a) in static contexts.

The fact that the three utterances above do not map directly to a single
concept should not of course be surprising since language ultimately serves to
facilitate some communicative goal, and the subtle differences that speakers
make ultimately reflects the precise goal they wish to convey. This then is
a strong argument for guaranteeing that we do not attempt to over simplify
the ontological structuring within the dialogue systems which construct for
HRI. Particularly when we strive toward interaction with un-trained users,
the nuances in the language which is applied may be key to efficient com-
munication and ultimately high user satisfaction.

4 Dialogue Management with Corella

To develop rich dialogue systems which possess a degree of flexibility which
approach that which could provide natural interaction, we must be willing
to put effort into the development of dialogue technologies that make use of
and integrate available linguistic results on dialogue and knowledge struc-
ture, while remaining efficient practical implementations for engineers to
apply to domain applications. To help address such requirements we have
developed Corella as a hybrid dialogue management engine that extends the
standard information state paradigm with greater emphasis on ontological
and discourse structuring. Here, I give a brief overview of Corella and its
use.

Corella came about through the need for a spoken dialogue system which
could process detailed spatial language between naive users and an au-
tonomous robotic wheelchair in shared-control tasks [6]. The wheelchair,
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Figure 2: Spoken Dialogue System for Rolland III wheelchair.

Rolland III, is the latest in s series of intelligent wheelchairs at the Univer-
sity of Bremen [10], and should be capable of voice control for users who
may suffer physical impairments which would limit either their visual sense
or manual dexterity. Thus, the dialogue system must be: (a) capable of
processing spatial expressions including spatial descriptions, basic and com-
plex navigation instructions, and route descriptions; (b) must be adaptable
to different user types depending on the particular abilities of individual
users; and (c) should allow to the greatest degree possible to process natural
language to maintain a low learning curve for users.

Figure 2 depicts Corella in the context of Rolland’s spoken dialogue
system at an architectural level. In comparison to some of our earlier work
in dialogue system construction [6], a relatively tight coupling has been
employed between the dialogue engine, the domain component, and external
language technology components. Other notable features of the dialogue
engine include the application of a functional semantics as the first level
within a two-level semantics structuring of information state; the use of
domain specific dialogue plans which may be verified against the abstracted
dialogue models introduced earlier; and the management of multiple threads
of interaction.
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Corella’s information state implements a two-level semantics model where
the first level of semantics is a so-called linguistic semantics which acts as
interface to language technology components, while the second semantics
level is a conceptual semantics used for primary domain reasoning or inter-
facing with domain applications. Motivation for a two-level semantics comes
from many different directions, and were reviewed extensively by Farrar &
Bateman in [3]. Some motivations include the fact that users often make
utterances that are not literally true with respect to an underlying model;
that dialogue systems which mix linguistic and conceptual knowledge can be-
come overly complex; and that adding an additional layer of representation
allows us to cleanly provide a representation of surface form language which
is sufficiently fine grained to facilitate flexible language structure. Two level
semantics are often confused with issues of quasi-logical form (QLF) versus
logical form (LF) issues as exemplified by the Core Language Engine [1].
We should make clear here that these are two operate issues, and that it is
possible to have a single-level semantics system that employs both QLF and
LF. Two-level semantics is best characterised by the use of two separate
ontologies, one for the linguistic semantic categories, and another for the
underlying conceptual and domain knowledge held by the agent. While the
use of two-levels of representation within the ddialogue engine’s information
state can provide some clear advantages, it should of course be realized that
these advantages do not come without their own costs.

Generalized dialogue plans are applied to encode particular dialogue
phenonema at the implementation level and may be considered as a spe-
cialization of the generalized dialogue plans introduced earlier. We believe
that the use of generalised dialogue models within the information state
paradigm provides two advantages that would not be easily achieved other-
wise. Firstly, a clear model of expected discourse moves can be extracted
from the recursive transition network that encodes a generalised dialogue
model. Thus, applying a similar approach to [9]’s use of allowed attach-
ments, the search space for intention identification can be considerably re-
duced. Secondly, abstraction of the many declarative rules that constitute
an information state implementation can make evaluation of the quality of
the underlying dialogue model more straightforward. Furthermore, through
simulation, the accuracy of rules in an information state based implemen-
tation can be judged against the sought after generalized dialogue model.
Moreover, when considered in the light of the ever increasing application of
SDS to safety critical applications such as service robotics and automotives,
the need for analysis and verification of dialogue models underlying spoken
dialogue systems becomes even more imperative.

178



In investigating the relationship between the IS paradigm and GDMs
encoded as Recursive Transition Networks (RTNs), it is important to dis-
tinguish between the encoding of RTNs through information state, and the
use of RT'Ns in information state. The former of these two approaches refers
to the fact, as observed in [17], that recursive transition networks can be di-
rectly encoded through an information state based implementation through
the use of a stack to record a history of nested state positions, and a collec-
tion of update rules to encode state transitions. The latter view, however,
reflects the use of RTNs as part of the data types used to store information
state; this being analogous to the use of queues, records or predicate sets. It
is the latter view of using RTNs within the information state that can best
leverage off existing generalised dialogue models.

While dialogue models such as COR are principally intended only to
describe one thread of conversation, the nature of mixed-initiative systems,
often viewed as favourable for human-robot interaction, places additional
requirements of robustness in the event of parallel conversational threads,
e.g., a robotic wheelchair might wish to inform a user of a system event in
the middle of a route description task. By allowing multiple instantiations
of GDMs within the information state, implementations can effectively track
parallel conversational threads. Indeed, the application of models like this to
multi-threaded dialogue systems might be considered essential to language
understanding. A deeper investigation of the issues involved in the multi-
threading is not investigated further here and is left for future work.

5 Summary & Future Work

Driven by the desire to achieve human-robot interaction based on natural
discourse rather than the metaphoric use of a tool, we are looking at building
dialogue systems which build upon rich resource models while yet guaran-
teeing that the system’s operate in an effectively real-time manner. Specific
factors motivating this approach have been the application of explicit dia-
logue structure within the control mechanisms of information state update
dialogue systems, and the need for ontological sophistication in knowledge
structuring to capture the true meaning of a user’s utterance without over
simplification. Such goals should not however remain lofty academic exer-
cises. Thus, we developed Corella as a dialogue engine which makes use of
rich ontological structuring and a modelling of dialogue plans which can be
mapped to empirically derived generalized dialogue models.

Our application of these techniques to Rolland the autonomous wheelchair
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continue. To this end, a more formal analysis of the resultant dialogue im-
plemenation is underway.
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