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Abstract

Dependency parsing of natural language as a real-life scenario can be
treated as an optimization problem which can be solved using constraint
processing techniques. In this article it is shown that finite state tech-
niques are adequate to represent and solve such problems in a natural
way. This is facilitated by the concept of the Semiring-based Constraint
Satisfaction Problem (SCSP) which can be represented and solved with
Weighted Finite State Transducers (WFEFST). The approach benefits from
regular approzimation and parametrization and includes the notion of lo-
cality, decomposition and simultaneousness in order to achieve efficient
processing.

1 Introduction

Due to the increasing interest in dependency-based representations in natural
language processing in the recent years several methods realizing dependency
parsing have been developed. The focus of this article is on robust dependency
parsing as a constraint-based approach. Several approaches to constraint-based
dependency parsing exist. Some are based on constraint processing techniques
used in artificial intelligence, others are based on Finite State Machines (FSM)*
studied in automata theory. This article relates both directions to each other
and tries to take advantage of both sides.

Maruyama (1990) formulates dependency parsing as a Constraint Satisfac-
tion Problem (CSP) where a CSP is to find a consistent assignment of values to
variables. He proposes the formalism Constraint Dependency Grammar (CDG)
as a non-generative approach. In his approach parsing is treated as a disam-
biguation problem over initially ambiguous dependency relations where it is
desired to eliminate all structural ambiguities. Conditions on natural language
are formulated by means of first-order predicate calculus formula which are im-
plicitly assumed to be universally quantified. CDG can allow non-projective
dependencies simply by not forbidding them. Solving a CSP is NP complete in

LA FSM is a generalization of the more familiar finite-state automation (FSA), finite-state
transducer (FST) and their weighted counterparts weighted finite-state automaton (WFSA)
and weighted finite-state Transducer (WFST).



general. However, Maruyama realizes CDG with a running time O(n#) with
the help of consistency based methods which narrow down the structural ambi-
guities. He shows that CDG has a weak generative capacity beyond context-free
grammars. Harbusch (1997) goes further and shows that CDG is more powerful
than the Tree-Adjoining Grammar (TAG) and that each TAG can be trans-
lated into an equivalent CDG. Helzerman & Harper (1996) extended CDG by
the processing of lexically ambiguous sentences using the MUltiply SEgmented
CSP (MUSE CSP) which allows to represent similar CSPs compactly. But CDG
lacks robustness if no analysis exists satisfying all constraints. In contrast, the
approach has the problem of disambiguation if more than one analysis is left.

An extension of CDG which is elementary for this article is presented by
Heinecke, Kunze, Menzel, & Schréder (1998). They reformulate CDG as a
Constraint Optimization Problem (COP) by including weights which can be as-
signed to constraints in order to make them defeasible or soft. This extension is
implemented within the Weighted Constraint Dependency Grammar (WCDG)
framework which allows to model gradation which is not restricted to the no-
tion of competence and performance but including “many more aspects where
weighted information proves helpful” (Schréder (2002)). This perspective allows
to include degrees of grammaticality, structural preferences and uncertain in-
formation and to make WCDG error tolerant and robust. But solving a COP is
NP complete in general, too, and consistency methods are not very applicable
in order to solve them. That is, a consistency algorithm may remove only a
few ambiguities or none at worst. Foth, Menzel, & Schréder (2000) propose a
transformation-based approach in order to overcome this problem. The basic
idea is to start with an arbitrary dependency analysis for a sentence and to
repair it step by step guided by the weights of the constraints. But this method
can not guarantee to find the optimal solution in all cases. The running time is
clearly better than a complete search in practice, but still remains exponential
in the worst case.?

In contrast to the above mentioned approaches Koskenniemi (1990) presents
an eliminative approach to dependency parsing which is implemented by means
of Finite State Automata (FSA). He proposes the Finite State Intersection
Grammar (FSIG) which is based on the methodological paradigm of Constraint
Grammar (CG) (Karlsson (1990)). Rules are written via regular expressions
which make use of the so-called context restriction operation. FSIG combines
different levels of disambiguation, namely part-of-speech disambiguation, clause
boundary recognition and syntactic disambiguation. A fundamental difference
between CDG and FSIG is that the weak generative capacity of the latter cor-
responds to regular grammars and that the latter produces underspecified de-
pendency structures represented as syntactic tags. However, Yli-Jyrd (2004)
proposes an extension to FSIG where it is possible to represent complete non-
projective dependency structures by colored bracketing. In such an encoding
scheme dependencies are indicated implicitly via matching pairs of symbols. An
integration of soft constraints is proposed in Didakowski (2008b) via Weighted
Finite State Automata (WFSA). This approach enables to formulate ”linguis-
tic criteria” which are ranked by preference in order to model e.g. degrees of
grammaticality and structural preferences separately. Parsing with FSIG can

2The algorithm stores intermediary results. If the algorithm is interrupted early a current
optimal result can be returned. That is, the algorithm has the so-called anytime property
(Foth, Menzel, & Schroder (2000)).



lead to finite state machines that are not viable any more. This is due to enor-
mous internal results during parsing even if the space complexity is linear in the
worst case (cf. Tapanainen (1997)). In Didakowski (2008a) an approach based
on Weighted Finite-State Transducers (WFST) is presented which minimizes
internal results during parsing. Constraints are written for partial dependency
trees separately and they are applied in such a fashion that bottom-up parsing
is performed. But the approach is restricted to projective dependency struc-
tures and the writing of the constraints is more a spelling out of weighted chunk
patterns.

1.1 Motivation

Yli-Jyré (2001) shows that FSIG can be framed to a CSP and solved by a
constraint solver instead. Vempaty (1992) on the other hand introduces the idea
of representing and solving a CSP with the help of acyclic FSAs which recognize
finite sets of constraint tuples whose scope is over all constraint variables. He
shows that some problems can be solved by FSAs much faster in comparison
to other approaches. Amilhastre, Fargier, & Marquis (2002) extend Vampaty’s
approach by a degree of importance which is associated with each constraint.
This valuation is modeled via the weights of an WFSA and allows to order
solutions by preference. But a general representation and solving of COPs with
the help of FSMs is not addressed in the literature yet. The weight structure
of an WFSA or WFST can be exchanged via a semiring structure. How could
this relate to different CSP schemes like the weighted CSP, the probabilistic
CSP, the fuzzy CSP which allow to model COPs? Is it possible to represent
quantified constraints with the help of cyclic FSMs in a more compact manner
and furthermore, is it possible to represent a constraint relation separated from
its scope?

A basic argument for using weights, costs, rankings, etc. as an extension
of CSPs is to represent real-life scenarios where the knowledge is neither com-
pletely available nor crisp. In such scenarios the ability of stating whether an
instantiation of variables is allowed or not is insufficient or sometimes even im-
possible. Robust parsing of natural language has to cope with gradation as an
intrinsic property of linguistic data (see Aarts (2007)). Despite this computa-
tional complication there also exist some properties of natural language which
may reduce the complexity of the parsing problem. Karlsson (2010) shows that
an absolute limit on center-embeddings exists in written and spoken language.?
Yli-Jyrd (2003) shows for Danish that the nested crossing depth of dependencies
is in general pretty low.* By ignoring some mathematical beauty the question is
whether a regular approximation is sufficient for a real-life scenario like natural
language parsing (see Mohri & Sproat (2006)). However, a regular approxima-
tion may have advantages for practical systems. The complexity of dependency
trees could be parametrized (cf. Yli-Jyrd (2004)) e.g. the maximum depth
of a dependency tree, the maximal crossings of dependency links etc. Limits

3Karlsson (2010) studies different types of recursion and iteration in written and spoken
language empirically and examines empirical determinable constraints on the number of re-
cursive and iterative cycles.

4Yli-Jyrda (2003) studies a collection of constraints imposed on the non-projectivity of
dependency structures in natural language on the basis of the Danish Dependency Treebank
(DDT) empirically.



on structural complexity could resolve some ambiguity and by this means the
number of non-typical analysis could be reduced. Problems could be simplified
so that the solving complexity is lowered. It may even be possible to trans-
form an intractable problem into a tractable approximated one. Furthermore, a
problem could be split up into its regular parts and covered within an extended
finite-state approach.

In my opinion the possibilities of FSMs have not been fully exploited not
only in the area of constraint processing but also in robust dependency parsing.
I think that approaches in the area of constraint processing can help to make the
parsing with FSMs efficient. That means, in this article constraint processing
techniques and finite-state techniques are brought together in order to realize
efficient dependency parsing. The approach represented in this article is based
on the Semiring-based CSP (SCSP), a general framework which is proposed by
Bistarelli, Montanari, & Rossi (1997). Different instances of the framework may
correspond to known or new CSP schemes via specific choices of the semiring. It
is shown that SCSPs can be represented and solved with FSMs or rather WFSTs
in a natural way, that the approach is well capable of solving different SCSPs
simultaneously and that tree decomposition is the key for efficient processing.
This article is not about how exactly to model linguistic information or rules,
or how to find an adequate cost-structure but a general chart is given how to
implement dependency parsing as COP within the FSM framework.

According to this motivation the article is organized as follows: section 2
gives basic definitions and notations. The following section 3 shows how a SCSP
can be represented by WFSTs. Problem solving over such a representation is
demonstrated in section 4. Finally, section 5 shows how finite state techniques
can be used to realize dependency parsing as an optimization problem.

2 Definitions and notations

Costs, probabilities, rankings, etc. are implemented via a semiring structure in
order to be independent of a concrete instantiation. Let S # @ be a set and
let @ (called addition) and ® (called multiplication) be binary operations on
S, then (S,®,®,0,1) is called a semiring if (S, ®,0) is a commutative monoid,
(S,®,1) is a monoid and ® distributes over ®. Furthermore, a semiring is called
c-semiring if the operation @ induces a partial order over S. The partial order
is defined as follows: a < gb iff a® b = b. This order is used to compare elements
in S where a < gb intuitively means that b is “better” than a (cf. Bistarelli,
Montanari, & Rossi (1997)).

In this article the idea of representing and solving COPs using WFSTs is
explored. A WFST T = (X;,%2,Q,q0,F, E,\, p) over a semiring S is an 8-tuple
such that X; is the finite input alphabet, ¥, is the finite output alphabet, @ is
the finite set of states, ¢y € @ is the start state, F' € () is the set of final states,
EcQ@Qx(X7Ue)x(Zgue)xSxQ is the set of transitions, A is the initial weight
and p: F' — S is the final weight function mapping final states to elements in S.
A WFST is capable of recognizing a rational transduction of S-rational series
(cf. Kuich & Salomaa (1985)). The concepts of regular languages and rational
series are used extensively in order to demonstrate the approach.

In the context of regular languages and rational series, ¥ and A with A c X
denote alphabets, and the standard extended regular expression operations are



used:® complement (A), Kleene closure (A*), Kleene plus (A*), iterated concate-
nation (A™), inversion (A~7), concatenation (AB), union (A u B), intersection
(A n B), cross product (A x B), composition (A o B), domain (Dom(A)) and
range (Range(A)). Additionally, the optional rewriting operator A § “g is de-
fined by Ao ((X*(a x £))*X*) and the corresponding variant A | *3 is defined
by Range(A ] “3). Furthermore, the mandatory rewriting operator A {} % is
defined by Ao ((X*aX*(a x §))*¥*aX*) and the corresponding variant A | %
is defined by Range(A { “3). The precedence of the operators corresponds to
the order in which they are listed. The empty string is denoted by € and a
polynomial we with w € S is denoted by (w). The distinction between a regular
language A and the identity relation which maps every string of A onto itself
and the distinction between a rational series of which all coefficients are 1 and
their support is ignored. The representation of X concerning formal languages
and formal series is denoted by L(X') and the automata-theoretic representation
is denoted by A(X).

3 Representation of SCSPs

The Semiring-based CSP (SCSP) is a unifying framework for a variety of ex-
tensions of the CSP formalism where finite domains are presumed. It is based
on a semiring structure which allows to represent for example crisp, weighted,
fuzzy, probabilistic or set-based CSPs depending on the instantiation of this
structure. The main idea of Bistarelli, Montanari, & Rossi (1997) behind this
is the following:

“[...] a semiring (that is, a domain plus two operations satisfying
certain properties) is all that is needed to describe many constraint
satisfaction schemes. In fact, the domain of the semiring provides
the levels of consistency (which can be interpreted as cost, or degree
of preference, or probabilities, or others), and the two operations
define a way to combine constraints together. More precisely, we
define the notion of constraint solving over any semiring. Specific
choices of the semiring will then give rise to different instances of
the framework, which may correspond to known or new constraint
solving schemes.”

Formally a SCSP consists in a constraint system, constraints and a constraint
problem. In this section these notions which are parametric with respect to
the notion of the c-semiring are defined and mapped to regular languages and
rational series. The definitions of SCSPs given in Bistarelli, Montanari, & Rossi
(1997) are used and it is tried to be as close as possible to these definitions in
order to exemplify our approach.

3.1 Constraint system

A constraint system specifies the c-semiring to be used along with the set of
all variables and their domain. Formally, a constraint system CS = (S, D, V) is

5The operations are mainly named with regard to the operations on regular languages and
relations but the mapping to rational series should be obvious (see Kuich & Salomaa (1985)).



a 3-tuple such that S is a c-semiring, V' is an ordered set of variables and the
finite set D is their domain (cf. Bistarelli, Montanari, & Rossi (1997)).
A value of the domain can be represented as a symbol in the alphabet of
a regular language since the domain is finite. But, concerning the automata-
theoretic representation it is advisable to keep the size of the alphabet small
for practical reasons. Therefore, a value (numerical, symbolic etc.) can be
represented in a special coding as a string instead. Given the domain D =
{d;,ds,...,dn} and a mapping ¢ : D - A* defined by ¢(d,.) = d,” with d,” € A*
for every r < m then a value d,. is represented by the finite regular language
(singleton):
L(d,) = {p(d.)} (1)

and the domain D is represented by the union of the individual values:

L(D) = L(dy) u L(dz) -+ U L(dm) (2)

Then a variable v € V' can be represented as a finite regular language contain-
ing all possible values of the domain. Thus, a variable is represented in an

extensional way:
L(v) = L(D) 3)

The set of variables V' can be represented by a finite regular language accepting
a sequence of such variables. If V is totally ordered via the ordering > and v; >
vg > --- > v, then V is represented by the concatenation of all variables in the
defined order where each variable is marked by the special symbols <, > € - A
giving a start and an end point of their values:

L(V)=<dL(v;) ><L(vs) >+ L(vy) > = (< L(v) )" (4)

The WFST A(V) representing V is sketched in figure 1 (the weights of the
identity WFST are left out in the figure).

adl > ad) > Qdl >
Y 27N
Q<1d’21>9 qu’gb”/ \\<1d'zl>]/
Qdy > Qdy > ady >
U1 V2 Un

Figure 1: WFST representing the set V'

In order to represent a subset of V' each variable which is not in the subset
is marked by the symbols «, B € 32— A instead of the symbols < and >. Then,
the power set P(V') can be represented as a finite regular language:

L(P(V)) =
<AL(vg) D> < L(vg) > A L(vy,) > AL(v) >
U U U - N v (5)
<«L(vy)p <4L(vg)» <«L(v,)» <«L(v)»

The WEST A(P(V')) representing the power set of V' is sketched in figure 2 (the
weights of the identity WFST are left out in the figure). According to that, the
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Figure 2: WFST representing the power set of V

empty set @ is represented by the regular language:
L(2) = 4L(v;) » 4L(vs) »--- 4 L(vy,) » = (4 L(v)»)V (6)

The union of two subsets of V is denoted by L(A; )uL(Az) with L(A;),L(Az)
L(P(V)). This operation can be defined via the extended regular expression
operations:

L(A;UuAg)=L(A;)uL(Ap) =
LAY 9q, U Pp 44, b P Vg, L P,
n U<12<]UI>ZI>U<11<]UI>1[>
L(A2) 19, U Pp, 4 Y, 4 P,
(7)

The markers < and > are renamed with <1 ; and >; in L(A;) via the rewriting
|94, | 5, and the markers < and > are renamed with <12 and >, in L(A»)
via the rewriting |} <4, | ®,. With the help of this renaming it is possible to
expand A; with A, by accepting variables of A, beyond A; via the optional
rewriting | 4, | ®, and it is possible to expand Az with A; by accepting
variable values of A; beyond Az via the optional rewriting | 4, | *», at the
same time. Common variables of the two sets are handled in connection with
L(Ajy) via the optional rewriting | 94, | "*,,. In the end the calculation of
the union is performed via the intersection operation. Afterwards the renaming
is reversed.

3.2 Constraint

A constraint over a given constraint system specifies the involved variables and
the allowed tuples of values for those variables and assigns an element in S to
each tuple. This element can be interpreted as the tuple weight or cost or level
of confidence or any other measurable feature. Formally, a constraint is a pair
(def,con) where con €V is called the type of a constraint and def : Dleonl . g
is called the value of a constraint. That is, the value of a constraint is a mapping
of tuples of values to elements in S and the type of a constraint represents the
scope of the tuples (cf. Bistarelli, Montanari, & Rossi (1997)).

From the point of view of regular languages and rational series a constraint
can be represented as a pair (L(def),L(con)) consisting of a S-rational se-
ries and a regular language representing its value and type.® The type of a
constraint is a subset of V' and therefore can be represented as a subset of

61t is possible to represent a constraint as a rational series of a regular language defining a



L(P(V)) denoting con. Given ¢ : P(V) - L(P(V)) mapping every subset of V'
to a corresponding subset of L(P(V')) denoting the same variables, then L(con)
is defined by:
L(con) = 9(con). (8)
The allowed tuples of values for the variables in con can be extensionally repre-
sented as a subset of (< L(D)>)!°"l. Therefore, L(def) is a S-rational series
with finite support defining a function mapping tuples of values for con to ele-
ments in S:
L(def) : (A L(D) )l 5 5 (9)
Quantified constraints with existentially or universally quantified variables
can be represented in a more compact and less extensional manner. This can be
achieved by the following approach: It is assumed that the tuples of values of
quantified constraints have no fixed arity and therefore the value of a quantified
constraint is defined by the mapping def : D* — S where the infinite set of tuples
over D is denoted by D*. The value of such a constraint can be represented as
a rational series with infinite support defining a function:

L(def): (AL(D)>)* - S (10)

In order to illustrate this approach a WFST recognizing the value of a constraint
including one existentially quantified variable vy which is constrained to the
variable values dj,, dy, .. .dg,, is sketched in figure 3 (the weights of the identity
WFST are left out in the figure). Via this underspecified representation it is

AL A

!’ ! ! !
Qdi> ... <adi> ~@) - adj, v @ <di>...qd>

N/ S

V1...0k-1 VL Vi+1 - --Un

Figure 3: WFST representing one existentially quantified variable

possible to define the value of a quantified constraint without knowing its type.
In the following a quantified constraint which has an unknown type is denoted
by (def,*) and (L(def), ) respectively and a set of such constraints is denoted
by C*.

Predicate logic formula where propositions apply to substrings (cf. Hulden
(2008) and Yli-Jyrd & Koskenniemi (2004)) can be used to realize such quan-
tified constraints where the techniques have to be expanded using weights or
costs ete. (cf. Didakowski (2008b)). Note that unbound crossing or embedding
dependencies are not covered by such constraints since they are regular.

3.3 Constraint problem

A constraint problem P over a constraint system CS is a pair P = (C,con)
where C'is a set of constraints and con € V, the type of the constraint problem,

function from L(P(V')) to S, too. In this representation the value and type remain accessible.
However, in order to alleviate the issue we want to be as close as possible to the approach of
Bistarelli, Montanari, & Rossi (1997).



is a set of variables of which it is desired to know the possible assignments
satisfying all constraints. Here, in contrast to the work of Bistarelli, Montanari,
& Rossi (1997) it is not assumed that (def;,con’) € C and (defgz,con’) € C
implies def; =defs.

The type of a constraint system can be represented as the finite regular
language L(con) ¢ L(P(V)) and a constraint in C as a pair consisting of a
rational series and a regular language as defined in section 3.2.

4 Solving of SCSPs

This section deals with the solving of SCSPs with WEFSTs. In the SCSP scheme,
the semiring values assigned to the tuples of each constraint are used to compute
corresponding semiring values for the tuples of values assigned to the variables of
the constraint problem via the semiring operations @ and ®. This is facilitated
by the two operations over constraints combination (®) and projection (|)

which are based on the tuple projection (|). By means of these operations the
solution of a SCSP can be defined.

4.1 Tuple projection

Given two sets of variables I and I’ with I’ € I ¢ V, then ¢ | ’;» denotes the
projection of any tuple of values t from the set of variables I to the set of
variables I’. The tuple projection can be realized by a regular relation defining
a mapping from (< L(D)>)! to (< L(D) >)' which is denoted by L(t | T 1).
Such a relation can be constructed easily via the variable sets L(I) and L(I")
by the extended regular expression operations:

LtV ) = (L) T «FEpPo L) § 44 )1 47> )t (11)

The set of variables L(I) is mapped to the set of variables L(I") via the optional
rewriting { (< ] »© and via the composition operation. Then the tuples of
values for I and I’ are isolated via the rewriting §§ 4"*, where the inversion
operation helps to apply the rewriting to both sets of variables.

4.2 Combination

Combining two constraints means building a new constraint involving all the
variables in the types of the original ones and computing a tuple projection for
both constraints. The semiring values of the tuples of the resulting constraint
are the multiplication (®) of the semiring values of the appropriate sub-tuples
associated to the original constraints (cf. Bistarelli, Montanari, & Rossi (1997)).

The combination of two constraints (L(def; ), L(con;))®(L(def2), L(cong))
is the constraint (L(def), L(con)). The type can be calculated via the union
operation over subsets of V' (see subsection 3.1):

L(con) = L(con;) u L(conyg) (12)

The value can be calculated by composing L(def ;) and L(def2) respectively
with the tuple projection L(t | " con,) and L(t | “°™con, ) respectively and by



taking the intersection of the domains of the results:

Dom(L(t l« COnconl ) © L(defl ))
L(def) = n (13)
Dom(L(t i conconz) ° L(defg))

If it is assured that the constraints (L(def;), L(con)) and (L(def ), L(con))
have the same type the combination is the constraint (L(def ; )nL(def2), L(con))
and if both types of the constraints are unknown in case of quantified constraints
the combination is the constraint (L(def;)n L(defz),*).

4.3 Projection

With help of the projection operation a constraint can be projected over a
set of variables in order to obtain a new constraint (cf. Bistarelli, Montanari,
& Rossi (1997)). Given the constraint type con and the set of variables I
with I € con € V, then the projection denoted by (L(def),L(con)) | 1 is
the constraint (L(def’),L(con’)). The type of the constraint is the regular
language:

L(con") = L(I) (14)
The value is calculated by applying the tuple projection L(t | ™) to L(def):
L(def") =

Range(L(def)o L(t | “™r)) (15)

4.4 Solution

Given a constraint problem P = (C,con) the solution of a SCSP is defined as
the constraint induced on the variables in con by the whole constraint problem.
For each tuple of values for the variables in con such a constraint provides
an associated semiring value. First, all constraints in C' are combined via the
combination operation, then the resulting constraint is projected over con (cf.
Bistarelli, Montanari, & Rossi (1997)).

Using the definitions mentioned above the solution of a CSP is the constraint:

(® (L(def),L(con’))eC(L(def)7L(Con,))) U con (16)

Note that the intersection operation as well as the composition operation pre-
sume that the semiring operation ® is commutative (cf. Kuich & Salomaa
(1985)). However, given a c-semiring which is commutative the solving of a
SCSP with WFSTs works fine.

The time and space complexity of solving a SCSP using WFSTs is exponen-
tial in respect to the number of constraints in the worst case. That is due to the
composition operation for which the intersection is the special case where both
operands are WFSTs with identical input and output labels for each transition.
The time and space complexity for this operation is O(|N|x|M]|) where |N| and
|M| denote the number of states of the WFST N and M respectively. In order
to solve a SCSP this composition operation is applied repeatedly bound by the
number of constraints (cf. Vempaty (1992)). Note, that the order in which the
constraints are combined may have an enormous effect on the size of the WFSTs
during problem solving. But keep in mind that the finite-state techniques are
well capable of combining constraints in an off-line preprocessing step.
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4.5 Best level of consistency

The best level of consistency gives an idea about how much the constraints of a
given problem can be satisfied (cf. Bistarelli, Montanari, & Rossi (1997)).

Given a constraint problem C'P = (C, con), the best level of consistency of a
CP is defined as the constraint blevel(CP) = (® (def,con)ec (L(def), L(con))) |
» whose value is a S-rational series mapping the empty string to the corre-
sponding level of consistency and whose type is a subset of L(P(V')) denoting
the empty set (L(@)).

A more interesting notion of solution provides only the tuples that have an
associated semiring value which coincides with the value of blevel(C'P). Here
< g has to define a total order. Otherwise it could happen that none of the
tuples has an associated semiring value equal to the value of blevel(CP). Given
such a total order a single source shortest path algorithm can be used in order to
obtain the desired tuples out of a WFST. The best path search can be calculated
in O(|Q| + |E|) in the acyclic case if @ is the set of states and F is the set of
transitions (cf. Mohri (2002)). If S contains multiobjectives (multicriteria) and
< s does not define a total order a multiobjective shortest path algorithm can be
used (see Tarapata (2007)).

4.6 Infinite domains

In this section it is discussed how to handle infinite domains. The basic idea is to
represent an infinite domain as an infinite regular language. If for example the
domain consists of all possible nonempty strings over the alphabet A the values
can be represented by the infinite regular language A*. Thus, an infinite domain
can be covered in a constraint system since it is possible to represent the infinite
domain as an infinite regular language. But the formulation of constraints over
infinite domains is slightly limited. It is for example impossible to formulate that
two variables equal in an extensional way.” That is, a constraint can not cover
the copy language as well as the mirror language or the palindrome language.
However, constraints over infinite domains can be formulated if they are regular.
Given the above mentioned domain it is for example possible to define an upper
or lower bound for the string length, to express equality presuming a bound
string length, to forbid some characters or simply to assign concrete values.

4.7 Information assigned to variables

Sometimes information is associated with the variables in V' and therefore with
the variable positions in L(V'). If quantified constraints as defined in subsec-
tion 3.2 are used this information is inaccessible in the formulation of such a
constraint because the variable positions can not be identified directly. To over-
come this problem, the information associated with the variables can be coded
on string level and added to the variables in L(V'). Given the set of variables
V ={vs,vs,...,v,}, the information associated with a variable is given by the
mapping ¢ : V — A* defined by ¢(vy) = i with i € A* for every k < n. The
marker & € A is used to separate the information from the variable values. Then

"Equality could only be formulated by means of special symbols marking the corresponding
variables where the equality is denoted in an intensional way.
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a variable v; together with their associated information can be represented as
the regular language:

L(vi) = {¢(vi)} O L(D) (17)
The variable information can be used in the formulation of constraints in order
to identify sets of variables via the projection operation.

4.8 Simultaneous solving

If quantified constraints are used (see subsection 3.2) and if information is added
to the variables in L(V') (see subsection 4.7) it is possible to represent differ-
ent constraint systems compactly in one representation provided that they are
defined over the same semiring and that they have the same domain. Via this
representation constraint problems can be solved simultaneously on different
constraint systems.

In order to define the simultaneous solving the simultaneous projection has
to be defined first. In this connection the simultaneousness of « and 3 is writ-
ten as a/f. Given the constraint systems (S, D,V ;),(S,D,V32),...,(S,D,V,)
and given the constraint types conj;,cong,...,con, and the sets of variables
I;,1s,...,1, with I; € con; € V;,I5 € cong € Vg,...,I, € con,, € V,,
then the simultaneous projection of quantified constraints which is denoted by
(L(def),L(cony)/L(cong)/...[/L(conn)) | 1,/1,/...1, is the constraint (L(def/defs/...[defr), L(con';[co
The type of the constraint is the regular language:

L(con';[con's/...[con' ) =L(I;)uL(Ig)u---uL(I,) (18)
and the value is the S-rational series:

Range(L(def) o (L(t | ™, )UL(t| ™ ,)u---UL(t] "))

With help of the simultaneous projection the simultaneous solution can
be defined. Given the constraint systems (S, D,V ;),(S,D,V32),...,(S,D,V,)
and given the constraint types con;,congs,...,con, and con’;,con’s,..., con,
with con’; Scon; €V ;,con’s Scong €Vy,...,con', € con, €V, and given the
constraint problem over different variable sets (C*, L(con;)/L(cong)/ ... [L(con,)),
then the simultaneous problem solving is defined as follows. First the quantified
constraints with unknown type are combined:

(def, %) = (& (L(desr)mec (L(def'), #)) (20)

The type L(con';)/L(con’s)/.../L(con’,) is assigned to the resulting con-
straint. Then the constraint is projected over the (simultaneous) type con;/cong/ ... [cony:

(def,L(con’;)[L(con’s)/.../L(con'n)) | con,/jcons/.../conn (21)

Here it is not necessary that the constraint systems differ from each other. That
is the definition not only includes the possibility to solve different constraint
problems on different constraint systems simultaneously but also the possibility
to solve different constraint problems on the same constraint system. Note that
in this approach the best level of consistency is calculated over all involved
SCSPs.

8This approach has some similarities to the MUSE CSP proposed by Helzerman & Harper
(1996). Via the MUSE CSP it is possible to represent several CSPs compactly provided that

they have some common variables which have the same domains and constraints. By this, the
work required to apply constraints can be reduced.

8
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5 Dependency parsing

In this section, it is shown how to implement dependency parsing as a constraint
optimization problem within a finite state approach. After a short introduction
into WCDG it is shown how to implement its basic features within the finite
state framework including some new perspectives. Then, a problem decomposi-
tion approach is presented making efficient non-projective dependency parsing
with WFSTs possible.

5.1 WCDG — a short overview

In the WCDG formalism natural language parsing is treated as a disambigua-
tion problem over initially totally ambiguous dependency relations where it is
desired to find the most preferable dependency structures by means of quan-
titative preferences. This optimization problem is realized by an instance of
the Valued Constraint Satisfaction Problem (VCSP) which is similar to the ad-
ditive VCSP but it uses the multiplication operation for combining penalties
for computational reasons (Schréder (2002)). The penalty of a constraint can
take a factor between 0 to 1 where 0 denotes a crisp constraint and where a
constraint with the penalty 1 has no effect. This instance of the VCSP allows
to express that one dependency structure is more preferable than another via
negative preferences.

Dependency parsing of natural language can be mapped to a constraint op-
timization problem if one manages to specify what the constraint variables are,
how value assignments represent dependency structures and how constraints can
be used to find these appropriate value assignments. The constraint variables
are specified as follows. Each word in a sentence is represented as an individual
variable. The values for these variables are pairs consisting of the information
about the kind of dependency relation the word is involved as a dependent and
about the position of the dominating head. In the following the kind of depen-
dency relation is called dependency label and the position of the dominating
head is called head position. A final assignment of variables for the syntac-
tic dependency tree in figure 4 is given by: v; = (DET,2), ve = (SUBJ,3),
vg = (S,NIL), v, = (AUX,3), vs = (PP,4), vg = (DET,7), vy = (PN,5). The
numbering of the variables corresponds to the word positions. The root node is
indicated via the head position NIL.

[
IS

suB) @ _AUX

/§\. PP

L
ver @7 o ™
: : : LT
: ¥ DET:

The boy is  kissed by the girl
1 2 3 4 5 6 7

Figure 4: syntactic dependency tree

In order to include the handling of lexical ambiguities and the handling of
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several representational levels the definition of a constraint variable is expanded
as follows: For each reading of a word in a sentence and each representational
level an individual variable is defined. In this connection the head position
covered by a variable is extended by the information about the reading of a word.
Furthermore, it is possible to identify sets of variables by their representational
level.

Conditions which can be of different strength are formulated as unary or
binary constraints via first-order predicate calculus formulas which are implicitly
assumed to be universally quantified. All subtrees must satisfy these formulas
which allow to model linguistic phenomena like degrees of grammaticality and
structural preferences. In WCDG it is possible to formulate constraints which
receive a fixed penalty. An example formula concerning the lexical categories
which are involved in the object relation is given:

{X:SYN} : ’object category’ : 0.1 :

X.label = OBJ - > X@cat — NN X"cat = VVFIN (22)

The formula states that it is strongly preferred (a penalty of 0.1) that all de-
pendency edges (X:SYN) with the label OBJ (X.label = OBJ) have a noun as
modifier (X@cat = NN) and a finite verb as governor (X “cat = VVFIN). It is
also possible to formulate so-called dynamic constraints which do not have a
fixed penalty. They receive a penalty depending on the context in which they
are evaluated. Such constraints can be used for example to favor short distances
of words. The longer the distance, the higher the penalty. They can also be
used to give a penalty to specific words in a lexicon or to give a penalty for
missing arguments specified by a lexicon. An example formula concerning the
preference of short edges is given:

{X!ISYN} : ’prefer short edges’ : [ exp([ 1 - abs(X@to - X"to) |/10) ] :

abs(X@to - X"to) < 2 (23)

The formula states that all dependency edges except those that have NIL as
governor (X/SYN) are preferred to have a short distance between modifier and
governor (abs(X@to - X “to)). In McCrae, Foth, & Menzel (2008) an extension of
these "local’ constraints to global phenomena via the additional predicates is and
has is presented. The first predicate expresses conditions on the dependents of
a given word and the latter expresses conditions on the dependency edge above
a given word. The conditions which increase the expressivity of the WCDG
constraints are formulated by means of ancillary constraints. Via cascaded and
recursive invocations of these constraints additional conditions are not limited
in applicability to neighbouring edges.

5.2 Naive implementation of WCDG

WCDG is implemented within the VCSP framework as mentioned in the pre-
vious section. Bistarelli, Montanari, Rossi, Schiex, Verfaillie et al. (1999) show
that it is possible to pass from any VCSP problem to an equivalent SCSP
problem and vice-versa provided the semiring of the SCSP is totally ordered.
Furthermore, in section 3 it is shown that a SCSP can be represented and solved
with WFSTs in a natural way. Thus, a VCSP can be represented and solved
with WFSTs indirectly via a SCSP. Therefore, it should be possible to imple-
ment WCDG with WFSTs within the SCSP framework. In the following it is
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tried to realize the basic features of WCDG with the help of WFSTs within the
SCSP framework.

5.2.1 Constraint system

In order to implement WCDG a weighted CSP can be modeled as a SCSP over
the tropical semiring (R* U {+o0}, min,+,+00,0). This SCSP instance imple-
ments negative preferences since preference combination by + returns a lower or
equal preference (cf. Bistarelli, Montanari, & Rossi (1997)). In WCDG penalties
assigned to a constraint have a penalty factor between 0 to 1. However, using
the negative logarithm the costs can be transfered into the tropical semiring.

For further definitions, the representational levels are omitted in the begin-
ning. Each word of a sentence is represented by an individual variable where
the total order of the variables corresponds to the total order of the words in the
sentence. The variable values are represented on string level in a special string
encoding including the information about the dependency label and about head
position. Properties of a word like the lexical category or the lemma form are
added as information to the variables as mentioned in subsection 4.7. In order
to illustrate a possible encoding of a variable an instantiation together with its
associated information is given by the following example:

Mann [NN Case=nom Number=sg Gender=masc] 1< [SUBJ] 5 (24)

The variable information consists in the lemma form Mann and its part-of-
speech with some morphological features ([NN Case=nom Number=sg Gen-
der=masc]) and it consists in the position of the word in the sentence (1).°
The variable value consists in the label SUBJ and the head position 5 which
corresponds to the position of the head in the sentence.

5.2.2 Constraints

The quantified constraints of WCDG which receive a fixed weight can be im-
plemented via predicate logic formula where propositions apply to substrings
(Hulden (2008)) and they can be compiled in an off-line preprocessing step.
Note that one is not restricted to universal quantification and that one is not
restricted to at most two quantified variables in this approach. It is possible to
make use of universally and existentially quantified formulas over any number
of variables. That is, the approach is not restricted to unary and binary con-
straints. Given the regular language « which is defined via a predicate logic
formula and a penalty w, then the value of a quantified constraint (def, *) can

be defined by the following S-rational series:*°

L(def) = aua{w) (25)

If the penalty is co which corresponds to —log(0) then the constraint is crisp
and if the weight is 0 which corresponds to —log(1) then the constraint has no
effect.

9The features of a complex category have a fixed set of possible values. They are de-
fined with respect to an inheritance hierarchy and they are represented as transition labels.
Underspecification is realized as the disjunction of all maximal subtypes of a super type.

10Tn Didakowski (2008b) it is proposed to restrict universally quantified variables option-
ally. Through this a WFST representing a constraint can be smaller in size hence no comple-
mentation operation is used. However, such a strategy presumes positive preferences in the
constraints (see section 5.2.4).
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The implementation of dynamic constraints is more complicated because
complementation is not defined for S-rational series in general (the problem
arises if S has more than two elements) and the complementation operation is
exhaustively used in the compilation of such predicate logic formulas. In the
following a chart is given avoiding this problem. The basic idea is to represent
the penalty on string level and to assign it to the value of a constraint variable.
An example of a variable with the associated penalty 0.7 is the following:

Mann [NN] 1 ¢ [SUBJ] 5 0.7 (26)

Given the regular language « which is constructed via a predicate logic formula
including this penalty and given a S-rational series  mapping a finite grading
of penalty into an element in S and given a regular relation v which removes the
penalties on string level from the constraint variable values, then the value of a
dynamic constraint (def, *) can be defined by the following S-rational series:

L(def) = Range((ar B) o) (27)

If the penalty of a variable is not constrained, the variable receives the penalty
0 which is the best among all possible weights. Via the assignment of penal-
ties to individual variables, for example shortest and longest distance can be
implemented (cf. Didakowski (2008b) in the context of longest match).

The extended local constraints are implemented in another way as men-
tioned in section 5.1. Complex labels with finite feature structures are used in
order to ’transport’ syntactic and lexical information instead of using ancillary
constraints which check some information in a cascaded or recursive manner.
That is, the information is still available if needed. The size of the domain grows
rapidly using complex labels. But using an adequate string encoding this does
not matter in the finite-state approach, because the domain can still be repre-
sented compactly. By this it is for example possible to handle subcategorisation
frames and to represent basic properties of a subtree, e.g. to determine whether
it has a determiner or a verb particle or a passive marker etc. Note that the finite
set, of feature structures may correspond to the finite set of ancillary constraints
in some way where the individual features take boolean feature values. In this
view the feature structures are only a way to store the results of the checks of
the ancillary constraints. An example for a variable value with a complex label
including information about whether the subtree has a determiner and whether
the dominating head is involved in a dependency relation as modifier with the
label S is given:

Mann [NN] 1 & [SUBJ is_S=true has DET=true] 5 (28)

The use of complex labels opens new possibilities in the formulation of con-
straints.

Several representational levels can be represented by one constraint variable
where the separation of the levels is transferred into the domain of the SCSP. In
order to realize this it is assumed that the different levels are totally ordered. If n
representational levels are used a variable value consists of n pairs consisting of a
dependency label and a head position written one after another. The belonging
of a pair to a level is geared to the total order of the levels and corresponds to
the position at which it is listed. A variable value which includes a level for the
syntactic structure [; and which includes a level for the thematic structure [z
can be coded on string level as follows where [; > [5:

Mann [NN] 1 ¢ [SUBJ] 5[AGENS] 7 (29)
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In the example the label SUBJ together with the head position 5 refer to the
syntactic structure and the label AGENS together with the head position 7 refer
to the thematic structure of a sentence. If a word is not involved in some of the
representational levels a special label for 'undefined’ may exist.

5.2.3 Explicit dependency structures

A lot of work deals with the representation of dependency structures on string
level. Oflazer (2003) uses special symbols to represent “channels” which make
it possible to represent projective dependency trees. Yli-Jyra (2005) on the
other hand uses a bracketing scheme in order to represent projective depen-
dency trees. Furthermore, Y1li-Jyra (2004) presents a colored bracketing scheme
which allows to represent non-projective dependency trees with some restric-
tions. In Maruyama (1990) a more explicit representation of dependency trees
is proposed as shown above. Some good reasons give motivation for realizing
such an approach with finite state techniques. First, the sentence length seems
to be very limited in general (see Mohri & Sproat (2006)). Second, checking the
agreement of the head position shown by the dependent and the actual position
of the head can be indicated via special symbols in an implicit manner. Later on,
this agreement can be made explicit. In this connection a constraint consists of
two parts, one that checks the elementary constraint and the other that makes
the agreement of the position information explicit. Additionally, the problem
of checking the agreement can be decomposed in checking individual digits or
digit complexes. Furthermore, the direction of checking can be changed by re-
versing a WFEFST in order to decrease the amount of hypotheses. This approach
is sketched in figure 5.

check agreement

1.0 D 1.0 D

governor modifier
. check agreement

1.0 D 1.0 ..D

modifier governor

Figure 5: direction of agreement checking of the position information

5.2.4 Semiring instantiations

With a weighted CSP as mentioned in subsection 5.2.1 it is unnatural to formu-
late that one grammatically correct structure is more preferable than another.
Here the problem of natural language parsing may have a bipolar character
including negative and positive preferences where the first models for example
degrees of grammaticality and the latter models structural preferences. In a
bipolar problem an indifference element expresses neither positive nor negative
preferences and is the best among the negative preferences and the worst among
the positive preferences. The maz-semiring (Ru{-o0,+00}, max,+,-00,0) can
be used to implement such bipolar problems where 0 is the indifferent element.
A general framework for bipolar structures is given in Bistarelli, Pini, Rossi, &
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Venable (2005) which allows to have a richer structure for negative preferences
with respect to the positive ones or vice versa.

In Didakowski (2008b) an approach is presented where several linguistic
criteria which are represented as a semiring can be ranked by preference. This
is facilitated by means of a semiring composition which defines a lexical order
via the semiring operation ®. There, the ranking is used in order to achieve
a correct implementation of longest match based on semiring-weights, and in
order to outrank a longest match strategy by other preferences.

After parsing it is sometimes requested to know the conflicting constraints
which caused penalties. The information about conflicting constraints can be
handled by the semiring (2P(M),U,U,®, {@}) where M is a set of constraint
identifiers, U is the classical set union and U is the operation of pairwise union
of sets and is defined by U(A,B) = {fla€e Anbe BAf =aub}. Itis easy
to see that @ is the identity of u, that {@} is the identity of U, that @ is the
annihilator of U, that u and | are commutative and that |J distributes over
U. Assuming that the constraint identifiers are inserted by the corresponding
constraints and that the semiring is conveniently combined with the semiring
which handles the preferences, the constraint identifiers can be collected after
problem solving.

5.2.5 Solution

If a sentence is lexically or morphologically ambiguous the several readings
can be handled by different sets of variables. But instead of solving a SCSP
for each reading independently (this would be combinatorial explosive) the
several SCSPs for each reading can compactly be represented in one repre-
sentation and solved simultaneous as presented in subsection 4.8.'! If a sen-
tence has n lexical or morphological readings there exist n constraint systems
(S,D,V),(S,D,Vys),...,(S,D,V,) for the different variable sets. Assumed
that all variables of the individual constraint systems are of interest actually n
concrete SCSPs can be solved simultaneously as follows. First, all quantified
constraints are combined: (def,*) = (® (r(defr),x)ec (L(def’),*)). A corre-
sponding (simultaneous) type is assigned to the resulting constraint. Then the
constraint is simultaneously projected over the variables of the several constraint
systems:

(L(def), LV ) L(V2)] .. [LVa)) b vyyvayyv., (30)

There is an essential difference to the FSIG interpretation as a CSP in Yli-
Jyré (2001) where lexical and morphological properties are treated as variables
such that the disambiguation of these properties together with the detection
of the dependency relations are covered in one CSP. It would also be possible
to represent the different readings of a word by different variables within one
SCSP. But such an approach complicates the formulation of constraints because
one has to keep track of the information about which readings belong to the
same word. Furthermore, the number of readings would increase the number of
variables of a constraint system and problem.

' This approach is similar to the work of Helzerman & Harper (1996) where the MUSE CSP
is used to represent the CSPs for each lexical reading of an ambiguous sentence compactly.
Furthermore, they use the MUSE CSP in order to represent multiple sentence hypotheses of
a speech recognizer. Such an approach is of interest for the finite state approach, too.
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Computing a solution with WFSTs via the method mentioned above can
be impracticable. An example for this are FSIGs where the parsing can lead
to finite state machines that are not viable any more (cf. Tapanainen (1997)).
This is due to the enormous internal results which are caused by the intersection
operation. Provided that the number of quantified constraints in the grammar
is fixed one could believe that all quantified constraints can be combined to one
constraint represented by one monolithic WFST. But in practice it is impossible
to combine all constraints of an adequate grammar. Instead of combining all
quantified constraints before projecting it is possible to combine portions of the
constraints and to projected them individually over the corresponding variables.
Afterwards the resulting constraints can be combined. On the side of FSIG a
lot of work deals with techniques in order to restrain the size of internal results
(see Koskenniemi, Tapanainen, & Voutilainen (1992)).

However, the uncoupled agreement checking of the position information com-
plicates the combination of constraints in an off-line preprocessing step (see
section 5.2.3). Furthermore, a constraint does not cover unbound crossing and
embedding dependencies. In section 5.3 tree composition is proposed in order
to overcome these problems.

5.3 Tree decomposition

To overcome the problems mentioned in section 5.2.5 tree decomposition can be
implemented. The notion of tree decomposition originates from graph theory. In
constraint processing it refers to the decomposition of a problem in subproblems
(clusters) organized in an acyclic graph where the values of variables that relate
adjacent subproblems (variables whose removal disconnect the subproblems) are
obtained by combining the solutions of the subproblems. The main idea behind
this is to solve the whole problem tree-like and to detect inconsistency at a
local level where local inconsistency implies global inconsistency (cf. Bistarelli,
Montanari, & Rossi (1997)). In our approach tree decomposition is restricted
to one representational level. Different representational levels may correspond
to different tree decompositions.

5.3.1 The general subproblem

In order to realize tree decomposition the general subproblem has to be spec-
ified. In our approach the general subproblem consists in determining partial
dependency trees. One word in a dependency tree is independent representing
the root node. The same holds for partial dependency trees. The root node of
a partial dependency tree is called the ceiling of a partial dependency tree. Via
the notion of ceiling a partial dependency tree can be defined:

A partial dependency tree is the subgraph of a ceiling ¢

i. which includes the word defining ¢

ii. which does not contain any other ceiling of a partial dependency tree,
and

iii. which includes the direct dependents of ¢

iv. where the words dominated by ¢ have to be connected (these words
form together with the ceiling a continuous substring of the sentence)

19



The ceiling of a partial dependency structure can be the dependent in an-
other dependency relation. Through this a partial dependency tree can be incor-
porated within another partial dependency tree via the ceiling building a more
complex projective dependency structure. More precisely, the subproblem con-
sists in determining which direct dependents a word with special properties can
take, it consists in specifying in which sequence the involved words should occur
and it consists in specifying which subsets of the involved words are convex.'?
A word which takes no dependents forms the simplest subproblem (a partial
dependency tree including only the ceiling). That is, conditions are formulated
over partial dependency trees of depth one unless a word takes no dependents.
This approach has some similarities to the work of Duchier (1999) where role
constraints are used to express grammatical conditions between head and depen-
dent and where word-order constraints are used to constrain sequentiality and
convexity. Figure 6 sketches this formulation of the general subproblem. The

(0%

i direct
e i dominance

61 62 "' ﬁn Y
sequentiality and convexity

Figure 6: determining partial dependency trees

approach enables compact pre-compilation because you only need to combine
constraints which are formulated over a smaller problem.

5.3.2 Local consistency rules

In order to choose and solve subproblems in a tree-like fashion and to detect local
inconsistency the notion of local consistency rule is used. Via local consistency
rules it is possible to realize a tree-like solving of a problem in a bottom-up
way (cf. Bistarelli, Montanari, & Rossi (1997)). It is assumed that quantified
constraints are formulated for the general subproblem as mentioned above and
that all of them are combined: (® (L(def),x)ec*(L(def),*)). In the following
the ceiling of a subproblem refers to the variable representing the ceiling of the
corresponding partial dependency trees.

Only the ceiling of a subproblem is of interest for a connected subproblem
which is chosen afterwards; the ceiling relates both subproblems. Here a ceiling
can be a dependent within a related subproblem. Therefore, the tuples of the
constraint value L(def) are projected over the ceiling. The incorporation of
this tuple projection is realized by a rational transduction L(def)" defining a
function:

L(def) : (Q4L(D) > 4)* <A L(D) > (<A4L(D) > 4) x<4L(D) >4 — S (31)

In this definition the special variable markers <4 and >4 are used in order
to indicate variables which represent dependents. This information is used for
choosing individual subproblems.

12 A totally ordered set S is said to be convex with respect to a total order, if for any z ¢ S,
x either precedes all elements of S or follows all elements of S (cf. Duchier (1999)).
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For further definitions some ancillary regular relations are defined where the
special symbol T ¢ ¥ is used. The following regular relation is used to mark
variables representing dependents by the special symbol T optionally:

mark = (1 gA" > g((exT)ue))t (32)

The following regular relation is used to state that a subproblem is connected
to a subproblem that was chosen and solved in the preceding step by checking
the existence of the special symbol T (where the symbol T is eliminated):

JATD JATD
contain = U gAY D g(Txe) U ¥ (33)
daAT D>y QAT > g

With help of these regular relations two rational transductions representing
two local consistency rules can be defined which choose and solve subproblems
simultaneously by assuming them at each position optionally.

The local consistency rule for subproblems with a type con with |con| =1 is
defined as follows:

rule; =

((QA* D) ((QA* ) o L(def) omark))* (4 A )" .

In this definition the subexpression (< A* >) o L(def)’ o mark implements the
statement |con| =1 and it implements the marking of the subproblems as ’cur-
rently solved’ by the marker T. The subexpression ((<1A*>)*... )" (1 A" >)*
implements that a subproblem is assumed to be at each position optionally.
Variables involved in a subproblems of size one can act as dependent in a con-
nected subproblem of size greater than one. Variables which are not involved in
a subproblem of size one can act as ceiling in a subproblem of size greater than
one.

A local consistency rule for subproblems with a type con with |con| > 1 is
defined as follows:

rules =
JATD> JAT D> (35)
( U *(contain o L(def)' omark))* U *
QAT D>y QAT D>y

In this definition the subexpression contain o L(def)’ o mark implements the
statement |con| > 1 and it implements that a subproblem is connected to a
subproblem that was chosen and solved in the preceding step. Note that the
special marker T is not in . By this, the marker occurs exactly at those
positions where a subproblem was chosen and solved in the preceding step. The
subexpression ((XA" DU AT D> )" .. ) (KA DU 4AT D 4)* implements
that the subproblem is assumed to be at each position optionally. If the rule
solves a subproblem it ’eliminates’ at least one variable from the search space
(these ’eliminated’ variables do not occur in the connected subproblems chosen
afterwards).

5.3.3 Solution

At each step of a bottom-up walk subproblems are chosen and solved simultane-
ously (cf. subsection 4.8) and by this means the problem is decomposed into its
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regular parts. In this connection the solving of subproblems and the combining
of the connected subproblems is a simultaneous process.

Given the following constraint systems (S, D,V ;),(S,D,V2),...,(S,D,V,)
for the several readings of an ambiguous sentence where all variables are of in-
terest, and given the regular language L(V;/Va/.../[V,) = L(V;) u L(V) U
--+u L(V,,) representing the several variable sets compactly, then the solving
of a constraint problem over these constraint systems via a bottom-up walk is
defined via a sequence of local consistency rules as mentioned above if i denotes
the maximum iteration and i > 1:

problem® = problem®~! o ruley

problem? = L(V [V a]...[Vy,)orule; (36)
Here the depth of the decomposition tree is parametric in respect of the iteration
of the local consistency rule rules. The solving of a problem is successful, if
the decomposition is single rooted and if it forms a tree. This statement is
implemented via the regular language:

root = < gA" > g4 (37)

If one is interested in determining the values for a subset of variables of the con-
straint problem that satisfy a subset of the constraints, the decomposition can
be multi-rooted forming a forest. This implements partial constraint satisfac-
tion (cf. Bistarelli, Freuder, & O’Sullivan (2004)). This is realized by punishing
the roots of the decomposition structure in order to get an exhaustive solution.
The following S-rational series is used to give a penalty w to the corresponding
variables:

root = (4 gA" > g{w))* (38)

then the value of the solution of a problem can be defined by the following
S-rational series: _
Dom(problem' o root) (39)

The domain is taken because it contains all the chosen, solved and combined
subproblems. If several representational levels are used (surface syntactic, the-
matic, etc.), a tree decomposition has to be performed for each representational
level separately. The solution of the first level may be calculated in a bottom-
up fashion as mentioned above. Based on the result the solution of the second
level may be calculated in a bottom-up fashion, too, and so on. The result is
the combination of the solutions of the several representational levels. If some
variables are not of interest for a specific representational level these variables
can be ’eliminated’ via projection before calculating the corresponding solution.

In the following an algorithm is presented which performs the problem solv-
ing in a bottom-up way as mentioned above and which detects if the problem
is stable and which extracts the best and the most exhaustive solutions of the
optimization problem. To simplify matters only one representational level is
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assumed:!3
Input: A(root), A(Vi/Va/...]Vy.),A(rule;), A(rules)
analysis; = Compose(A(V [V a/...[V ), A(rule;))

while(|lanalysis;| # |analysisg = Compose(analysisy, A(ruleg))]|) (40)
analysis; = analysisg

Output: Bestpath(Projectl(Compose(analysis;, A(punish))))

First A(V) is composed with A(rule;) (by the function Compose) in order to
solve subproblems over one variable. Then the result is iteratively composed
with A(ruleg) performing a bottom-up walk by solving subproblems tree-like
until the problem is stable. Note that via the use of the marker T it is assured
that each subproblem is chosen and solved only once. The point at which
the problem is stable can be detected by the break condition (lanalysis;| #
lanalysise = compose(analysis;, A(ruleg))|). This condition checks whether
new subproblems were solved in a previous step by keeping track of the size of
the resulting WFSTs (this could also be done by checking of existence of the
symbol T). Afterwards either a single rooted decomposition is demanded by
A(punish) or the roots of a decomposition forest are punished strongly by a
bad weight (by A(punish)). Then, the first projection is taken (by the function
Projectl) in order to extract the solution. Finally, the best solution is calculated
via a best path search (by the function Bestpath). The output of the algorithm
is the best and most exhaustive solution of the optimization problem.

5.3.4 Parsing structure

After parsing the decomposition structure itself displays the desired parsing
structure. Thus, using the tree decomposition method the handling of the pars-
ing structure (via position information) in the constraints becomes obsolete.
By this, the subproblems can be additionally simplified. In order to realize this
the decomposition structure has to be indicated via brackets or channels etc.
on string level. For this purpose several techniques can be used in order to
represent projective parsing structures (see section 5.2). In the following two
extensions concerning tail recursion and non-projectivity are presented where
further details of the implementations are omitted but a general chart is given
in order to realize this extensions.

After parsing the depth of the resulting dependency tree and forest respec-
tively is bound by the depth of the decomposition tree and forest respectively.
In the following it is shown that this is not necessarily the case. The idea behind
this is that a subproblem can remain regular even if the depth of the covered
partial dependency trees is unbound. This is possible in the case of left or right
recursion of connected subproblems. This tail recursion can be replaced by it-
eration (cf. Koskenniemi (1990)). An example for a dependency tree including
right embedding which can be covered by iteration is shown in figure 7. In order
to replace the tail recursion by iteration the corresponding subproblems have
to be merged in an off-line preprocessing step. In this connection one just has
to keep track of the decomposition structure of the merged subproblems. The

13Here |T| denotes the size of a WFST T in respect to the number of states and transitions.
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Figure 7: dependency tree with right embedding

result of the merging can be used to choose and solve subproblems including
this iteration via local consistency rules. But in this connection the rules have
to keep track of the tail recursion. For the subproblems for which tail recursion
is replaced by iteration the recursion has to be disabled. This can be realized
via the use of additional special marker symbols which provide the necessary
information.

In the following it is shown that an extension to non-projective dependency
structures is possible. The idea behind this is to compile possible crossings in an
off-line preprocessing step in order to avoid an expensive on-line calculation. An
example for a non-projective dependency forest is given in figure 8. The depen-

Figure 8: non-projective dependency forest

dency forest is 2-planar, that is the forest can be separated into two planes (into
two planar graphs) (cf. Yli-Jyrd (2003) ).'* This partial non-projective forest
can be covered by one subproblem which emerges from the merging of several
interwoven subproblems. In order to enable this interleaving the definition of
a partial dependency tree (see section 5.3.1) is softened by allowing that the
words dominated by a ceiling are unconnected. According to that the general
subproblem additionally consists in determining which direct dependents of an-
other ceiling can occur between the direct dependents of the ceiling of the actual
partial dependency tree (including sequentiality and convexity). This extension
of the general subproblem is sketched in figure 9. The result of the merging

«

direct
; dominance
Bi MM Mu o 1202 V2 T T Yo By

........................................................................................................ )
sequentiality and convexity

Figure 9: determining partial dependency trees

can be used by local consistency rules in order to choose and solve subproblems

14 «Planarity of a dependency tree is the requirement that the links do not cross when drawn
above the sentence” (Yli-Jyra (2003)).
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including non-projectivity. In this connection a chosen and solved subproblem
can cover more than one ceiling and it can be connected to more than one sub-
problem chosen afterwards. However, the algorithm presented in section 5.3.3
still works fine with this extension. Here the multiplanarity is parametric with
respect to the number of planes but also other criteria could be used in order
to parameterise the crossings. In order to keep track of the different planes (the
sub-subproblems) which are involved in the subproblem a colored bracketing
scheme as presented in Yli-Jyrd (2003) can be used where the number of used
colors corresponds to the number of planes.

6 Conclusion

An approach implementing dependency parsing as a Constraint Satisfaction
Problem (CSP) by means of Weighted Finite State Transducers (WFST) was
presented. The approach is based on the Semiring-based Constraint Satisfaction
Problem (SCSP) which enables an implementation of the basic features of the
Weighted Constraint Dependency Grammar (WCDG).

After it was shown how to realize SCSPs with WFSTs in a natural way it
was presented how the several features of WCDG can be mapped into a finite
state approach where some of the features are handled in a new way. This in-
cludes the representation of the general parsing problem, the implementation
of constraints with fixed penalty, dynamic constraints and extended local con-
straints and this includes the handling of lexically or morphologically ambiguous
sentences and the handling of several representational levels. Furthermore, it
was shown that via the notion of locality, decomposition and simultaneousness
an efficient bottom-up solving of the parsing problem via tree decomposition
is possible. This is realized via an extended finite-state approach which de-
composes the parsing problem in its regular parts and which allows to process
non-projective dependency structures.

The theoretical approach opens new possibilities in constraint-based depen-
dency parsing and also in constraint processing in general. This article shows
that finite state techniques have a potential which is still not utilized in theoreti-
cal approaches as well as in practical applications of natural language processing.
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