The Data: The Use of Reformulations in Human-Computer Interaction

male	female	1	5
2	0	0	2
2	13	4	1
2	7	1	2
5	3	0	1
1	2	1	3
0	0	2	2
2	1	0	
0	1	4	
2	5	2	
3	13	2	
0	1	2	
4	4		
3	4		
4	0		
4	5		
6	1		
1	0		
0	5		

The first thing we can do:
$>$ calculate the mean
$>$ females:
3.24
$>$ males
2.00
reformulations per 20 turns
in this case:

Does that mean that males use fewer reformulations than females?
> we can't decide that yet, because we don't know whether our data are just due to chance maybe we have just by accident found all non-reformulation-using males and all reformulation-using females
$>$ we need to decide when we'll be satisfied
o are we convinced when there is a 5% chance that our data came about accidentally? Or rather when the chance level is just 1% or even less?

- we need to choose a level of significance
- e.g. $\mathrm{p}<0.05, \mathrm{p}<0.01, \mathrm{p}<0.001$
- and whether we want to expect differences between our groups in both directions or just in one
- i.e. whether we want a one- or a two-tailed test

The most common tests:

```
t-test
\(>\) ANOVA (Analysis of Variance)
```

in our case: the difference between the use of reformulations by males and females is not significant!

Now male and female are discrete categories
What if we want to find out whether people who use many reformulations use fewer repetitions - or the other way around?

That is, what is if we want to learn about the relationship between two non-discrete categories?
The test we make is one of correlation: How are the two variables reformulation and repetition correlated?
$>$ Tests of correlation
The more X , the more Y : positive correlation
The more X, the less Y: negative correlation

