The Data: The Use of Reformulations in Human-Computer Interaction

male	female	1	5
2	0	0	2
2	13	4	1
2	7	1	2
5	3	0	1
1	2	1	3
0	0	2	2
2	1	0	
0	1	4	
2	5	2	
3	13	2	
0	1	2	
4	4		
3	4		
4	0		
4	5		
6	1		
1	0		
0	5		

in this case:

females: 3.24
males 2.00
reformulations per 20 turns

Does that mean that males use fewer reformulations than females?

- we can't decide that yet, because we don't know whether our data are just due to chance maybe we have just by accident found all non-reformulation-using males and all reformulation-using females
- ➤ we need to decide when we'll be satisfied
 - are we convinced when there is a 5% chance that our data came about accidentally? Or rather when the chance level is just 1% or even less?
 - we need to choose a level of significance
 - e.g. p<0.05, p<0.01, p<0.001
 - and whether we want to expect differences between our groups in both directions or just in one
 - i.e. whether we want a one- or a two-tailed test

The most common tests:

- ≻ t-test
- > ANOVA (Analysis of Variance)

in our case: the difference between the use of reformulations by males and females is not significant!

Now *male* and *female* are discrete categories

What if we want to find out whether people who use many reformulations use fewer repetitions – or the other way around? That is, what is if we want to learn about the relationship between two non-discrete categories?

The test we make is one of correlation: How are the two variables *reformulation* and *repetition* correlated?

 \succ Tests of correlation

The more X, the more Y: positive correlation The more X, the less Y: negative correlation