
1

Speaker Verification
(an overview)

Alexandros Xafopoulos
alexandr@zeus.csd.auth.gr

Phd student
Artificial Intelligence & Information Analysis laboratory

Informatics Dpt., Aristotle Univ. of Thessaloniki
Thessaloniki, GREECE

TICSP (Tampere International Center for Signal 
Processing) visitor, August 2001, TUT (Tampere Univ. of 

Technology), Tampere, Finland

Informatics 
Dpt.

TUT TUT -- TICSP presentationTICSP presentation 08/2001 



2

Presentation OutlinePresentation Outline

• Framework
• Preprocessing -
• Features (Extraction, Noise Compensation-

Channel Equalization, Selection)
• Matching - Modeling
• Decision Making -
• Performance Evaluation
• Experimental Results
• References
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FrameworkFramework

• Introduction
• Related Research Areas
• Generic Speaker Verification Process
• Speech Corpus Parameters
• Errors
• Applications
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IntroductionIntroduction
Framework

• Motivation
– Speech contains speaker specific characteristics

Physiological: body parts (shape, size)
• larynx (glottis - vocal cords)
• pharynx, oral & nasal cavities (vocal tract)

Behavioral: way they are used
– Voiceprint as a biometric (distinguishing trait)
– Natural & economical way of identification
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Framework

• Objective
– Correct decision on a speaker’s identity claim given a 

speech segment

• Definitions
– Verification < Latin verus (true)

• Claim: Speaker identity
• Proof: Speech utterance
• Binary decision to establish the truth

– Client: speaker registered on the system
– Impostor: speaker who claims a false identity
– Model: set of parameters that represents a speaker or a 

group of speakers

Introduction(2)Introduction(2)
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Framework

• Abstract schematic

• Example
– Claimant: I am speaker A
– SV system: Say: one two three
– Claimant: One two three
– SV system: You are not speaker A

Introduction(3)Introduction(3)

Speech
Segment

Speaker
Verification

(SV)

Yes/No

Speaker
Identity
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Digital Signal 
Processing

• Signal Processing
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Recognition
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Other SignalsSpeech 
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Recognition Coding / 
Synthesis

EnhancementAnalysis

Signal 
processing

Speaker 
Identification

Language 
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Speaker 
Verification

Framework
Related Research AreasRelated Research Areas
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• (Statistical) Pattern Recognition

Data Feature
Extractor

Features Trained
Classifier

Class
Label

Framework
Related Research Areas(2)Related Research Areas(2)
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• Biometrics Technology
– def: automatic recognition of a person based on 

his/her physiological or behavioral  
characteristics (biometrics)

– desirable properties of biometrics [Jain_bk]
• universality (found in every person)
• uniqueness (different "value" for each person)
• permanence (invariant with time)
• collectability (quantitatively measurable)
• performance (� accuracy vs. � resources)
• high acceptability (person’s willingness)
• low circumvention (not easy to deceive)

Framework
Related Research Areas(3)Related Research Areas(3)
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• Speech Science Communication by speech [Somervuo]

Framework
Related Research Areas(4)Related Research Areas(4)
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Framework
Speech Production Physiology

[Picone]

[Picone]

• Speech Science(2)

Related Research Areas(5)Related Research Areas(5)

Block Diagram 
of Human Speech Production
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Framework

General Discrete-Time Model for Speech Production
[Morgan] (modified)• Speech Science(3)

Related Research Areas(6)Related Research Areas(6)

Gain for voice source

Gain for noise source

G(z)

H(z) R(z)
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Framework

• Enrollment (Training) module

Digital Speech
Acquisition

Digital
Speech Feature

Creation

Feature
Vectors

Speech Pressure
Wave of "A"

Speaker "A"
N utterances

Model
Registration

N Sets of
Feature
Vectors

Known Identity: 
"Speaker is "A""

Speaker
Model of "A"

Generic Speaker Verification ProcessGeneric Speaker Verification Process

Channel to transfer signal
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Framework

• Enrollment module(2)
– Digital speech acquisition

• Sampling frequency: 

Microphone

Analog
Voltage
Signal

Antialiasing
low-pass

filter

Conditioned
Analog
Signal

Speech Pressure
Wave

Sampling &
Quantization

(A/D converter)

Digital Speech

Generic SV Process(2)Generic SV Process(2)

sF
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Framework

• Enrollment module(3): Feature creation

Preprocessing

Preprocessed 
Digital Speech

Feature
Extraction

Plain
Feature
Vectors

Digital
Speech

Noise Compensation
& 

Channel Equalization
(Clean)
Feature
Vectors

Generic SV Process(3)Generic SV Process(3)

Feature Selection
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Framework

• Verification (testing)
module

Digital
Speech

Acquisition

Digital
Speech Feature

Creation

Feature
Vectors

Speech Pressure
Wave of "A"

Pattern
Matching

Threshold
of "B"

Output hypothesis
(Acceptance (A=B) or Rejection (A≠B))

Matching
Results Decision

Making

|P| Speaker
Models Model

Selection

Speaker
Model of "B"

Claimed
Identity B

Generic SV Process(4)Generic SV Process(4)

Threshold: Acceptance starting point
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Framework

• Threshold setting module

Speaker
Model of "A"

Threshold
Setting

Threshold
of "A"

Speaker
Models of

Generic SV Process(5)Generic SV Process(5)

"A"

model)  (world or    model)(cohort   A:A h Ω

• Cohort model: competitive clients only
• World model: all the clients
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Framework

• Text-dependency [Nedic]
– Text dependent (or fixed phrase): verification (& 

enrollment) done on a fixed phrase (pass phrase), 
predetermined by the system

– Text prompted: system list-selected/vocabulary-
generated phrase prompted to the user

– User customized: user list-selected/vocabulary-
generated phrase

– Text independent: user chosen unconstrained phrase
– Language-dependency

• Vocabulary
– Fixed or not
– Size (|V|)

Speech Corpus ParametersSpeech Corpus Parameters
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Framework

• Population (Speakers)
– Size (|P|)
– Degree of similarity

• gender, age, language, dialect, …

• Speech Flow
– Discrete Utterance (pauses betw. words)
– Continuous
– Spontaneous (natural)

• Training (system construction) - testing 
(evaluation) part

• Quantity (#sessions, #phrases, phrase duration)
• Quality of speech (Problems�)

Speech Corpus Parameters(2)Speech Corpus Parameters(2)
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Framework

• Due to impostors
– Mimicry by humans
– Tape recorders & digital equipment for 

recording, editing & splicing sound

• Due to clients
– Bad pronunciation
– Extreme emotional states (e.g. anger)
– Sickness / Allergies / Tiredness / Thirst
– Aging

Problems under real conditionsProblems under real conditions
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Framework

• Due to the input channel
– Microphone / Communication channel / 

Digitizer quality
– Channel mismatch (different channels for 

enrollment & verification request)

• Due to the environment
– Environmental mismatch
– Environmental noise
– Poor room acoustics

Problems under real conditions(2)Problems under real conditions(2)
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Framework

• False Rejection
– A client request as himself/herself is rejected
– High rate (rejected) client: goat [Koolwaaij]
– Low rate (rejected) client: sheep

• False Acceptance
– An impostor request as a client is accepted
– High rate (victim) client: lamb
– Low rate (victim) client: ram
– High rate (accepted) impostor: wolf
– Low rate (accepted) impostor: badger

ErrorsErrors
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Framework

• Access control to computers / databases / 
facilities

• Remote access to computer networks
• Electronic commerce
• Forensic
• Telephone banking [James]

ApplicationsApplications
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PreprocessingPreprocessing

• Preemphasis
• Frame Blocking
• Frame Windowing
• Speech Activity Detection
• Signal Measures & Graphs

Preemphasis

Preemphasized
DS

(PDS) Frame
Blocking

PDS
Frames Frame

Windowing

Windowed
PDS Frames

Digital
Speech
(DS)



25

Preprocessing
PreemphasisPreemphasis

• Preemphasis: Low order digital system to
– spectrally flatten the signal (in favor of vocal 

tract parameters)
– make it less susceptible to later finite precision 

effects
– usually 1st order FIR filter:

]1,90[   ),1()()( .αnsαnsns pepepe ∈−−=
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Preprocessing
Frame BlockingFrame Blocking

• Frame blocking (short-term(st) 
processing)
– L successive overlapping (by M samples) 

frames

– window size/length: N samples = N/    sec
(typically some msec)

– frame rate/shift/period: M samples = M/    sec
– Alternative: non-uniform frame rate

LlN  nlMnsnlf pe ,...,1   ,1,...,0)),1(();( =−=−+=

sF

sF
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Preprocessing
Frame WindowingFrame Windowing

• Used to minimize the signal discontinuities 
at the beg. & end of each frame
– Time (long window) vs. freq. (short) resolution

– Window type:

– Modifications:
[Picone]

1,...,0),();();( −== N   nnwnlfnlfw

1,...,0   ,    ,1 −=→−→ NnnkNN
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Preprocessing
Speech Activity DetectionSpeech Activity Detection

• Silence-speech detection
• Voiced-unvoiced discrimination

– i.e. with or w/o fast vibration of the vocal 
cords

• Endpoint detection [Deller_bk]
• Word segmentation
• Applicable at several time points using 

several criteria-thresholds (energy, zero-
crossing rate, feature-based, statistical)
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Preprocessing
Signal Measures & GraphsSignal Measures & Graphs

Zerocrossing rate

[Weingessel]

Speech waveform

Energy plot Time-frequency plot (Spectrogram)
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FeaturesFeatures

• Feature Extraction
– Features - General
– Linear Prediction (LP)
– Cepstrum (Complex - Real)
– Mel Cepstrum
– LP-derived Cepstrum
– Other Cepstral Variants
– Variants
– Delta Cepstrum
– Perceptual Linear Prediction (PLP) - Auditory 

Features
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Features(2)Features(2)

• Noise Compensation - Channel Equalization
– Intra-frame Cepstral Processing
– Inter-frame Cepstral Processing
– Relative Spectral (RASTA) Processing

• Feature Selection
– Principal Component Analysis (PCA)
– Linear Discriminant Analysis (LDA)
– Non Linear Discriminant Analysis (NLDA)
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Feature Extraction
Features Features -- GeneralGeneral

• Mapping of each input speech interval (1 
or more frames) to a multidimensional 
feature space (vector)

• Order : number of coefficients in 
each feature vector (dimensionality)

• Several kinds of coefficients proposed
• Ear performs spectral analysis�feature 

vectors usually consider local spectral 
energy estimates

coefN
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Feature Extraction
Linear Prediction (LP)Linear Prediction (LP)

• Speech sample as a linear combination of 
previous samples (autoregressive (AR) 

model):

– : LP coefficients (LPC)
– : normalized excitation source
– G : scale factor
– : stLPC of frame l

)()()()(
1

nGumnsmans
LPCN

m
LPC +−= �

=

LPCLPC Nmmla ,...,1   ),;( =

)(nu

LPCN

LPCLPC Nmma ,...,1   ),( =
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Feature Extraction
Linear Prediction (LP)(2)Linear Prediction (LP)(2)

• Calculation of stLPC
– Mean squared error 

minimization
– Autocorrelation method

• Levinson-Durbin (L-D) 
recursion

– Covariance method
• Cholesky (LU) 

decomposition

[Picone2]

L-D recursion
(l is implied,

R: autocorrelation
matrix)
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Feature Extraction
Linear Prediction (LP)(3)Linear Prediction (LP)(3)

• LPC vectors
– highly correlated
– not orthonormal

• Distance: Itakura-Saito
– Computationally expensive

• LPC processor [Rabiner_bk]
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Feature Extraction
Cepstrum Cepstrum (Complex (Complex -- Real)Real)

• Special case of homomorphic signal proc. 
[Deller_bk]

• provides a method for separating the vocal tract 
info (system) from the glottal excitation

• Focuses on voiced segments
• Short-term complex cepstrum (stCC):

• Short-term real cepstrum (stRC):

– No phase information, usu. acceptable

1
10( ; ) DFT {log (DFT{ ( ; )})},  1,..., ,CC w CCc l m f l n m N−= =

1
10( ; ) DFT {log |DFT{ ( ; )}|},  1,..., ,RC w RCc l m f l n m N−= =

0,..., 1n N= −

0,..., 1n N= −
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Feature Extraction
Cepstrum Cepstrum (Complex (Complex -- Real)(2)Real)(2)

• Distance of cepstrum based coefficients
– Euclidean: vectors defined in an orthonormal space

– Weighted Euclidean
• weighted by the inverse of the corresponding covariance 

matrix element

2
. 1 2 2 1

1
( , ; ) ( ( ; ) ( ; ))

RCN

Eucl RC RC
m

D l l RC c l m c l m
=

= −�
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Feature Extraction
Cepstrum Cepstrum (Complex (Complex -- Real)(3)Real)(3)

• If the speech is considered as the output of the 
vocal tract system v having as input the glottal 
excitation g:

• the 1st coeffs represent the slowly varying vocal 
tract parameters & the remaining coeffs model 
the quickly varying excitation signal�selection 
of the 1st coeffs excluding 0th

( ; ) ( ; ) ( ; ),   0,..., 1wf l n g l n v l n n N= ∗ = −
1

10( ; ) DFT {log |DFT{g( ; ) ( ; )}|}, 0,..., 1RCc l m l n v l n n N−= ∗ = −
1

10 10DFT {log |G( ; ) | log | ( ; )}|}, 0,..., 1DFTl k V l k k N−= + = −
2 2( ; ) ( ; ),   0,..., 1g l m v l m m N= + = −

RCN
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Feature Extraction
Mel Mel CepstrumCepstrum

• Mel
– unit of measure of perceived 

frequency of a tone
– non-linear correspondence 

to the physical freq. (like the 
human ear)

– mel freq. cepstral
coefficients (MFCCs):

– generalized case [Vergin]

Mel-cepstral feature generation (frame l)

[Young]

MFCCMFCC Nmmlc ,...,1   ),;( =

�
�

�
�
�

� +=
700

1log2595 10
Hz

mel
ff

)()( , melfiltersmelFFT NN

(centered)
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Feature Extraction
LP derived LP derived CepstrumCepstrum

• LP Cepstral Coefficients (LPCCs):

);();();();(

:,...,1
1

1
kmlaklc

m
kmlamlc

Nm

LPCLPCC

m

k
LPCLPCC

LPC

−+=

=

�
−

=

1

1,..., :

( ; ) ( ; ) ( ; )
LPC

LPC LPCC
m

LPCC LPCC LPC
k m N

m N N
kc l m c l k a l m k
m

−

= −

= +

= −�

Proven to be equivalent to CC but faster computed
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Feature Extraction
Other Other CepstralCepstral VariantsVariants

• Linear Freq. Cepstral Coefficients (LFCCs)
– Like MFCCs but:

filters are uniformly spaced on the Hz scale

• Mel-warped LPCCs (MLPCCs) [Kuitert]
– CC not directly derived from LPC
– 1st compute the log magnitude spectrum of 

LPC
– then warp the freq. axis to correspond to the 

mel axis
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Feature Extraction
VariantsVariants

• Discrete Wavelet Transform (DWT) instead 
of FFT [Krishnan]

• Application of other type than triangular 
filters

• Application of the logarithm before the 
triangular filters



43

Feature Extraction
Delta Delta CepstrumCepstrum

• [Milner]:

• Higher order:

• Inclusion of temporal information

GCCK

Kk

GCC

K
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GCC Nm

k

mklck
mlc ,...,1   ,
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Feature Extraction
PLP PLP -- Auditory FeaturesAuditory Features

• Perceptual Linear Prediction (PLP) 
[Hermansky]
– Spectral scale: non-linear Bark scale

– Spectral features smoothed within freq. bands

• Auditory Features [Kumar]
– Imitates signal proc. performed by the ear
– cochlear modeling

��
�

�
��
�

�
+�

�

�
�
�

�= 2

2

7500
3.5atan

1000
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Noise Compensation - Channel Equalization
IntraIntra--frame frame CepstralCepstral ProcessingProcessing

• Liftering - weighting
– low order coeffs: sensitive to overall spectral slope
– high order: sensitive to noise
– �tapered window (bandpass liftering)

• Adaptive Component Weighting (ACW)
– motivation: all frames don't have same distortion

GCCGCCGCCw

GCC
GCC

GCC

Nmmlcmwmlc

Nm
N

mNmw

,...,1   ),;()();(

,...,1   ,πsin
2
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==
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[Mammone]



46

InterInter--frame frame CepstralCepstral ProcessingProcessing

• Cepstral Mean Subtraction (CMS)
– mean (over a num of frames) subtraction 

(tackles training-testing discrepancy)

– lowpass filtering
– eliminates communication channel spectral 

shaping

• Pole Filtered CMS (PFCMS): cepstrum
poles modification

GCCGCCkGCCGCCCMS Nmmkcmlcmlc ,...,1   )),;((avg);();( =−=−

Noise Compensation - Channel Equalization
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RASTA ProcessingRASTA Processing

• Relative Spectral Filtering (RASTA) 
[Hermansky]
– bandpass filtering in the log-spectral domain
– suppresses spectral components that change 

more slowly or quickly than in typical speech
– RASTA-PLP

• Microphone (type, position) robustness

Noise Compensation - Channel Equalization
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Feature Selection
Feature Selection IntroductionFeature Selection Introduction

• Goal
– find a transformation to a relatively low-dimensional 

feature space that preserves the information pertinent to 
the application while enabling meaningful comparisons to 
be performed using measures of similarity

• Processing of features
– Principal Component Analysis (PCA) (or Karhunen Loève

Expansion-KLE)
• seeks a lower dimensional representation that accounts for 

variance of the features
• not necessarily optimum for class discrimination

– Linear Discriminant Analysis (LDA) [Jin]
– Non Linear Discriminant Analysis (NLDA) (using MLP) 

[Konig]
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Matching Matching -- ModelingModeling

• Matching - Modeling Introduction
• Template Matching Methods

– DTW (Dynamic Time Warping)
– VQ (Vector Quantization)
– LVQ (Learning Vector Quantization)

• Statistical Measures
– AHS (Arithmetic-Harmonic-Sphericity)

• Generative Models
– HMMs (Hidden Markov Models)
– GMMs (Gaussian Mixture Models)
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Matching Matching –– Modeling(2)Modeling(2)

• Neural Networks (NNs)
– Feed-forward NNs
– SOMs (Self Organizing Maps)
– RNNs (Recurrent NNs)

• NNs & Combined Methods
– Neural Tree Networks (NTNs)
– DTW-SOM

• Support Vector Machines (SVMs)
• Sub-band Processing Introduction
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Matching - Modeling
Matching Matching -- Modeling IntroductionModeling Introduction

• Modeling: creation of (speaker) models
• Model: Can be considered as the output of a 

proper proc. of a speaker’s set of feature vectors
• Matching: computation of a match score betw. 

the input feature vectors & some speaker model
• Methods [Wassner]

– Template Matching
• deterministic
• score: distance betw. a test speaker (feature vectors of an) 

utterance & a reference speaker model
• better score: min distance
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MatchingMatching--Modeling Introduction(2)Modeling Introduction(2)

• Methods(2)
– Stochastic Approach

• probabilistic matching
• score: prob. of generation of a speech utterance by 

the claimed speaker
• better score: max probability
• Parametric speaker model: specific pdf is assumed 

& its appropriate parameters (e.g. mean vector, 
covariance matrix) can be estimated using the 
Maximum Likelihood Estimation (MLE) e.g. 
multivariate normal model

)|( cSUP

Matching - Modeling
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Template Matching MethodsTemplate Matching Methods

• Dynamic Time Warping (DTW)
– dynamic comparison betw. a test & a reference 

(model) matrix (set of feature vectors)
– computes a distance betw. the test & ref. 

patterns
– allows time alignment at different costs
– uses Dynamic Programming (DP)
– text dependent cases

Matching - Modeling
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Template Matching Methods(2)Template Matching Methods(2)

• Dynamic Time 
Warping 
(DTW)(2)

The DP grid
with test (t)

& reference (r)
feature vectors
at respective
frame indices

[Picone]

Matching - Modeling
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Template Matching Methods(3)Template Matching Methods(3)

• Dynamic Time Warping (DTW)(3)
– distances-costs on the DP grid (i,j frame 

indices, k step index)
• Node

e.g.

• Transition e.g.
• Both

– e.g.

• Global

– K: number of transitions

)],(|),[( 11 −− kkkkT jijid

),( kkN jid

)],(|),[( 11 −− kkkkB jijid

2
.

1
( , ; ) ( ( ; ) ( ; ))

LPCCN
test ref

Eucl k k LPCC k LPCC k
m

D i j LPCC c j m c i m
=

= −�

)],(|),[(),( 11 −−× kkkkTkkN jijidjid

][][ 11 −− −+− kkkk jjii

�
=

−−=
K

k
kkkkB jijidD

1
11 )],(|),[(

(Type 4)

Matching - Modeling
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Template Matching Methods(4)Template Matching Methods(4)

• Dynamic Time Warping (DTW)(4)
– DTW search constraints

• Endpoint Constraints (bottom left(S) - top right(E) 
corners)

– endpoint relaxation: max points 
allowed in each direction

• Monotonicity (going up & right)
• Global Path Constraints (global movement area)

– permissible slope or
– permissible window Wij kk ≤−

jEiEjSiS ∆,∆,∆,∆

kkkk jjii ≤∧≤ −− 11

Matching - Modeling
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Template Matching Methods(5)Template Matching Methods(5)

• Dynamic Time Warping 
(DTW)(5)
– DTW search 

constraints(2)
• Local Path Constraints
(local movement area)

Sakoe & Shiba
local constraints

on DTW
path search

[Picone]

Matching - Modeling
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Template Matching Methods(6)Template Matching Methods(6)

• Dynamic Time Warping (DTW)(6)
– The minimum cost final endpoint provides the 

distance betw. a test & a reference phrase
– Training-Modeling [Deller_bk]

• Casual: Unaltered feature strings form models
• Averaging feature strings of utterances
• The stochastic techniques possess superior training 

methods

Matching - Modeling
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Template Matching Methods(7)Template Matching Methods(7)

• Vector Quantization (VQ)
– Uses intra-vector dependencies to break-up a 

(feature) vector space in cells (unsupervised)
– follows Linde-Buzo-Gray (LBG) algorithm
– speaker model: codebook
– codebook: set of prototype vectors (codevectors)
– codevector: vector computed from "similar" single 

(feature) vectors (e.g. representing a phoneme) 
(phoneme: basic speech unit)

– handles text independent cases
– goal: data structure "discovery" by finding how the 

data is clustered

Matching - Modeling
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Template Matching Methods(8)Template Matching Methods(8)

• Learning Vector Quantization (LVQ)
– Predefined classes, labeled data
– defines the class borders according to the 

nearest neighbor rule
– supervised version of VQ

• quantization of feature vectors by codevectors 
based on a distance

• (gradual) update of codevectors

– set of variants (e.g. LVQ1,2,3)
– goal: to determine a set of prototypes that best 

represent each class.

Matching - Modeling
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Statistical MeasuresStatistical Measures

• Second Order Statistical Measures (SOSM) 
[Bimbot]
– E.g. Arithmetic-Harmonic-Sphericity (AHS)

• speaker model: covariance matrix of feature vectors
• Distance=min(=0) iff all eigenvalues of test & 

reference covariance matrices are equal

Matching - Modeling
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Generative ModelsGenerative Models

• Hidden Markov Models (HMMs)
– Statistical - stochastic
– Flexible
– Text independent cases handled
– Types

• Continuous Density (CD) (real valued features)
• Discrete (integer valued features - symbols)
• SemiContinuous (SC) [Falavigna]

– Model: prob. distributions of the feature vectors 
of the speaker’s utterances approximated by 
mixtures of Gaussians

Matching - Modeling
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Generative Models(2)Generative Models(2)

• Hidden Markov Models (HMMs)(2)
– Topologies

• Left-Right (LR) (self & right connections): attempts 
to catch the temporal structure of the speech & to 
link consecutive short-time observations together
#states/unit(e.g. phoneme)
#Gaussian distributions(mixtures)/state

[Kumar]
Example of a left-right HMM

: feature vectorskO

Matching - Modeling
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Generative Models(3)Generative Models(3)

• Hidden Markov Models (HMMs)(3)
– Topologies(2)

• Ergodic (fully
connected)

-AR HMMs: the prob.
distrib. associated
with each state is
estimated via an AR
process [Bourlard]

[Picone]
Example of an ergodic HMM

Matching - Modeling
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Generative Models(4)Generative Models(4)

• Gaussian Mixture Models (GMMs)
– Like single multi-Gaussian state HMMs
– Uses a mixture of Gaussian densities to model 

the distribution of the feature vectors of each 
speaker

– Local covariance info

Matching - Modeling
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Neural Networks (Neural Networks (NNsNNs))

• Feed-Forward Neural Networks
– supervised learning
– each speaker is modeled by processing results 

of his NN
– when an identity is claimed the corresponding 

NN is consulted
– positive/negative training (rivals)

Matching - Modeling
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Neural Networks (Neural Networks (NNsNNs)(2))(2)

• Feed-Forward NNs(2)
– Types [Haykin_bk]

• Multilayer Perceptron (MLP): trained usually with 
the Back-Propagation (BP) algorithm

– Error Correction Learning
– Global optimization

• Time Delay NNs (TDNNs)
• Radial Basis Function (RBF) Networks [Lo]

– Memory-Based Learning
– Local optimization

Matching - Modeling
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Neural Networks (Neural Networks (NNsNNs)(3))(3)

• Self Organizing Maps (SOMs) [Kohonen_bk]
– unsupervised learning
– method to form a topologically ordered 

codebook
– speaker model: codebook
– density of codevectors approaches the pdf of the 

input vectors during the training
– like nonlinear projection of the feature space on 

the neural lattice
– competitive (winner neuron) learning

Matching - Modeling
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NNs NNs & Combined Methods& Combined Methods

• DTW-SOM
– associate an entire feature vector sequence, 

instead of a single feature vector, as a model 
with each SOM node (also DTW-LVQ) 
[Somervuo]

• Recurrent NNs (RNNs) [Shrimpton]
– (self-or not) feedback

• Neural Tree Networks (NTNs)
– hierarchical classifier that incorporates decision 

trees & NNs (e.g. 1 MLP NN per tree node)
• Combined methods [Genoud]

Matching - Modeling
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Support Vector Machines (Support Vector Machines (SVMsSVMs))

• [Cherkassky_bk]
• a combination of the most important 

examples (support vectors) is computed in 
a high dimensional space (kernel space)

• Learning by examples (supervised)
• Vapnik-Chervonenkis (VC) dimension: 

framework for the development of SVMs
• based on Structural Risk Minimization 

principle from statistical learning theory 
[Vapnik_bk]

Matching - Modeling
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SubSub--band Processing Introductionband Processing Introduction

• Speech signal split into band-limited 
channels (freq. ranges)

Block diagram of an LPCC-based sub-band processing system

[Finan]

Matching - Modeling
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Decision MakingDecision Making

• Decision Approaches
– "Template"
– Statistical & extensions

• LLR (Log Likelihood Ratio)
• Cohort/world model

• Threshold Setting
• Hypothesis Testing
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Decision Making
Decision ApproachesDecision Approaches

• "Template" approach
– threshold setting: based on inter- & intra-

speaker scores/distances
– comparison:

test score<=threshold�acceptance [Fakotakis]

• Statistical approach [Bengio] [Bourlard]
– : speaker RV for identity c being claimed
– : utterance represented by feat. vectors
– : other speakers RV
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Decision Making
Decision Approaches(2)Decision Approaches(2)

• Statistical approach(2)
– Claim c is true if:

– : decision threshold usually found assuming
Gaussian distributions for            and

– �normalized likelihood - likelihood ratio
– using logs:

– �Log Likelihood Ratio (LLR)
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Decision Making
Decision Approaches(3)Decision Approaches(3)

• Statistical approach(3)
– : speaker dependent model
– : normalization factor
– cohort model           : group of selected 

speakers who are more competitive with the 
model of the claimed id
• No well-established selection procedure

– world model          : all other speakers
• less computation & storage needed

)|( cSUP

Ω=cS

chc SS =
)|( cSUP
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Decision Making
Decision Approaches(4)Decision Approaches(4)

• Statistical approach extensions
– If
– sign(y) gives the decision
– Techniques:

• Bayes Decision Rule (assumes prob.s perfectly 
estimated)

– Minimizes Half Total Error Rate(HTER)

• Linear Regression
• SVM Regression

ccc ΘSUPSUPy −−= )|(log)|(log

2
FR%FA%HTER +=
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Decision Making
Threshold SettingThreshold Setting

• speaker dependent
– |P| thresholds:     

• speaker independent
– 1 threshold:

• leave one (client o) out
– |P|*|P| thresholds:

• a priori: computed on training set 
(enrollment data) [Lindberg]

• a posteriori: computed on test set 
(obtained during actual use of the system)

|P|1,...,c   , =cϑ

ϑ

|P|o|P|cco 1,...,   ,1,...,   , ==ϑ
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Decision Making
Hypothesis TestingHypothesis Testing

Valid & impostor densities

[Campbell]
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Decision Making
Hypothesis Testing(2)Hypothesis Testing(2)

Probability terms & definitions

[Campbell]
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Performance EvaluationPerformance Evaluation

• Accuracy
– FAR (False Acceptance Rate)
– FRR (False Rejection Rate)
– EER (Equal Error Rate)
– ROC (Receiver Operating Characteristics)

• Resources Requirements
– CPU
– memory, disk
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Performance Evaluation
AccuracyAccuracy

• Error %s
– FAR (False Acceptance Rate): Prob. of false 

acceptance
• Estimate:

– FRR (False Rejection Rate): Prob. of false 
rejection
• Estimate:

– Values for FAR & FRR are adjusted by changing 
the threshold values: � FAR vs. � FRR

claimsfalse#
sacceptance false#

claimstrue#
rejections false#
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Performance Evaluation
Accuracy(2)Accuracy(2)

• Error %s(2)
– EER (Equal Error Rate): operating point where 

FAR  FRR
– Choice of 2 subsequent operating points to 

approximate the EER value

– MDE (Minimum Decision Error): operating point 
where

11

11

11

11
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Performance Evaluation
Accuracy(3)Accuracy(3)

• Graphs

• Quantities
– #speakers correctly/wrongly verified

ROC (Receiver Operating
Characteristics) curve:

Plot of different
operating points

(FRR vs. FAR values).
Called also DET
(Detection Error
Tradeoff) plot

[Gauvain]
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Performance Evaluation
Resources RequirementsResources Requirements

• CPU time
– Training

• Feature creation
• Modeling
• Threshold setting

– Testing (verification throughput)
• Feature creation
• Matching

• Memory-disk storage
– Speech database, Features, Models, Thresholds
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Experimental ResultsExperimental Results

• Parameters
• EERs
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Experimental Results
ParametersParameters

KHz48=sF

Text dependent – Fixed vocab.: Digits 0-9 in French or Spanish
�|V|=10 |P|=37 (M2VTS database)
Discrete utterance speech flow
#sessions(shots)/speaker=5, the 5th is for testing�|S|=4
#phrases/session=1 (0-9 utterance)
Phrase duration~6sec

95.0=peα (30ms) 360=N (20ms) 240=M
Window type: Hamming

12=LPCCN 12=LPCN
Liftering-weighting: );( mlc LPCCw−

Proc. Freq.=12KHz

Coefficients: LPCCs
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Experimental Results
Parameters(2)Parameters(2)--EEREER

Matching method: DTW

Nd : Euclidean Td : Type 4 TNB ddd ×=
30=W10∆ ,10∆ ,10∆ ,10∆ ==== jEiEjSiS

Local path constraint: Sakoe & Shiba (b)

Decision approach: Template
Threshold setting: leave one out
|P|(client left out).|P-1|(rest clients as claimants).|S|(shot left out for 
claiming-testing)=5328 client claims
|P|(client left out as impostor).|P-1|(claims of the impostor as one of 
the rest clients).|S|(shot left out for claiming)=5328 impostor claims
EER(avg)∈ [0.6569%,1.5390%] (FAR1=1.5390% >FRR1=0.6569%)
EER(avg)=[EER(1|234)+EER(2|134)+EER(3|124)+EER(4|123)]/4
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Experimental Results
Parameters(3)Parameters(3)--EEREER

Difference:

EER(avg)=4.1817%
EER(5|123)=5.4054%

12=MFCCN
512)( =melFFTN

Coefficients: MFCCs

40)( =melfiltersN

Shot 4 left out, shot 5 used for testing:
|P|.|P-1|=1332 client & 1332 impostor claims
EER(5|123)=2.7027%
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