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Introduction

Framework

e Motivation
— Speech contains speaker specific characteristics
Physiological: body parts (shape, size)

Be

arynx (glottis - vocal cords)
oharynx, oral & nasal cavities (vocal tract)

navioral: way they are used

— Voiceprint as a biometric (distinguishing trait)
— Natural & economical way of identification




Introduction(2)

Framework

e Objective
— Correct decision on a speaker’s identity claim given a
speech segment
e Definitions

— Verification < Latin verus (true)
e Claim: Speaker identity
e Proof: Speech utterance
e Binary decision to establish the truth

— Client: speaker registered on the system
— Impostor: speaker who claims a false identity

— Model: set of parameters that represents a speaker or a
group of speakers




Introduction(3)

Framework

e Abstract schematic

Speaker
Identity

Speech
Segment

Yes/No
—)

e Example
— Claimant: | am speaker A
— SV system: Say: one two three
— Claimant: One two three
— SV system: You are not speaker A
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Related Research Areas

Framework

/ processing\
Digital Signal Analog Signal

% Processing Processing

—)
Speech Other Signals

Processin
“ \ e e——

Analysis  Recognition Coding / Enhancement . Storage /

“ \W‘Sis Transmission
Speech

. Speaker Language
Recognition Recognition Identification

N T~

Speaker Speaker Detection Speaker
Identification / Tracking Verification




Related Research Areas(2)

Framework

e (Statistical) Pattern Recognition

Class
4




Related Research Areas(3)

Framework

e Biometrics Technology

— def: automatic recognition of a person based on
his/her physiological or behavioral
characteristics (biometrics)

— desirable properties of biometrics [Jain_bk]
e universality (found in every person)
e uniqueness (different "value" for each person)
e permanence (invariant with time)
e collectability (quantitatively measurable)

performance (A accuracy vs. N resources)
nigh acceptability (person’s willingness)

ow circumvention (not easy to deceive)
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Related Research Areas(4)

Framework

® SpeeCh Science Communication by speech [Somervuo]

message formulation message comprehension
- langu:;e code
langnage code -
neuro—r:]meular "E“rﬂl_‘ljl"ﬁ-ﬁﬁ‘]ﬂﬂﬁoﬂ
actions .

hasilar membrane motion

L

acoustic system
(vocal tract)

)

acoustic wave

e
sound source
(lungs +vocal cords)

SPEARER LISTENER
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Related Research Areas(b)

Framework
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Soft Palate

e Speech Science(2) pa
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Related Research Areas(6)

Framework
e Speech Science(3) [Morgan] (modified)
General Discrete-Time Model for Speech Production
Pitch Period
l Gain for voice source
_ Glottal Pulse
Impulse Train | Model
Generator G(2) Vocal Tract Parameters
Voiced/Unvoiced N Vocal Tract Radiation
Switch —1—™ Model [—™ Model
H(z) R(2)
Random
Noise
(Generator

Gain for noise source
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Generic Speaker Verification Process

Framework

e Enrollment (Training) module

|n| Speaker "A"
N utterances

Speech Pressure
Wave of "A"

Digital
Speech
c

Channel to transfer signal

»

)

Feature
Vectors

Known ldentity:
"Speaker is "A""

N Sets of
Feature
Vector

Speaker
Model of "A"

13



Generic SV Process(2)

Framework

e Enrollment module(2)
— Digital speech acquisition

Speech Pressure
Wave

Analog Conditioned

Voltage Analog
Signal >- Signal X

- Sampling frequency: F,

Digital Speech
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Generic SV Process(3)

Framework

e Enrollment module(3): Feature creation
Digital
Speech

Preprocessed
Digital Speech

15



Generic SV Process(4)

Framework
e Verification (testing) cjaimed
module Identity B
|P| Speaker Speaker Threshold
Speech Pressure Models Model of "B" of "B"
Wave of "A" )

h

Digital
Speech

Feature Matching
Vectors . Results

Threshold: Acceptance starting point

Output hypothesis
(Acceptance (A=B) or Rejection (AzB))

16



Generic SV Process(5)

Framework
 Threshold setting module
Speaker
Models of " A"
Speaker \ >Threshold
Model of "A" of "A"

A: A, (cohort model) or Q (world model)

e Cohort model: competitive clients only
e World model: all the clients

17



Speech Corpus Parameters

Framework

e Text-dependency [Nedic]

— Text dependent (or fixed phrase): verification (&
enrollment) done on a fixed phrase (pass phrase),
predetermined by the system

— Text prompted: system list-selected/vocabulary-
generated phrase prompted to the user

— User customized: user list-selected/vocabulary-
generated phrase

— Text independent: user chosen unconstrained phrase
— Language-dependency
e \ocabulary

— Fixed or not
— Size (|V|)

18



Speech Corpus Parameters(2)

Framework

e Population (Speakers)
— Size (|PD
— Degree of similarity
e gender, age, language, dialect, ...
e Speech Flow
— Discrete Utterance (pauses betw. words)
— Continuous
— Spontaneous (natural)

e Training (system construction) - testing
(evaluation) part

 Quantity (#sessions, #phrases, phrase duration)
e Quality of speech (Problems->)

19



Problems under real conditions

Framework

e Due to impostors
— Mimicry by humans
— Tape recorders & digital equipment for

recording, editing & splicing sound

e Due to clients
— Bad pronunciation
— Extreme emotional states (e.g. anger)
— Sickness / Allergies / Tiredness / Thirst
— Aging

20



Problems under real conditions(2)

Framework

e Due to the input channel

— Microphone / Communication channel /
Digitizer quality

— Channel mismatch (different channels for
enrollment & verification request)

e Due to the environment

— Environmental mismatch

— Environmental noise

— Poor room acoustics

21



Errors

Framework

e False Rejection
— A client request as himself/herself is rejected
— High rate (rejected) client: goat [Koolwaalj]
— Low rate (rejected) client: sheep

e False Acceptance
— An Impostor request as a client is accepted

High rate (victim) client: lamb
_ow rate (victim) client: ram
High rate (accepted) impostor: wolf

_ow rate (accepted) impostor: badger

22



Applications

Framework

e Access control to computers / databases /
facilities

e Remote access to computer networks

e Electronic commerce

e Forensic

e Telephone banking [James]

23



Preprocessing

 Preemphasis

 Frame Blocking

e Frame Windowing

e Speech Activity Detection
e Signal Measures & Graphs

Preemphasized

Digital DS PDS Windowed
Speech (PDS) Frames PDS Frames
DS " ) )

24



Preemphasis

Preprocessing

e Preemphasis: Low order digital system to
— spectrally flatten the signal (in favor of vocal

tract parameters)

— make it less susceptible to later finite precision

effects
— usually 1st order FIR filter:

S,.(m)=s(n)—a  sn-1), a,

[0.9,1]

25



Frame Blocking

Preprocessing

 Frame blocking (short-term(st)
processing)

— L successive overlapping (by M samples)
frames

fn)y=s, (n+tM((-1)), n=0,..,.N-1, [=1,.,L

— window size/length: N samples = M/F, sec
(typically some msec)

— frame rate/shift/period: M samples = M/F, sec

— Alternative: non-uniform frame rate

26



Frame Windowing

Preprocessing

e Used to minimize the signal discontinuities
at the beg. & end of each frame

— Time (long window) vs. freq. (short) resolution
fW(l’n) :f(19 n)W(I’Z), n-— O,-..,N_l

— Window type:
Generalized Hanning: w (k) = w{k]|:ﬂt +(1— u)cus(‘%kﬂ O<a<l
o = 0.54, Hamming window
o = 0.50, Hanning window
[Picone]

— Modifications:
N-sN-1, k-n n=0,.,N-1

27



Speech Activity Detection

Preprocessing

e Silence-speech detection

e \/oiced-unvoiced discrimination

—1.e. with or w/o fast vibration of the vocal
cords

 Endpoint detection [Deller bk]
 Word segmentation

e Applicable at several time points using
several criteria-thresholds (energy, zero-
crossing rate, feature-based, statistical)

28



Signal Measures & Graphs

Preprocessing
oo | Speech waveform | Zerocrossing rate g,
i r.l.! | I
!
| L
' | )
| ‘ o
| II |
|
0 J1I|I |
‘ | f | L |
50 | | .nll. l |I|I' 1 Iy il
| | ! A7 i ulihr_.'ll‘“"” |IJ AN
-1o0 1 ittt e e 1 L —— led ol i el eh |r]eh|kd|k|ix gl g s ]| & =h |t n |
0| .S .l.pd..lF.)l Ii',«' .lt.d.l ?h Illrllt?hllklcllllkll i.x.lg.cflg.l?.l i.h | S.h l.axl. no|

Enefgy pllotl | Tlme-frequency plot (Spectrogram)

[Weingessel]
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Features

e Feature Extraction
— Features - General
— Linear Prediction (LP)
— Cepstrum (Complex - Real)
— Mel Cepstrum
— LP-derived Cepstrum
— Other Cepstral Variants
— Variants
— Delta Cepstrum

— Perceptual Linear Prediction (PLP) - Auditory
Features

30



Features(2)

e Noise Compensation - Channel Equalization
— Intra-frame Cepstral Processing
— Inter-frame Cepstral Processing
— Relative Spectral (RASTA) Processing

e Feature Selection
— Principal Component Analysis (PCA)
— Linear Discriminant Analysis (LDA)
— Non Linear Discriminant Analysis (NLDA)

31



Features - General

Feature Extraction

e Mapping of each input speech interval (1
or more frames) to a multidimensional
feature space (vector)

e Order N, : number of coefficients In

each feature vector (dimensionality)
e Several kinds of coefficients proposed

e Ear performs spectral analysis—>feature
vectors usually consider local spectral
energy estimates

32



Linear Prediction (LP)

Feature Extraction

e Speech sample as a linear combination of
N pc previous samples (autoregressive (AR)
model):

N LPC

s(n) = Z appc(m)s(n—m)+Gu(n)

—a;p-(m), m=1,..,N,,.: LP coefficients (LPC)
—u(n): normalized excitation source
— G : scale factor

—a,po(l;m), m=1,.,N,,.:stLPC of frame /

33



Linear Prediction (LP)(2)

Feature Extraction

e Calculation of stLPC
— Mean squared error

minimization

— Autocorrelation method
e Levinson-Durbin (L-D)

recursion

— Covariance method

e Cholesky (LU)
decomposition

L-D recursion
(/is implied,
R: autocorrelatic

{ Initialization: ‘w
Efy) = R, (0) (26)

For 1<isN,, {

i—1
R(iy+ Y ay, (DR, (1))

Id[J..I"(‘r_ 1) = - L IEJ.[E-, 1 {E?}

alo(d) = k,di-1) (28)
Forl<j<i—1 {

(i}, (-1, . (i1}
appli) = app DHkli-1yage (I—J)

matrix)
[Picone2]

(29)
)

e = (k- 1) B (30)

N /
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Linear Prediction (LP)(3)

Feature Extraction

e | PC vectors
— highly correlated
— not orthonormal

e Distance: Itakura-Saito
— Computationally expensive

e | PC processor [Rabiner bkK]
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Cepstrum (Complex - Real)

Feature Extraction

e Special case of homomorphic signal proc.
[Deller_bk]

e provides a method for separating the vocal tract
iInfo (system) from the glottal excitation

e Focuses on voiced segments

e Short-term complex cepstrum (stCC):

cee(l;m) = DFT {log,, (DFT{f, (I,m)})}, m =1,..., N,
e Short-term real cepstrum (stRC): n=0,..,N-1
Cre(l;m) = DFT ™ {log o [DFT{f, (1m)}}, m =1,..., Ny,
n=0,..N-1

— No phase information, usu. acceptable
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Cepstrum (Complex - Real)(2)

Feature Extraction

e Distance of cepstrum based coefficients

— Euclidean: vectors defined in an orthonormal space
NRC

Dy, (4, L5 RC) = Z (Cre(lysm) —cpe (4 m))2
m=1

— Welighted Euclidean

e weighted by the inverse of the corresponding covariance
matrix element

37



Cepstrum (Complex - Real)(3)

Feature Extraction

e |f the speech Is considered as the output of the
vocal tract system v having as input the glottal
excitation g

f.U;n)y=g(l;n)v(l;n), n=0,..,N—1
Cp([;m) =DFT"' {log,,|IDFT{g(l;n) D(L;n) |}, n=0,..,N—1
= DFT_I{IOglo G(5 k)| +log,, [V (L k)E, k=0, Nper —1
=g, (,m)+v,([;m), m=0,..,N -1

e the 15t coeffs represent the slowly varying vocal

tract parameters & the remaining coeffs model

the quickly varying excitation signal->selection
of the 1t N, coeffs excluding Ot

38



Mel Cepstrum

Feature Extraction

frequency of a tone

— non-linear correspondence
to the physical freq. (like the
human ear)

Su j
=259510 | + 22

— mel freq. cepstral
coefficients (MFCCs):

Crircc(lsm), m=1..,N,zcc

NFFT(mel) > Nﬁlters(mel)
— generalized case [Vergin]

Mel-cepstral feature generation (frame /)

WJU\I\"* Speech [Young]

EET based
”m“‘mmmm?m spectrum

-

Mel scale (centered)
W\ triangular filters

'

Log

DCT
39 Element
A — Acoustic
5 Vector

39



LP derived Cepstrum

Feature Extraction

e | P Cepstral Coefficients (LPCCs):

m=1..,N,p:

m—1
Crpec(lsm) = appe(lm) + Z_CLPCC (Lk)ape(lm = k)

k=1 M
Mm=N,p- t1L,... N, oo
m—1 k
Crpec(l;m) = Z —C, pec(lK)a pe (I;m —k)
k=m=N{pc

Proven to be equivalent to CC but faster computed

40



Other Cepstral Variants

Feature Extraction

e Linear Freq. Cepstral Coefficients (LFCCs)
— Like MFCCs but:
filters are uniformly spaced on the Hz scale

 Mel-warped LPCCs (MLPCCs) [Kuitert]
— CC not directly derived from LPC

— 1st compute the log magnitude spectrum of
LPC

— then warp the freq. axis to correspond to the
mel axis

41



Variants

Feature Extraction

e Discrete Wavelet Transform (DWT) Instead
of FFT [Krishnan]

e Application of other type than triangular
filters

e Application of the logarithm before the
triangular filters

42



Delta Cepstrum

Feature Extraction

e [Milner]:

K
Z ke oo (1 + kym)
ACGCC (lym) = == K
Dk
k=-K

9 m:1,...,NGCC

e Higher order:
Acoee = > DA & Cope = > Do

e Inclusion of temporal information

43



PLP - Auditory Features

Feature Extraction

e Perceptual Linear Prediction (PLP)
[Hermansky]

— Spectral scale: non-linear Bark scale

4 2
fou = 13atan(0°76fHZ j +3.5atan S .
1000 L7500

— Spectral features smoothed within freq. bands

e Auditory Features [Kumar]
— Imitates signal proc. performed by the ear
— cochlear modeling

44



Intra-frame Cepstral Processing

Noise Compensation - Channel Equalization

[Mammone]
e Liftering - weighting
— low order coeffs: sensitive to overall spectral slope
— high order: sensitive to noise
— —>tapered window (bandpass liftering)

2 NGCC

C—gec (Lsm) =w(m)cgee (lim), m=1,...,Ngqe

e Adaptive Component Weighting (ACW)
— motivation: all frames don't have same distortion

w(m) =1+ Nece sin( o j, m=1,..,Ng,

45



Inter-frame Cepstral Processing

Noise Compensation - Channel Equalization

e Cepstral Mean Subtraction (CMS)

— mean (over a num of frames) subtraction
(tackles training-testing discrepancy)

Coms-eclsm) = coec(lym) —avg, (coec(hsm)), m=1,...,Nge.
— lowpass filtering
— eliminates communication channel spectral
shaping
e Pole Filtered CMS (PFCMS): cepstrum
poles modification

46



RASTA Processing

Noise Compensation - Channel Equalization

e Relative Spectral Filtering (RASTA)
[Hermansky]
— bandpass filtering in the log-spectral domain

— suppresses spectral components that change
more slowly or quickly than in typical speech

— RASTA-PLP
e Microphone (type, position) robustness

47



Feature Selection Introduction

Feature Selection

e Goal

— find a transformation to a relatively low-dimensional
feature space that preserves the information pertinent to
the application while enabling meaningful comparisons to
be performed using measures of similarity

e Processing of features

— Principal Component Analysis (PCA) (or Karhunen Loeve
Expansion-KLE)

e seeks a lower dimensional representation that accounts for
variance of the features

e not necessarily optimum for class discrimination
— Linear Discriminant Analysis (LDA) [Jin]

— Non Linear Discriminant Analysis (NLDA) (using MLP)
[Konig]
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Matching - Modeling

 Matching - Modeling Introduction
e Template Matching Methods

— DTW (Dynamic Time Warping)

—VQ (Vector Quantization)

— LVQ (Learning Vector Quantization)
e Statistical Measures

— AHS (Arithmetic-Harmonic-Sphericity)

e Generative Models
— HMMs (Hidden Markov Models)
— GMMs (Gaussian Mixture Models)

49



Matching — Modeling(2)

 Neural Networks (NNs)
— Feed-forward NNs
— SOMs (Self Organizing Maps)
— RNNs (Recurrent NNSs)

e NNs & Combined Methods

— Neural Tree Networks (NTNs)
— DTW-SOM

e Support Vector Machines (SVMs)
e Sub-band Processing Introduction

50



Matching - Modeling Introduction

Matching - Modeling

Modeling: creation of (speaker) models

Model: Can be considered as the output of a
proper proc. of a speaker’s set of feature vectors

Matching: computation of a match score betw.
the input feature vectors & some speaker model

Methods [Wassner]

— Template Matching
e deterministic

e score: distance betw. a test speaker (feature vectors of an)
utterance & a reference speaker model

e petter score: min distance
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Matching-Modeling Introduction(2)

Matching - Modeling

e Methods(2)

— Stochastic Approach
 probabilistic matching

e score: prob. of generation of a speech utterance by
the claimed speaker P(U|S,)

e pbetter score: max probability

e Parametric speaker model: specific pdf is assumed
& Its appropriate parameters (e.g. mean vector,
covariance matrix) can be estimated using the
Maximum Likelihood Estimation (MLE) e.g.
multivariate normal model
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Template Matching Methods

Matching - Modeling

e Dynamic Time Warping (DTW)
— dynamic comparison betw. a test & a reference
(model) matrix (set of feature vectors)

— computes a distance betw. the test & ref.
patterns

— allows time alignment at different costs
— uses Dynamic Programming (DP)
— text dependent cases

53



Template Matching Methods(2)

Matching - Modeling

e Dynamic Time
Warping
(DTW)(2)

The DP grid
with test (t)
& reference (r)
feature vectors
at respective
frame indices
[Picone]

riJ

ri)

@l f..0)

'

i2)

BAy
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Template Matching Methods(3)

Matching - Modeling

e Dynamic Time Warping (DTW)(3)
— distances-costs on the DP grid (/,/ frame
Indices, & step index)
* Node d,(i,,J,)
Nipcc

e- . o . es o re °
gDEucz.(Zkafk;LP CC)= Z (crpec (Jism) _Cuj:cc (Zk;m))z
m=1

e Transition d,[@,,j )| G, 7o) €.9. [i, =i 1*+[J, =il
* Both dB[(lkajk) | (ik—lajk—l)] (Type 4)

— €.0. dN(ik,jk)xdT[(ikajk) | (ik—lajk—l)]

e Global 4 .
D= ZdB[(lkajk) | Gemts Jimr)]
=1

— K: number of transitions
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Template Matching Methods(4)

Matching - Modeling

e Dynamic Time Warping (DTW)(4)
— DTW search constraints
e Endpoint Constraints (bottom left(S) - top right(E)

corners)

— endpoint relaxation: AiS, AjS,AiE, A&JE max points
allowed in each direction

e Monotonicity (going up & right) i, <i, Uj,_ <j,
e Global Path Constraints (global movement area)

— permissible slope or
— permissible window ‘jk —ik‘ <Ww
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Template Matching Methods(5)

Matching - Modeling

e Dynamic Time Warping

(DTW)(5) I P
— DTW search Emas = 8. G
constraints(2) i B =1
 Local Path Constraints G !:Illn_

(local movement area)

local constraints “ 9 ¢ o o g
on DTW a3 E =3
path search Fin™ 3 £ 2
[Picone] ic) it

il [ i O I
___.-"
0 a :-"'j =] /-‘;
Sakoe & Shiba P
0 a
i
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Template Matching Methods(6)

Matching - Modeling

e Dynamic Time Warping (DTW)(6)

— The minimum cost final endpoint provides the
distance betw. a test & a reference phrase

— Training-Modeling [Deller bk]
e Casual: Unaltered feature strings form models
e Averaging feature strings of utterances

e The stochastic techniques possess superior training
methods
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Template Matching Methods(7)

Matching - Modeling

e Vector Quantization (VQ)

— Uses Intra-vector dependencies to break-up a
(feature) vector space Iin cells (unsupervised)

— follows Linde-Buzo-Gray (LBG) algorithm
— speaker model: codebook
— codebook: set of prototype vectors (codevectors)

— codevector: vector computed from "similar" single
(feature) vectors (e.g. representing a phoneme)
(phoneme: basic speech unit)

— handles text independent cases

— goal: data structure "discovery" by finding how the
data Is clustered

59



Template Matching Methods(8)

Matching - Modeling

e | earning Vector Quantization (LVQ)
— Predefined classes, labeled data

— defines the class borders according to the
nearest neighbor rule

— supervised version of VQ

e quantization of feature vectors by codevectors
based on a distance

e (gradual) update of codevectors
— set of variants (e.g. LVQ1,2,3)

— goal: to determine a set of prototypes that best
represent each class.
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Statistical Measures
Matching - Modeling

e Second Order Statistical Measures (SOSM)
[Bimbot]

— E.g. Arithmetic-Harmonic-Sphericity (AHS)
e speaker model: covariance matrix of feature vectors

e Distance=min(=0) iff all eigenvalues of test &
reference covariance matrices are equal
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Generative Models
Matching - Modeling

 Hidden Markov Models (HMMSs)

— Statistical - stochastic
— Flexible
— Text independent cases handled
— Types
e Continuous Density (CD) (real valued features)

e Discrete (integer valued features - symbols)
e SemiContinuous (SC) [Falavigna]

— Model: prob. distributions of the feature vectors
of the speaker’s utterances approximated by
mixtures of Gaussians
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Generative Models(2)
Matching - Modeling

 Hidden Markov Models (HMMs)(2)
— Topologies
e Left-Right (LR) (self & right connections): attempts

to catch the temporal structure of the speech & to
link consecutive short-time observations together

#states/unit(e.g. phoneme)
#Gaussian distributions(mixtures)/state

[Kumar] —>
Example of a left-right HMI}A

O, : feature vectors
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Generative Models(3)
Matching - Modeling

 Hidden Markov Models (HMMs)(3)
— Topologies(2)

e Ergodic (fully
connected)

-AR HMMs: the prob.
distrib. associated
with each state is
estimated via an AR
process [Bourlard]

[Picone]
Example of an ergodic HMM a33

64



Generative Models(4)
Matching - Modeling

e Gaussian Mixture Models (GMMs)

— Like single multi-Gaussian state HMMs

— Uses a mixture of Gaussian densities to model
the distribution of the feature vectors of each
speaker

— Local covariance info
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Neural Networks (NNSs)

Matching - Modeling

e Feed-Forward Neural Networks
— supervised learning

— each speaker is modeled by processing results
of his NN

—when an identity is claimed the corresponding
NN Is consulted

— positive/negative training (rivals)
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Neural Networks (NNs)(2)

Matching - Modeling

e Feed-Forward NNs(2)
— Types [Haykin_bk]
e Multilayer Perceptron (MLP): trained usually with
the Back-Propagation (BP) algorithm

— Error Correction Learning
— Global optimization

e Time Delay NNs (TDNNSs)

e Radial Basis Function (RBF) Networks [LO]

— Memory-Based Learning
— Local optimization
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Neural Networks (NNs)(3)

Matching - Modeling

e Self Organizing Maps (SOMs) [Kohonen_bk]

— unsupervised learning

— method to form a topologically ordered
codebook

— speaker model: codebook

— density of codevectors approaches the pdf of the
Input vectors during the training

— like nonlinear projection of the feature space on
the neural lattice

— competitive (winner neuron) learning
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NNs & Combined Methods

Matching - Modeling

e DTW-SOM
— associate an entire feature vector sequence,
Instead of a single feature vector, as a model

with each SOM node (also DTW-LVQ)
[Somervuo]

e Recurrent NNs (RNNs) [Shrimpton]
— (self-or not) feedback

e Neural Tree Networks (NTNs)

— hierarchical classifier that incorporates decision
trees & NNs (e.g. 1 MLP NN per tree node)

e Combined methods [Genoud]
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Support Vector Machines (SVMs)

Matching - Modeling

. [Cherkassky bk]

e a combination of the most important
examples (support vectors) is computed In
a high dimensional space (kernel space)

e | earning by examples (supervised)

e Vapnik-Chervonenkis (VC) dimension:
framework for the development of SVMs

e pased on Structural Risk Minimization
principle from statistical learning theory
[Vapnik _bk]
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Sub-band Processing Introduction

Matching - Modeling

e Speech signal split into band-limited

Test
Utterance

channels (freqg. ranges)

Block diagram of an LPCC-based sub-band processing system

4'I Recogniser |

bI Recogniser 2

'I Filter 2 ’| LPCC
I I
I I
I I
I I
I I
Filter 15 LPCC
Filter 16 LPCC

—-I Recogniser 16

Score (iloba
E—
Combination Score
[Finan]
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Decision Making

e Decision Approaches
— "Template"

— Statistical & extensions
e LLR (Log Likelihood Ratio)
e Cohort/world model

 Threshold Setting
e Hypothesis Testing

12



Decision Approaches

Decision Making

e "Template" approach

— threshold setting: based on inter- & intra-
speaker scores/distances

— comparison:
test score<=threshold—>acceptance [Fakotakis]

e Statistical approach [Bengio] [Bourlard]
— 5, : speaker RV for identity ¢ being claimed
— U : utterance represented by feat. vectors

— S, : other speakers RV
p(s. |0y = PUISIPS)
P(U)
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Decision Approaches(2)

Decision Making

e Statistical approach(2)
— Claim c is true If: B
PEIU) | PUIS) PG g
PS.|UY T PWUIS,) P(S.)
— ¢, : decision threshold usually found assuming
Gaussian distributions for P(U|S,) and PU|S))
— —>normalized likelihood - likelihood ratio
— using logs:
PU|S,)
P(U|S)
— —>Log Likelihood Ratio (LLR)

>logd = logP(U |S,) - 10gP(U|S ) >0,

log
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Decision Approaches(3)

Decision Making

e Statistical approach(3)
— P(UIS,) : speaker dependent model
— P(U|S,) : normalization factor

— cohort model S. =3, : group of selected
speakers who are more competitive with the
model of the claimed id

e No well-established selection procedure

—world model S, =Q : all other speakers
e less computation & storage needed
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Decision Approaches(4)

Decision Making

e Statistical approach extensions
~If y=logPU|8S,)~log PU|S,)~0,
—sign(y) gives the decision

— Techniques:

e Bayes Decision Rule (assumes prob.s perfectly
estimated)
— Minimizes Half Total Error Rate(HTER)
%FA +%FR
HTER == /o

2
e Linear Regression

e SVM Regression
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Threshold Setting

Decision Making

e speaker dependent
— |P] thresholds: 4., c¢=1,...|P

e speaker independent
— 1 threshold: &
e leave one (client 0) out
— |P|*|P| thresholds: 4, c¢=1,...|P, o=1,...|P|
e a priori: computed on training set
(enrollment data) [Lindberg]

e a posteriori: computed on test set
(obtained during actual use of the system)
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Hypothesis Testing

Decision Making

Valid & impostor densities
P(z)
Dy: Accept | Iyy: Reject

-
\F(2): Vahd

By(z): Imposter
Q, ' (

- ™~
S\ | AP >,

T [Campbell]
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Hypothesis Testing(2)

Decision Making

Probability terms & definitions

Performance | Decision | Hypothasis Name of Degcision Result
Probabilities (b] H Probability
Qo I 0 Size of test Typel False
*significance™ CITar acceptance or
alarm
Q] 0 1 Type Il | False rejection
error
Qqa=1-0Qy | 1 Power of test True acceptance
I -0y 0 0 True rejection

[Campbell]
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Performance Evaluation

e Accuracy
— FAR (False Acceptance Rate)
— FRR (False Rejection Rate)
— EER (Equal Error Rate)
— ROC (Receliver Operating Characteristics)

e Resources Requirements

— CPU
— memory, disk

80



Accuracy

Performance Evaluation

e Error %s

— FAR (False Acceptance Rate): Prob. of false

acceptance
- Estimate: #false acceptances

#false claims

— FRR (False Rejection Rate): Prob. of false
rejection
- Estimate: #false rejections

# true claims

— Values for FAR & FRR are adjusted by changing
the threshold values: N FAR vs. N FRR
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Accuracy(2)

Performance Evaluation

e Error %s(2)

— EER (Equal Error Rate): operating point where
FAR=FRR

— Choice of 2 subsequent operating points to
approximate the EER value

FRR, [(FAR ,, —FRR,,, [FAR,
(FAR,, ~FAR,)—(FRR,, =FRR,) ,
FAR,, 2FAR UFRR,,, <FRR,, L[l
FAR, <FRR, LIFAR,,, 2FRR ,,

EER=

— MDE (Minimum Decision Error): operating point
where FRR =10[FAR
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Accuracy(3)

Performance Evaluation

e Graphs 16 — T
Gﬂussi.ﬂn mix, EER=9.0 (a) ——
14 . unknnwn. EER=7.3 (b). ..
\ - Text:known, EER=5.1 (¢) &—
- 2 trials; EER=4.1 (d) ——
£ 12 F \ X TinlE; 28 (avg 1.7¢), EER=29 (&) =+
_ _ _ ' CCR ——-
ROC (Receiver Operating E 10 |- \‘\ -}\-\ - e
Characteristics) curve: £ \ P\ XK i i :
: S USSR IO 5 e SHSUSURPRUOI SUUU W SO SO SSUSUR SSRR S
Plot of different - XN o TXT TS A
. . E- i\ Ec'J bj ~-.
operating points S ok \ ) N _‘sw‘_(__ Mo i
(FRR vs. FAR values). E o \ N I
Called also DET 4k \ S S RIS N N —— [ -
(Detection Error 2 N\ 3“‘\& A 5 5
Tradeoff) plot 2 hﬂx\% -
: : : "“'1"‘—.‘_"%“______ : ; -
[Gauvain] L g s
0 2 4 6 N 0 12 14 16 18 2

® Quantltles ) lJser Rejection %
— #speakers correctly/wrongly verified
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Resources Requirements

Performance Evaluation

e CPU time
— Training
e Feature creation

e Modeling
e Threshold setting

— Testing (verification throughput)
e Feature creation
e Matching

e Memory-disk storage
— Speech database, Features, Models, Thresholds
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Experimental Results

e Parameters
e EERS
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Parameters

Experimental Results

Text dependent — Fixed vocab.: Digits 0-9 in French or Spanish
-2>|V|=10 |P|=37 (M2VTS database)
Discrete utterance speech flow

#sessions(shots)/speaker=5, the 5" is for testing=>|S|=4
#phrases/session=1 (0-9 utterance)
Phrase duration—6sec

F. =48KHz Proc. Freq.=12KHz
o, =0.95 N =360(30ms) M =240(20ms)
Window type: Hamming
Coefficients: LPCCs N, pr =12 N pc =12
Liftering-weighting: CW_LPCC(Z; m)
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Parameters(2)-EER

Experimental Results

Matching method: DTW

d, : Euclidean d, : Type 4 d,=d,*xd,
AiS =10,AjS =10, AiE =10, JE =10 W =30
Local path constraint: Sakoe & Shiba (b)

Decision approach: Template

Threshold setting: leave one out

|P|(client left out).|P-1|(rest clients as claimants).|S|(shot left out for
claiming-testing)=5328 client claims

|P|(client left out as impostor).|P-1](claims of the impostor as one of
the rest clients).|S|(shot left out for claiming)=5328 impostor claims
EER(avg)1[0.6569%,1.5390%] (FAR;=1.5390% >FRR,=0.6569%)
EER(avg)=[EER(1]|234)+EER(2|134)+EER(3|124)+EER(4]123)]/4
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Parameters(3)-EER

Experimental Results

Shot 4 left out, shot 5 used for testing:
|P].|P-1|=1332 client & 1332 impostor claims
EER(5]123)=2.7027%

Difference:
Coefficients: MFCCs NV, =12
NFFT(mel) =3 12 Nﬁlters(mel) = 40

EER(avg)=4.1817%
EER(5]123)=5.4054%
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