
Incremental dialogue management

Wolfram Wingerath

23.01.2012

Incremental dialogue management Building an incremental dialogue manager Evaluation References

1 Incremental dialogue management – basics

2 Building an incremental dialogue manager

3 Evaluating incremental processors

4 References

Incremental dialogue management Wolfram Wingerath

23.01.2012 2

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Incremental dialogue management – basics

1 Incremental dialogue management – basics

Utterances in traditional dialogue systems

Sub-utterance phenomena

Numbers – an incremental dialogue system

Challenge: the revoke-commit-problem

2 Building an incremental dialogue manager

3 Evaluating incremental processors

4 References

Incremental dialogue management Wolfram Wingerath

23.01.2012 2

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Utterances in traditional dialogue systems

typically, dialogue systems work on utterances as smallest units
an utterance is a user speech segment bounded by silence

I'd like to have some red wine

Incremental dialogue management Wolfram Wingerath

23.01.2012 3

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Utterance-oriented processing is too crude!

natural dialogues proceed continuously and incrementally

Incremental dialogue management Wolfram Wingerath

23.01.2012 4

Incremental dialogue management Building an incremental dialogue manager Evaluation References

A very simple incremental dialogue manager

an instructor tells the system which piece to take or to delete
incremental vs. non-incremental version: In an overhearer
evaluation, the incremental version was preferred w.r.t.

human-likeness
helpfulness
reactivity

Incremental dialogue management Wolfram Wingerath

23.01.2012 5

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: non-incremental version

Incremental dialogue management Wolfram Wingerath

23.01.2012 6

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: non-incremental version

res/ni-18.mp4

Incremental dialogue management Wolfram Wingerath

23.01.2012 6

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: incremental version

Incremental dialogue management Wolfram Wingerath

23.01.2012 7

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: incremental version

res/i-7.mp4

Incremental dialogue management Wolfram Wingerath

23.01.2012 7

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Sub-utterance phenomena

From Boston uhm ... on Monday.A:

dialogue partners normally also interact on sub-utterance
level
there are several sub-utterance phenomena
a dialogue system that is able to ’understand’ and produce
them, is mostly perceived as more natural and more efficient

Incremental dialogue management Wolfram Wingerath

23.01.2012 8

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Hesitations

From Boston uhm ... on Monday.A:

unfilled pauses are harder to recognise than filled pauses
(e.g. ’erm’), because they may be confused with utterance ends
a system might derive information from the fact that the user
is hesitating or even offer help (→ cooperative replies)
a system might also fill pauses to appear more reactive, e.g.
start with a filled pause

Incremental dialogue management Wolfram Wingerath

23.01.2012 9

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Rapid turn-taking

From Boston.A:
Erm, hang on, I'll check.B:

seamless transitions cannot be modelled with the typically
used silence threshold-based utterance segmentation
there are other turn-taking cues than silence, e.g.

variation of prosodic structure
pitch/loudness
syntax
semantics

Incremental dialogue management Wolfram Wingerath

23.01.2012 10

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Feedback utterances

From Boston on Monday.A:
... uhu ...B:

signal the grounding status without interrupting a turn
can have a high influence on how the speaker continues (e.g.
’Huh?’ vs. ’Mhm.’)
might even be implicitly requested

Incremental dialogue management Wolfram Wingerath

23.01.2012 11

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Interruptions

From Boston on...A:
Sorry, Boston airport is closed!B:

immediately address a part of an utterance, e.g. when
making a choice in a list of alternatives
are useful, when user notification is required with high priority
don’t necessarily lead to a turn-change (e.g. short correction)

Incremental dialogue management Wolfram Wingerath

23.01.2012 12

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Relevant non-linguistic actions (RNLAs)

From Boston on Monday.A:

http://de.wikipedia.org/wiki/Boston

better: non-verbal actions
indicate degree of understanding (non-verbal feedback)

Incremental dialogue management Wolfram Wingerath

23.01.2012 13

http://de.wikipedia.org/wiki/Boston

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Relevant non-linguistic actions (RNLAs)

From Boston on Monday.A:

http://de.wikipedia.org/wiki/Boston

better: non-verbal actions
indicate degree of understanding (non-verbal feedback)

Incremental dialogue management Wolfram Wingerath

23.01.2012 13

http://de.wikipedia.org/wiki/Boston

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Recap: Why incremental dialog management?

From Boston uhm ... on Monday.A:hesitations

From Boston.A:
Erm, hang on, I'll check.B:

From Boston on Monday.A:
... uhu ...B:

From Boston on...A:
Sorry, Boston airport is closed!B:

From Boston on Monday.A:
[Boston lights up on a map]B:

rapid turn-taking

feedback utterances

interruptions

relevant non-linguistic
actions (RNLAs)

incremental dialogue system work on sub-utterances and thus
might

give continuous feedback
react to feedback from the user while the system is speaking
→ appear more natural and efficient

Incremental dialogue management Wolfram Wingerath

23.01.2012 14

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Numbers – an incremental dialogue system [SS09]

Action
Manager

Discourse
modeller

ASR

Semantic
parser

TTS Audio

CAs

Audio

CAs +
Words

Words +
Prosody

CAs +
Entities

CAs +
Words

turn-taking decisions are based on a combination of ASR,
prosody and silence-thresholds
latency of about 200ms (750ms for the non-incremental
version)

Incremental dialogue management Wolfram Wingerath

23.01.2012 15

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Connection between incremental processing modules

IU2

left buffer

processor right buffer

right bufferprocessor

left buffer

IU1
IU1

IU2
IU3

IU2 IU3

module A

module B

incremental units (IUs), i.e. data chunks, are processed from
left to right
output of one module is input of another module

Incremental dialogue management Wolfram Wingerath

23.01.2012 16

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Incremental processing in Numbers

etc. The processing module itself is modelled as
consisting of a Left Buffer (LB), the Processor
proper, and a Right Buffer (RB). An example of
two connected modules is shown in Figure 1. As
IU1 enters the LB of module A, it may be con-
sumed by the processor. The processor may then
produce new IUs, which are posted on the RB
(IU2 in the example). As the example shows, the
modules in the system are connected so that an
IU posted on the RB in one module may be con-
sumed in the LB of another module. One RB
may of course be connected to many other LB’s,
and vice versa, allowing a range of different
network topologies.

Figure 1: Two connected modules.

In the NUMBERS system, information is only

allowed to flow from left to right, which means
that the LB may be regarded as the input buffer
and the RB as the output buffer. However, in the
general model, information may flow in both
directions.

A more concrete example is shown in Figure
2, which illustrates a module that does incre-
mental speech recognition. The IUs consumed
from the LB are audio frames, and the IUs posted
in the RB are the words that are recognised.

Figure 2: Speech recognition as an example of incre-

mental processing.

We identify three different generic module
operations on IUs: update, purge and commit.
First, as an IU is added to the LB, the processor
needs to update its internal state. In the example
above, the speech recogniser has to continuously
add incoming audio frames to its internal state,

and as soon as the recogniser receives enough
audio frames to decide that the word “four” is a
good-enough candidate, the IU holding this word
will be put on the RB (time-point t1). If a proces-
sor only expects IUs that extend the rightmost IU
currently produced, we can follow Wirén (1992)
in saying that it is only left-to-right incremental.
A fully incremental system (which we aim at
here), on the other hand, also allows insertions
and/or revisions.

An example of revision is illustrated at time-
point t2 in Figure 2. As more audio frames are
consumed by the recogniser, the word “four” is
no longer the best candidate for this stretch of
audio. Thus, the module must now revoke the IU
holding the word “four” (marked with a dotted
outline) and add a new IU for the word “forty”.
All other modules consuming these IUs must
now purge them from their own states and pos-
sibly revoke other IUs. By allowing revision, a
module may produce tentative results and thus
make the system more responsive.

As more audio frames are consumed in the ex-
ample above, a new word “five” is identified and
added to the RB (time-point t3). At time-point t4,
no more words are identified, and the module
may decide to commit to the IUs that it has pro-
duced (marked with a darker shade). A commit-
ted IU is guaranteed to not being revoked later,
and can hence potentially be removed from the
processing window of later modules, freeing up
resources.

3 Number dictation: a micro-domain

Building a fully incremental system with a be-
haviour more closely resembling that of human
dialogue participants raises a series of new chal-
lenges. Therefore, in order to make the task more
feasible, we have chosen a very limited domain –
what might be called a micro-domain (cf. Edlund
et al., 2008): the dictation of number sequences.
In this scenario, the user dictates a sequence of
numbers (such as a telephone number or a credit
card number) to the dialogue system. This is a
very common situation in commercial telephone-
based dialogue systems, which however operate
in a non-incremental manner: The user is first
asked to read out the whole number sequence,
which the system then confirms. Should the rec-
ognition be incorrect, the user has to repeat the
whole sequence again. In an incremental version
of this scenario, the system might give continu-
ous feedback (such as acknowledgements and
clarification requests) as the user is reading the

forty five

forty five

four t1

forty
four forty

forty five

forty five

t2

t3

t4

time left buffer processor right buffer

four

IU2

left buffer

processor right buffer

right buffer processor

left buffer

IU1
IU1

IU2
IU3

IU2 IU3

module A

module B

747

three different module operations: update, purge and commit

Incremental dialogue management Wolfram Wingerath

23.01.2012 17

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: Numbers in action

Incremental dialogue management Wolfram Wingerath

23.01.2012 18

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: Numbers in action

res/Numbers_spoken_dialogue_system_-_demo_use.mp4

Incremental dialogue management Wolfram Wingerath

23.01.2012 18

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: prosodic analysis in Numbers

Incremental dialogue management Wolfram Wingerath

23.01.2012 19

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: prosodic analysis in Numbers

res/Numbers_spoken_dialogue_system_-_demo_prosody.mp4

Incremental dialogue management Wolfram Wingerath

23.01.2012 19

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: incremental parsing in Numbers

Incremental dialogue management Wolfram Wingerath

23.01.2012 20

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: incremental parsing in Numbers

res/Numbers_spoken_dialogue_system_-_demo_parsing.mp4

Incremental dialogue management Wolfram Wingerath

23.01.2012 20

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Challenge: the revoke-commit-problem

unstable hypotheses: Hypotheses may change as more of the
utterance is heard (e.g. ’four’ → ’fourty’ → ’fourty-five’)
Problem:
What to do, if a committed hypothesis must be revoked?

internal state has to be updated (covert repair)
if erroneous output has been produced, the mistake has to be
corrected (overt repair)

Incremental dialogue management Wolfram Wingerath

23.01.2012 21

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Solution 1: reducing hypothesis instability

reduce instability of hypotheses by allowing more right context,
i.e. by sending hypotheses delayed

the problem is not solved, it just occurs less frequent
responsiveness is reduced dramatically

Incremental dialogue management Wolfram Wingerath

23.01.2012 22

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Solution 2: ignoring the problem

the system just produces the right output without further
comment

the system has no record of the repair → inconsistencies may
arise, when the user explicitly refers to them

Incremental dialogue management Wolfram Wingerath

23.01.2012 23

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Solution 3: repair the damage

1 update internal state
2 check for erroneous output
3 initiate explicit repair

Incremental dialogue management Wolfram Wingerath

23.01.2012 24

Incremental dialogue management Building an incremental dialogue manager Evaluation References

DIUM – a self-correcting incremental DM [BS11]

{ a < origin=O=?; display(O); U >,
 < dest=Ds=? ; display(Ds); U >,
 < date=Da=? ; display(Da); U >,
 < time=T=? ; display(T); U >,
 < ; showRoutes(a); U >}

ISSUE: ?x.routes(x)
PLAN: ⟨
findout(?x.depart city(x)),
findout(?x.dest city(x)),
findout(?x.depart month(x)),
findout(?x.depart day(x)),
findout(?x.depart hour(x)),
findout(?x.depart minute(x)),
consultDB(?x.routes(x))
⟩
LATEST: ⟨ ⟩ PUBLIC: ⟨ ⟩

topic:
origin

topic:
route

topic:
date

city:?

topic:
time

hour:? minute:
?month:? day:?

topic:
dest

city:?

QUD iQUD DIUM

Figure 2: Three types of information states for modelling a travel timetable domain

In this sense, DiscourseIUs represent at the same
time items that the system can ask for as well as
underspecified projections of expected, future input.
This lets them serve both main goals of any DM,
which are to provide context for new input and to ini-
tiate the production of relevant system behaviour. The
former is achieved by checking whether input IUs can
ground DiscourseIUs, fulfilling expectations about
how the dialogue will proceed. The latter similarly
works by linking DiscourseIUs and other IUs, but
this time by creating appropriate output IUs which
are grounded in specific DiscourseIUs. How these
processes work in detail will be discussed next.

3.1.1 Integrating Input
Initially, DiscourseIUs are not connected to any

input (much like the QUD plan items are unanswered
or iQUD slots are unfilled). Incoming incremental in-
put will trigger update rules whose effect includes the
creation of new grounded-in links between relevant
DiscourseIUs and input. Figure 3 provides an exam-
ple showing a subset of the DIUM network. Here, the
DiscourseIUs have become grounded in input-IUs
representing the spoken user input “from hamburg”,
where the WordIUs represent word hypotheses and
the SemIUs are representations of the content of those
words.

Note that the WordIUs arrive incrementally so
that DiscourseIU topic:origin may become
grounded in “from” possibly before “Hamburg” was
even spoken.

What the illustration does not show is how the
update rules arrive at identifying relevant Discour-
seIU-SemIU pairs. For this, the rules encode a search

proaches, see e. g. (Xu and Rudnicky, 2000; Stede and Schlangen,
2004; Ljunglöf, 2009; Bangalore and Stent, 2009). As we will
discuss presently, it is the easy integration into the general IU
model that makes this form of representation attractive here.

topic:
origin

city:?

from

hamburg

topic:
origin

city:
hamburg

WordIU SemIU DiscourseIU

U: from
hamburg_

Figure 3: Integrating “from hamburg” incrementally.

over the DIUM information state, starting from
a ‘focus’ DiscourseIU, i. e. the most recent one to
link with input. When new input arrives, a narrow
search space is traversed, including only Discour-
seIUs that are dominated by this focus node in the
tree structure. If a single matching pair is found here
(a ‘match’ meaning that the two IUs unified, such as
city:hamburg and city:?), the GRIN link is
created as shown. If more than one pair was found,
the system asks the user to clarify between them (as
discussed below). If no matching pairs are found, the
search is extended to cover the entire information
state (not just the subgraph ‘below’ the focus node).
If this second iteration still yields no matching pair(s),
the system requests more information from the user.
In this way recent input (here, “from”) determines
the appropriate context for the current input (here,
“Hamburg”, which without this focus would be am-
biguous, as there there are two city nodes in this
dialogue model where it could fit). At the same time
this mechanism allows users to over-answer (“from
Hamburg on the third of may”) or switch topic (“from,
uhm hold on, on the third of may”) within a single
utterance.

3.1.2 Producing Output
DM output is similarly produced by adding GRIN

links, this time between DiscourseIUs and newly

50

DIUM stands for IU-based Dialogue Manager
information states as graphs of IUs
can correct committed hypothesis
allows users to over-answer or switch topic

Incremental dialogue management Wolfram Wingerath

23.01.2012 25

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Repairing a committed hypothesis in DIUM I

city:
hamburg city:?

act:
ground

U: from hamburg…

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

city:
hamburg city:?

act:
ground

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

act:
undo

S: highlight hamburg
on screen S: un-highlight hamburg

DialogueActIU
(ground) added,
leads to output,
commited

DialogueActIU(undo) is
added

DiscourseIUs(city:?)
grounded in input

city:
hamburg city:?

act:
ground

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

System checks if
revoked input grounds

commited output…

input hamburg'
revoked, GRIN
removed

S: sorry about that

DialogueActIU(undo) is
realised in two steps

Public Events

Update Rule
Effects

DIUM State

Timeline 0 1 2 3 4 5

…it did, so

Figure 5: Trace of example: revoke clashes with commit, leading to an UNDO, which is realised as an apology.

the commit-status of IUs is recorded. We assume
that if a DialogueActIU has been realised, it will be
committed by the realiser, as shown in step 1 for
act:ground. This status of the IU in turn is acces-
sible to the DM, and can form a trigger in an update
rule. After input to the DM module is revoked, the
update rules check whether there are output IUs, and
if so, what their commit status is. If a clash is de-
tected (an IU needs to be revoked, but is committed),
appropriate steps can be taken; this is what happens
at step 3 in Figure 5.

3.2.2 Undo Dialogue Acts
The reaction to the detected clash takes the form

of adding to the output of the DM a dialogue act
(intention) of a special type, UNDO. This is shown in
step 4 in the example. Here, this act is in turn realised
in two steps: Visual output is updated immediately
(the highlighting is removed), whereas at a later mo-
ment (as the system decided that it held the turn, not
indicated in detail here), additionally an apology is
issued (step 5).

This is only one strategy for realising such UNDOs,
though. Determining the best strategy for doing so is
an empirical question that we have not turned to yet
and leave for future work; here we wanted to lay the
groundwork needed to explore this question. Strate-
gies to test in an implemented system might come
from studies on human repair strategies. For example,
speakers tend to self-repair as soon as possible (Lev-
elt, 1983) and different types of repair are associated
with different costs, determined by modality as well
as who initiates it (Clark and Brennan, 1991). In dia-
logue systems, (Skantze and Hjalmarsson, 2010) also

offer some ideas for how a system might incremen-
tally produce overt and covert self-repairs (however
of spoken output only).

4 Implementation

We have implemented the DIUM approach in a small
but fully functional example system, using the In-
proTK framework (Schlangen et al., 2010). Using
DIUM and otherwise comparable components, the
implemented system achieves the same coverage of
phenomena relevant to incremental processing as the
iQUD system, namely being able to react to user hes-
itations by producing continuer feedback utterances,
and showing RNLAs. Additionally, DIUM is able to
handle revoke-commit-clashes in the way described
above; this adds occasional self-corrections of the
type described above to the conversational flow.

While the initial domain in which we tested DIUM
was the travel domain described here, we have also
realised the puzzle domain described in (Buß and
Schlangen, 2010) in this new approach. It proved to
be straightforward to encode the expected dialogue
shapes in the DiscourseIU graphs used by DIUM.
Moreover, only very few changes to the DIUM-rule
set were necessary; in combination, this shows that a
certain domain-independence is given by the DIUM
approach.

5 Further Directions

In this paper, we have focussed on how the approach
to dialogue management followed in DIUM helps
tackle the revoke-commit-problem. We are currently
exploring further possible advantages that the graph-

52

Incremental dialogue management Wolfram Wingerath

23.01.2012 26

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Repairing a committed hypothesis in DIUM II

city:
hamburg city:?

act:
ground

U: from hamburg…

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

city:
hamburg city:?

act:
ground

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

act:
undo

S: highlight hamburg
on screen S: un-highlight hamburg

DialogueActIU
(ground) added,
leads to output,
commited

DialogueActIU(undo) is
added

DiscourseIUs(city:?)
grounded in input

city:
hamburg city:?

act:
ground

topic:
origin

topic:
origin

SemIU DiscourseIU DialogueActIU

System checks if
revoked input grounds

commited output…

input hamburg'
revoked, GRIN
removed

S: sorry about that

DialogueActIU(undo) is
realised in two steps

Public Events

Update Rule
Effects

DIUM State

Timeline 0 1 2 3 4 5

…it did, so

Figure 5: Trace of example: revoke clashes with commit, leading to an UNDO, which is realised as an apology.

the commit-status of IUs is recorded. We assume
that if a DialogueActIU has been realised, it will be
committed by the realiser, as shown in step 1 for
act:ground. This status of the IU in turn is acces-
sible to the DM, and can form a trigger in an update
rule. After input to the DM module is revoked, the
update rules check whether there are output IUs, and
if so, what their commit status is. If a clash is de-
tected (an IU needs to be revoked, but is committed),
appropriate steps can be taken; this is what happens
at step 3 in Figure 5.

3.2.2 Undo Dialogue Acts
The reaction to the detected clash takes the form

of adding to the output of the DM a dialogue act
(intention) of a special type, UNDO. This is shown in
step 4 in the example. Here, this act is in turn realised
in two steps: Visual output is updated immediately
(the highlighting is removed), whereas at a later mo-
ment (as the system decided that it held the turn, not
indicated in detail here), additionally an apology is
issued (step 5).

This is only one strategy for realising such UNDOs,
though. Determining the best strategy for doing so is
an empirical question that we have not turned to yet
and leave for future work; here we wanted to lay the
groundwork needed to explore this question. Strate-
gies to test in an implemented system might come
from studies on human repair strategies. For example,
speakers tend to self-repair as soon as possible (Lev-
elt, 1983) and different types of repair are associated
with different costs, determined by modality as well
as who initiates it (Clark and Brennan, 1991). In dia-
logue systems, (Skantze and Hjalmarsson, 2010) also

offer some ideas for how a system might incremen-
tally produce overt and covert self-repairs (however
of spoken output only).

4 Implementation

We have implemented the DIUM approach in a small
but fully functional example system, using the In-
proTK framework (Schlangen et al., 2010). Using
DIUM and otherwise comparable components, the
implemented system achieves the same coverage of
phenomena relevant to incremental processing as the
iQUD system, namely being able to react to user hes-
itations by producing continuer feedback utterances,
and showing RNLAs. Additionally, DIUM is able to
handle revoke-commit-clashes in the way described
above; this adds occasional self-corrections of the
type described above to the conversational flow.

While the initial domain in which we tested DIUM
was the travel domain described here, we have also
realised the puzzle domain described in (Buß and
Schlangen, 2010) in this new approach. It proved to
be straightforward to encode the expected dialogue
shapes in the DiscourseIU graphs used by DIUM.
Moreover, only very few changes to the DIUM-rule
set were necessary; in combination, this shows that a
certain domain-independence is given by the DIUM
approach.

5 Further Directions

In this paper, we have focussed on how the approach
to dialogue management followed in DIUM helps
tackle the revoke-commit-problem. We are currently
exploring further possible advantages that the graph-

52

Incremental dialogue management Wolfram Wingerath

23.01.2012 27

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Building an incremental dialogue manager

1 Incremental dialogue management – basics

2 Building an incremental dialogue manager

Upgrade – adding a reactive layer

Rebuild – incrementalising the dialogue manager

Incremental speech generation in DEAL

3 Evaluating incremental processors

4 References

Incremental dialogue management Wolfram Wingerath

23.01.2012 28

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Upgrade – adding a reactive layer

dialogue manager still works on full utterances only
an additional component computes reactions from
sub-utterance information
attractive, because tried-and-tested traditional dialogue
management paradigms can be used
may improve the system, e.g. plausible feedback utterances
can be produced

Incremental dialogue management Wolfram Wingerath

23.01.2012 29

Incremental dialogue management Building an incremental dialogue manager Evaluation References

But. . .

Take the green block ...A:
Uhu.B:

... and place it in the ...A:
Yeah?B:

... middle of the board.A:
OK.B:

I'm sorry, what did you say?B:

reactive layer and main dialogue manager can get out of sync
responsiveness remains low

Incremental dialogue management Wolfram Wingerath

23.01.2012 30

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Rebuild – incrementalising the dialogue manager

a new context representation is needed that
can be updated with partial information
tracks grounding state

Incremental dialogue management Wolfram Wingerath

23.01.2012 31

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Incremental speech generation in DEAL

User VAD

Vocalizer

Speech

Speech
Interpreter

Word

ContextualizerActionManager

Utterance
Segment

Wizard

system not fully functional yet → wizard as replacement for
automatic speech recognition (ASR)

Incremental dialogue management Wolfram Wingerath

23.01.2012 32

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: non-incremental version

Incremental dialogue management Wolfram Wingerath

23.01.2012 33

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: non-incremental version

res/non-incremental_speech_production_in_Deal_-_demo_cut_cut_withSound.mp4

Incremental dialogue management Wolfram Wingerath

23.01.2012 33

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: incremental version

Incremental dialogue management Wolfram Wingerath

23.01.2012 34

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Demo: incremental version

res/incremental_speech_production_in_Deal_-_demo_cut_cut_withSound.mp4

Incremental dialogue management Wolfram Wingerath

23.01.2012 34

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Evaluating incremental processors

1 Incremental dialogue management – basics

2 Building an incremental dialogue manager

3 Evaluating incremental processors

Two kinds of gold standards

Metrics

Optimising incremental processors

4 References

Incremental dialogue management Wolfram Wingerath

23.01.2012 35

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Evaluating incremental processors [BBS11]

incremental processors
generate partial results given partial input
are strongly interconnected

evaluating a given processor means not only comparing, but
measuring the similarity between its actual and its ideal
output (gold standard)

Incremental dialogue management Wolfram Wingerath

23.01.2012 36

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Two kinds of gold standards

the questions are:
What is the ideal output for a given input?
How can it be generated?

Incremental dialogue management Wolfram Wingerath

23.01.2012 37

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Incremental gold standards

useful when available
often available for processors like ASR

Incremental dialogue management Wolfram Wingerath

23.01.2012 38

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Non-incremental gold standards IEVALUATION AND OPTIMISATION OF INCREMENTAL PROCESSORS

Figure 4: Four subsequent outputs for an incremental semantics component as input words are being processed.

the transliteration of the input (either done manually, or automatically with an ASR). We also need the link
between input increments and output increments which in this case means that we need an alignment between
words and audio signal. Again, this is often provided by ASR evaluation resources, and if not, can be produced
automatically via forced alignment.

In Figure 2 (left side), an aligned gold standard sequence is shown in the top row (labelled “gold”). We can
see this as the final state which our incremental processor should ideally reach; but what about the intermediate
stages? These can be created from the final state by going backwards through the input IUs and removing
the current rightmost output IU whenever we go past the input IU that marks its beginning (e. g. at time 10
we would remove “Kreuz”, at time 8 “das”, and so on.) Following this method, the resulting gold standard
demands that an output increment be created as soon as the first corresponding input increment has been
consumed; e.g., a word-IU should be produced by an ASR as soon as the first audio frame that is part of the
word in the gold standard is received. While this will often be impossible to achieve, it provides us with a
well-defined upper boundary of the performance that can be expected from an incremental processor. We call
the resulting intermediate stages the current gold standard relative to a given input increment.

This method is directly transferable to other kinds of input and output. Figure 4 shows the incremental
growth of a network representing a frame-semantics3; this time the input increments (in this case words, not bits
of audio) are shown in the bottom row, and the grounded-in links which relate output to input are represented
by arrows. (As the networks in this example are more complex, steps are drawn next to each other and not in
rows as in the previous figures.) If we have available a corpus of utterances annotated with their final semantics
together with information about which words are responsible for which bits of that final semantics, we can
use the same method to go backwards through the input IUs and create the full corresponding set of IU states
for partial inputs. However, such resources are rare, as making the link between what should be known based
on partial input may not even be easy for human annotators (but see (Gallo et al. 2007) for an effort to create
such a resource). Typically, only the final correct semantics is available, with no indication of how to create it
(see e. g. the ATIS corpus as used in (He and Young 2005)). In such a case, the intermediate outputs must be
approximated from the final state; we will explain how in the next section.

4.1.2 EVALUATION WITH NON-INCREMENTAL GOLD STANDARDS

Figure 5 shows a situation in which a fine-grained link between input and output increments cannot be recovered
from the available evaluation resource. We then simply assume that all output IUs are grounded in all input IUs,
which is the equivalent of saying that every input increment contributed to every output increment. The figure
only shows the final state, we again derive the incremental steps from this by going backwards through the
input IUs, as above. However, no desired output will disappear from the gold standard because every output
is already grounded in the very first input increment (as we don’t know what input increment some output
increment logically depends on). Viewed in the direction of time this means that the gold standard is demanding
that all output increments be known from the beginning; this is clearly an unreasonable assumption, but as it is
kept constant, it allows to measure the gradual approach towards this ideal.

Such a representation then of course gives us less information, and hence an evaluation based on it can
only give a coarse-grained insight into the processor’s performance. If we assume that in reality not all output
information is available immediately, the best a processor can do against such a gold standard is that it fares

3. In the example given, the slot filling for “modus” depends on “bitte” and all following words. This is because the modus could
easily turn out to be e. g. “sarcastic” if some other word had been added later on.

7

it is often hard to find an alignment of ideal output and given
input
example: typically, only the final correct semantics is available

Incremental dialogue management Wolfram Wingerath

23.01.2012 39

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Non-incremental gold standards II

BAUMANN, BUSS AND SCHLANGEN

Figure 5: A semantic frame represented in the IU framework without specific dependencies between slots and
words.

better and better as more input comes in, and as more and more of what will be the final representation is
recovered. Likewise, we loose the ability to make fine-grained statements about the timeliness of each output
increment.

There is a third common case that can be subsumed under this one. Sometimes one may want to build
a processor that is only incremental on the input side, producing for each input increment an output of the
same type as it would for a complete, non-incremental input. An example for this would be a processor that
predicts a ‘complete’ utterance meaning based on utterance prefixes. (This has recently been explored by Sagae
et al. (2009), Schlangen et al. (2009) and Heintze et al. (2010).) In IU-terms, the output IU is grounded in all
input IUs and hence such a processor can be evaluated against non-incremental gold standards without loss of
information.

4.2 Metrics for Evaluation of Incremental Processors

We now discuss metrics that quantify differences between actual and ideal output (i. e. the gold standard).4

We identify three categories of metrics: Overall similarity metrics (measures of equality with or similarity
to a gold standard), timing metrics (measures of the timing of relevant phenomena w. r. t. the gold standard)
and diachronic metrics (measuring change of the incremental hypotheses over time), which we will look at in
turn. These metrics illuminate the different aspects of incremental performance of a processor, but they are
not completely independent of each other (e. g. timing can only be measured if something is correct, absolute
correctness entails perfect timing and evolution, etc.). Interrelations of metrics will be further discussed in
Section 4.3.

4.2.1 SIMILARITY METRICS

Similarity metrics compare what should ideally be known at some point in time to what is known at that point.
The only difference that incremental evaluation brings with it is that the comparison is not done only once,
for the final output given complete input, but also for all stages that lead to this final output. An incremental
similarity evaluation hence will result in a sequence of results per full input token (e. g. per utterance), where
non-incremental similarity evaluation yields only one. To be able to evaluate after every input increment, we
need a gold standard that covers the ideal outputs after every input increment, as explained in the previous
subsection. Figure 6 shows such an incremental gold standard and the IU network (for the same utterance as in
Figure 2) produced by an incremental ASR.

The most basic measure of similarity is correctness: We simply count how often the output IU network
is identical to the current gold standard and divide this by the total number of increments. In Figure 6, the output
is correct four times, resulting in a correctness of 40 % (ignoring the empty, trivially correct hypotheses
1 and 2 in the calculation). Incremental processors often lag behind in producing output for recent input. If
this delay (∆) is known in advance, we can take it into account, defining a delay-discounted correctness

4. When describing our metrics in the following subsections, we will not give fully formalised definitions. First, we believe that the
chosen level of abstraction communicates our ideas in a flexible, yet precise manner that allows reproduction and transfer to different
situations. Secondly, a full formalisation of our metrics would first require the development of a formalism that would need to be
capable of expressing subtle details about incremental processing (including revocation of previously output hypotheses, concurrency
of processing components and possible delays in message passing). This would be, and hopefully will be, the topic of another paper.

8

unreasonable assumption: complete input is known from the
start
gradual approach towards the gold standard can be
measured
timeliness cannot be measured well

Incremental dialogue management Wolfram Wingerath

23.01.2012 40

Incremental dialogue management Building an incremental dialogue manager Evaluation References

The Pentomino puzzle domain

an instructor tells a follower (or the wizard) how to place the
pieces

Incremental dialogue management Wolfram Wingerath

23.01.2012 41

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Metrics

three dimensions for output evaluation:
content
timing
evolution of incremental results

Incremental dialogue management Wolfram Wingerath

23.01.2012 42

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Similarity metrics

measure similarity of output w.r.t. a gold standard
(delay-discounted) correctness: proportion of ideal
intermediate results
p-correctness: proportion of results that are a prefix of their
gold standard

Incremental dialogue management Wolfram Wingerath

23.01.2012 43

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Timing metrics

measure timing of output w.r.t. a gold standard
FO: first occurrence of an output increment
FD: final decision for an output increment

Incremental dialogue management Wolfram Wingerath

23.01.2012 44

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Diachronic metrics

measure change of the incremental hypotheses over time
edit overhead (EO): proportion of unnecessary edits
correction time: (average) difference between FO and FD
→ a confidence for a hypothesis can be derived from its age

Incremental dialogue management Wolfram Wingerath

23.01.2012 45

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Optimising incremental processors

timing ↔ diachronic metrics:
allow more right context → better EO, but worse timing
hypothesis smoothing: only IUs of a certain age are passed
on to the next processor

Incremental dialogue management Wolfram Wingerath

23.01.2012 46

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Short recap

Why build incremental dialogue systems?
There are some cool incremental dialogue systems already!
new challenges:

self-correction
evaluation
. . .

Incremental dialogue management Wolfram Wingerath

23.01.2012 47

Incremental dialogue management Building an incremental dialogue manager Evaluation References

References

1 Incremental dialogue management – basics

2 Building an incremental dialogue manager

3 Evaluating incremental processors

4 References

Incremental dialogue management Wolfram Wingerath

23.01.2012 48

Incremental dialogue management Building an incremental dialogue manager Evaluation References

References I

Buß, Okko ; Baumann, Timo ; Schlangen, David:
Collaborating on utterances with a spoken dialogue system using an ISU-based
approach to incremental dialogue management.
In: Proceedings of the 11th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 2010

Baumann, Timo ; Buß, Okko ; Schlangen, David:
Evaluation and Optimisation of Incremental Processors.
In: Dialogue & Discourse 2 (1) (2011)

Buß, Okko ; Schlangen, David:
Modelling Sub-Utterance Phenomena in Spoken Dialogue Systems.
In: Aspects of Semantics and Pragmatics of Dialogue. SemDial 2010, 14th
Workshop on the Semantics and Pragmatics of Dialogue.
2010

Buß, Okko ; Schlangen, David:
DIUM – An Incremental Dialogue Manager That Can Produce Self-Corrections.
In: Proceedings of the 15th Workshop on the Semantics and Pragmatics of
Dialogue, 2011

Incremental dialogue management Wolfram Wingerath

23.01.2012 49

Incremental dialogue management Building an incremental dialogue manager Evaluation References

References II

Skantze, Gabriel ; Hjalmarsson, Anna:
Towards incremental speech generation in dialogue systems.
In: Proceedings of the 11th Annual Meeting of the Special Interest Group on
Discourse and Dialogue, 2010

Skantze, Gabriel ; Schlangen, David:
Incremental dialogue processing in a micro-domain.
In: In Proceedings of EACL-09, 2009

Incremental dialogue management Wolfram Wingerath

23.01.2012 50

Incremental dialogue management Building an incremental dialogue manager Evaluation References

Thanks for your attention!

Incremental dialogue management Wolfram Wingerath

23.01.2012 51

	Incremental dialogue management – basics
	Utterances in traditional dialogue systems
	Sub-utterance phenomena
	Numbers – an incremental dialogue system
	Challenge: the revoke-commit-problem

	Building an incremental dialogue manager
	Upgrade – adding a reactive layer
	Rebuild – incrementalising the dialogue manager
	Incremental speech generation in DEAL

	Evaluating incremental processors
	Two kinds of gold standards
	Metrics
	Optimising incremental processors

	References

