Semantic frames

Ahmed ElShinawi

Outline

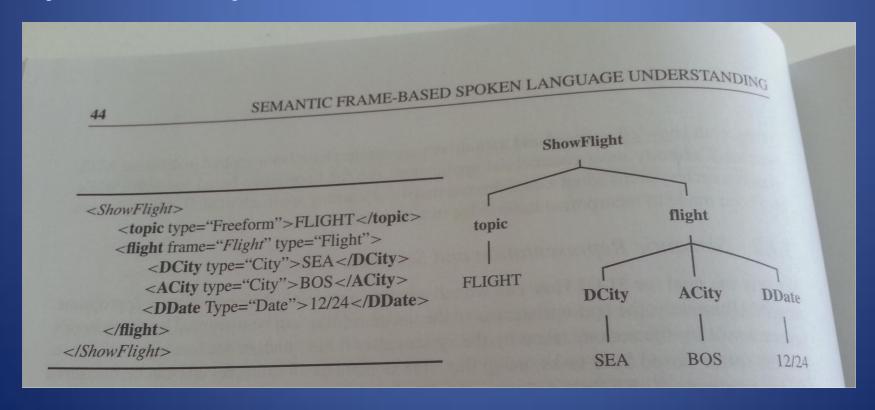
- Structure of Semantic frames
- ATIS system
- Technical challenges of SLU
- Knowledge based approach
- Data driven approach System
- Drawbacks

Semantic Frame

- Semantic frame comes from frame semantics (a theory that relates linguistic semantics to encyclopedic knowledge developed by Charles J. Fillmore)
- A semantic frame is defined as a coherent structure of concepts that are related such that without knowledge of all of them, one does not have complete knowledge of one of the either.
- Idea is that one cannot understand the meaning of a single word without access to all the essential knowledge that relates to that word. For example observe the connection presented in this *commercial transaction frame*:

VERB	BUYER	GOODS	SELLER	MONEY	PLACE
buy	subject	object	from	for	at
sell	to				
cost	indirect object	subject		object	at
spend	subject	on		object	at

Continue: semantic frame


- We observe that a word activates, or evokes, a semantic frame of encyclopedic meaning relating to the specific concept it refers to.
- Words specify a certain perspective in which the frame is viewed.
- Take a minute to come up with words frame relations yourself (Group Work)

Characteristics of frame based SLU

- Limited to specific domain
- Structure of semantic space can be represented by semantic frames
- Semantic frames elements are called slots
- Ultimate goal of frame based slu is to choose the correct semantic frame for an utterance

History & Application

- Started in the 1970s in DARPA speech understanding research (SUR)
- In 1990s outcome of DARPA research programmes, AT&T, MIT, CMU was the ATIS (air travel information system)
- Example: Show me the flights from Seattle to Boston on Christmas Eve

Technical Challenges

- SLU is focused only on specific application domain thus the semantics are defined accordingly, although it might make a problem easier to solve, there are challenges:
 - Extra-grammaticality
 - Disfluencies
 - Speech Recognition errors
 - Out of domain utterances
- Robustness is an important feature in SLU for (spontaneous conversations)

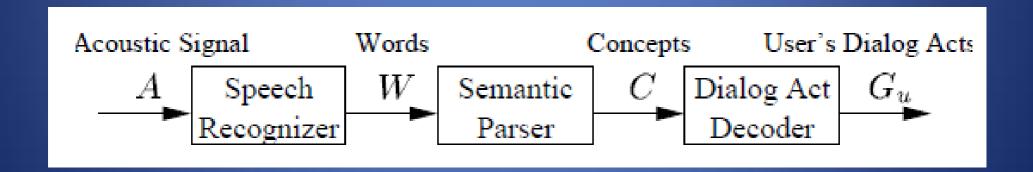
Evaluation Metrics

- A variety of Metrics are used in the evaluation of frame based SLU, some of the commonly used Metrics are:
- Slot Error Rate (SER):
 - SER = #of inserted/deleted/substituted slots

 # of slots in the reference semantic representations
- Sentence/Utterance Level Semantic Accuracy (SLSA):
 - SLSA = #Sentence assigned to correct semantic representation

 # of Sentences

Knowledge-based approach


- Knowledge based approaches are helpful in modeling domain-specific language e.g. MIT TINA, SRI Gemini
- CMU Phoenix slu system (developed in 1991) models the domain dependent semantics with a semantic grammar
 - Slots are filled by RTN (Recursive Transition Networks) that specifies a pattern for filling (template matching)
 - Phoenix performs a search process on all active frames & return the single best parse that covered most slots
 discovered by the slot-nets
- Knowledge-based approaches often requires the exact matching of input sentences to the grammar rules
 - Grammar complexity, for example Phoenix grammar was very complicated, it contained 13k grammar rules
 - Problem with such approach that it becomes not robust to ASR errors

Drawbacks of knowledge based system

- Grammar development is error prone because its highly domain specific
- Grammar needs to evolve over time new features and scenarios
- Maintaining such systems require expert's involvement
- Grammar is difficult to scale up in sense of allowing users to volunteer multiple pieces of information in a single utterance.

Data Driven Approaches

- The statistical frame-based approach is often previewed as a pattern recognition problem
 - Yulan He and S. Young, "A data-driven spoken language understanding system," *Automatic Speech Recognition and Understanding*, 2003. ASRU '03. 2003 IEEE Workshop on, 2003, pp. 583-588.
 doi: 10.1109/ASRU.2003.1318505
 - speech recognizer, a semantic parser, and a dialog act decoder

System Architecture

Traditionally, the SLU problem is solved in three stages. First recognize the underlying word string W from each input acoustic signal A, i.e.

$$\hat{W} = \underset{W}{\operatorname{argmax}} P(W|A) = \underset{W}{\operatorname{argmax}} P(A|W)P(W) \tag{1}$$

then map the recognized word string \hat{W} into a set of semantic concepts C

$$\hat{C} = \underset{C}{\operatorname{argmax}} P(C|\hat{W}) \tag{2}$$

and finally determine the user's dialog acts or goals by solving

$$\hat{G_u} = \underset{G_u}{\operatorname{argmax}} P(G_u | \hat{C}) \tag{3}$$

Advantages & Drawbacks

- Advantages :
 - Robust to noise

- Drawbacks:
 - Data sparsity
 - Requirements of large amount of labeled data

Summary

- Semantic frame
- Knowledge based approach
- Data driven approach
- Drawbacks

Refrences

- https://www.princeton.edu/~adele/LIN_106:_UCB_files/Miriam-Petruck-frames.pdf
- http://www.icsi.berkeley.edu/pubs/ai/framesemantics76.pdf
- https://framenet.icsi.berkeley.edu/fndrupal/
- https://www.researchgate.net/publication/3322032_Spoken_language_understanding
- http://mi.eng.cam.ac.uk/~sjy/papers/heyo03b.pdf
- https://www.sri.com/sites/default/files/publications/spoken_lanugage_understanding.pdf