

A hybrid approach to dialogue management based on probabilistic rules

Erik Fließwasser

University of Hamburg Faculty of Mathematics, Informatics and Natural Sciences Department of Informatics

15th June 2016

MIN Faculty Department of Informatics

A hybrid approach to dialogue management

Outline

1. Motivation

2. Probabilistic rules

3. Evaluation

4. Conclusion

Motivation

Motivation

Dialogue Management [1]

Proper solutions:

- Hand-crafted / rule-based models (e.g. ISU)
- Statistical models (e.g. POMDP)

Motivation

Motivation

Bottlenecks

- Hand-crafted / rule-based models
 - assume complete observability
 - no errors and uncertainty
 - knowledge base has to be completely specified beforehand

Statistical models

- depend on large amount of data leading to high costs for data acquisition
- have a huge state space

Motivation

Motivation

Target: Combine advantages into a hybrid system

- Hand-crafted / rule-based models
 - precisely tailored for various behaviour
- Statistical models
 - handle errors and uncertainty

Approach: Pierre Lison, 2014, "A hybrid approach to dialogue management based on **probabilistic rules**" [2]

Probabilistic rules

MIN Faculty Department of Informatics

A hybrid approach to dialogue management

Probabilistic rules

Dialogue Management [1]

Probabilistic rules

Dialogue Management [1]

► Dialogue Context Model → **Probability rules**

Probabilistic rules

Dialogue Management [1]

- ► Dialogue Context Model → **Probability rules**
- ► Dialogue Control → Utility rules

Probabilistic rules - Probability rules

A hybrid approach to dialogue management

Probability rules

∀x,

if (c_1) then $\begin{cases}
P(E_1 = e_{1,1}) = \theta_{1,1} \\
\dots \\
P(E_1 = e_{1,m_1}) = \theta_{1,m_1}
\end{cases}$ else if (c_2) then

$$\begin{cases} P(E_2 = e_{2,1}) = \theta_{2,1} \\ \dots \\ P(E_2 = e_{2,m_2}) = \theta_{2,m_2} \\ \dots \end{cases}$$

- c_i: Condition
- E_i: Random variable
- e_{i,j}: Effect
- $\theta_{i,j}$: Probability

Conditions

- Input variables (ASR/SLU or internal state)
- Predicate logic (e.g. conjunction) and binary relations (e.g. equality)
- Free variables (universally quantified)

Example:

$$\forall x, \quad \text{if} (a_u = RequestAction(x) \land a_m = Do(x)) \text{ then} \\ \left\{ P(a'_u = Confirm) = 0.2 \\ \text{else if} (a_u \neq RequestAction(x) \land a_m = Do(x)) \text{ then} \\ \left\{ \begin{array}{l} P(a'_u = Disconfirm) = 0.5 \\ P(a'_u = RequestAction(Stop)) = 0.3 \end{array} \right. \end{cases}$$

Effects

An effect assigns values to a set of output variables

• e.g.,
$$e_{i,j} = \{a'_u = x\}$$

► Each effect is assigned a probability $P(E_i = e_{i,j}) = \theta_{i,j}$ Example:

$$\forall x, \quad \text{if} (a_u = RequestAction(x) \land a_m = Do(x)) \text{ then} \\ \left\{ P(a'_u = Confirm) = 0.2 \\ \text{else if} (a_u \neq RequestAction(x) \land a_m = Do(x)) \text{ then} \\ \left\{ \begin{array}{l} P(a'_u = Disconfirm) = 0.5 \\ P(a'_u = RequestAction(Stop)) = 0.3 \end{array} \right. \end{cases}$$

[2]

Instantiation

 $\begin{array}{ll} \mathbf{r_1:} & \forall x, \\ & \mathbf{if} \; (a_u\!=\!x \wedge a_m\!=\!AskRepeat) \; \mathbf{then} \\ & \left\{ P(a_u'\!=\!x) = 0.9 \right. \end{array}$

$$\begin{array}{ll} \textbf{r_2:} & \forall x, \\ \textbf{if} \ (a_u = RequestAction(x) \land a_m = Do(x)) \ \textbf{then} \\ & \left\{ P(a_u' = Confirm) = 0.2 \\ \textbf{else if} \ (a_u \neq RequestAction(x) \land a_m = Do(x)) \ \textbf{then} \\ & \left\{ P(a_u' = Disconfirm) = 0.5 \\ P(a_u' = RequestAction(Stop)) = 0.3 \end{array} \right. \end{array}$$

input	probability	output
variables	rules	variables

< ロ > < 母 > < 三 > < 三 > の Q ()

Probabilistic rules

Dialogue Management [1]

- ► Dialogue Context Model → **Probability rules**
- ► Dialogue Control → Utility rules

Utility rules

∀x,

if (c_1) then $\begin{cases} U_1(d_{1,1}) = \theta_{1,1} \\ \dots \\ U_1(d_{1,m_1}) = \theta_{1,m_1} \end{cases}$ else if (c_2) then $\begin{cases} U_2(d_{2,1}) = \theta_{2,1} \\ \dots \\ U_2(d_{2,m_2}) = \theta_{2,m_2} \end{cases}$

. . .

c_i: Condition

U_i: Utility table

 $d_{i,j}$: Decision

 $\theta_{i,j}$: Utility value

Instantiation

$$\begin{aligned} \mathbf{r_3:} & \forall x, \\ & \mathbf{if} \ (a_u = RequestAction(x)) \ \mathbf{then} \\ & \left\{ U(a'_m = Do(x)) = 5 \\ & \mathbf{else} \\ & \left\{ U(a'_m = Do(x)) = -5 \right. \end{aligned}$$

 $\begin{array}{l} \textbf{r4:} & \forall x, \\ & \textbf{if} \; (a_u \!=\! RequestAction(x) \lor a_u \!=\! Ask(x)) \; \textbf{then} \\ & \left\{ U(a_m' \!=\! AskRepeat) = 1 \right. \end{array}$

イロト イロト イヨト イロト うへの

Parameter estimation

Probabilistic rule structure is hand-crafted by system designer.

Parameters like effect probabilities and utilities are **estimated** by learning:

- Supervised learning (Wizard-of-Oz data)
- Reinforcement learning (real or simulated interactions)

In both cases, Bayesian inference to estimate best values for parameters

Evaluation

Test scenario

Tasks:

- 1. Walk to the other end of the table considering walls
- 2. Pick up a certain object
- 3. Bring the object back to the start point
- 4. Release the object on the landmark

[2]

Evaluation - Comparison

A hybrid approach to dialogue management

Evaluation

Comparison

- Finite-state automation
- Factored statistical model
- Probabilistic rule model

Evaluation

Metrics

Objective

O2: Average number of confirmation requests per dialogue

62. How often did you feel that the re

Subjective

S3: How often did you feel that the robot asked you to repeat or confirm your instructions?

[2]

イロト イロト イヨト イヨト 少々で

Evaluation

Results

- 15 metrics in total (9 objective, 6 subjective)
- 7 metrics show significantly higher results for the probabilistic rule model
- ▶ 6 metrics show higher results for the probabilistic model

Evaluation

Learning Curve [2]

Conclusion

Conclusion

Probabilistic rule model...

- …combines advantages of hand-crafted and statistical model
- …uses probability rules for dialogue context model
- ...uses utility rules for dialogue control
- ...partitions the state space by conditions
- …has distributions over possible effects
- ...uses parameters estimated by learning
- ...outperforms hand-crafted and statistical model in the (simple) test scenario

Conclusion

[1] Kristiina Jokinen and Michael F. McTear.

Spoken Dialogue Systems, volume 5 of Synthesis Lectures on Human Language Technologies. Morgan & Claypool, San Rafael, CA, 2010.

[2] Pierre Lison.

A hybrid approach to dialogue management based on probabilistic rules.

Comput. Speech Lang., 34(1):232–255, November 2015.