Natural Language Generation Generating Referring Expressions

Katinka Böhm

SPEECH TECHNOLOGY
UNIVERSITÄT HAMBURG, DEPARTMENT OF INFORMATICS

Microplanning

Two-stage model of a NLG system

- Document Planner what to say text content and structure
- Surface Realizer how to say it sentence-level syntax and morphology

Microplanner: fine-grained decisions

- Lexicalisation particular words, syntactic constructs
- Aggregation distribution of messages across sentences (order, length, number of sentences)
- Referring Expression Generation (REG/GRE) –
 phrases to use to identify particular domain entities

REG/GRE Problem

(Dale, Reiter 1995)

Domain of objects

 $D = \{ d1, d2, d3 \}$

Attributes

A = { type, gender, shape, clothing, position,...}

Goal: find attribute-value pairs (**property**), so that the conjunction is true of the target but not of any of the other domain objects

Can you describe d1?

As a normal sentence? As a set of attribute-value pairs?

REG/GRE Problem

(Dale, Reiter 1995)

Domain of objects

 $D = \{ d1, d2, d3 \}$

Attributes

A = { type, gender, shape, clothing, position,...}

Goal: find attribute-value pairs (**property**), so that the conjunction is true of the target but not of any of the other domain objects

- 1. {<gender, man>, <clothing, wearing suit>}
- 2. {<gender, man>, <position, left>}
- 3. {<gender, man>, <clothing, wearing suit>,<position, left>}

Reference Resolution

- What entity is being referred to?
 - one referent
 - multiple distractors
- referring expression

- paradigm: distinguishing description = "definite description whose primary purpose it is to identify the referent and rule out distractors"
- Coreference resolution linking expressions that refer to the same entity

{Victoria Chen, Chief Financial Officer of Megabucks Banking Corp since 1994, her, the 37-year-old, the Denver-based financial-services company's president, She}

Pronominal anaphora resolution - finding the antecedent for a pronoun

It has been ten years since she came to Megabucks.

Incremental Algorithm

- most influential basic algorithm (1995)
- "preference" for attributes (fixed order) → based on experimental data
- polynomial complexity

```
r referent
                                                                                domain
                                                                             Pref list of ordered attributes
      Incremental Algorithm (\{r\}, D, Pref)
      L \leftarrow \emptyset
                                                           referring expression
      C \leftarrow D - \{r\}
      for each A_i in list Pref do
                                                         list of open distractors
           V = \mathsf{Value}(r, A_i)
5.
           if C \cap \mathsf{RulesOut}(\langle A_i, V \rangle) \neq \emptyset
6.
           then L \leftarrow L \cup \{\langle A_i, V \rangle\}
                 C \leftarrow C - \mathsf{RulesOut}(\langle A_i, V \rangle)
8.
9.
           endif
           if C = \emptyset
10.
11.
           then return L
12.
           endif
                                                           RulesOut(<.,.>) returns the set of
      return failure }
13.
                                                           objects which have a different value for that
                                                           attribute than the referent
```

Too simple?

Which simplifications are made to the REG task?

What limitations does the IA have? Why is the IA not suitable for interactive tasks and dialogue systems?

- produces reference to a single referent (no sets of objects)
- predefined simple attributes
- no backtracking if a better description is found, includes redundant properties (is this a problem?)
- Closed World Assumption
- no vague property descriptions (height = large vs. height = 180cm)
- no relations between objects "The girl left to the woman in the dress."
- objects are assumed to be equally salient
- no multimodal reference (intonation, gaze, gestures)

Dialogue Systems

Produce human-like referring expressions

- Simplicity is not everything
 - negations, relations, quantifiers
- Complex content does not require a complex form
 - break down information into smaller chunks over dialogue turns
- Overspecification
 - humans tend to overspecify
- Favorize fixed attributes (colour) over relative attributes (size)
- Include different modalities
 - spatial visual context, movement

Taking the adressee into account (adressee modelling)

- Lexical Entrainment (Alignment)
 - adapt to the dialogue partners' preferences and to the domain setting
 - frequency gives information about preference → requires data
 - dialogue history
- Account for differing domain views

Referability

- 1. Form of reference (deictic pronoun "that one" or full description "the chair with the armrests")
- 2. Attribute Selection
- 3. Surface Realization

Experiments: How do people refer to objects?

- TUNA Corpus
 - Furniture Domain colour
 - People Domain wearing glasses
- Experiments on Adaption and Interaction in Interactive Setting
 - Inherent preferences for certain properties in a given domain
 - Tendency to adapt to references produced by the dialogue partner

Experiment I

how adaption influences attribute selection preferred vs. dispreferred

find referent

create referring expression

Results: preferred attributes used more often, dispreferred attributes used significantly more if primed, more alignment in the furniture domain

Experiment II

priming of overspecification

- overspecified referring expressions in the prime turn
 - two attributes in addition to the type attribute
 - one preferred and one dispreferred
 - both sufficient to uniquely describe the referent

Results: over 50% chose overspecification after being primed (compared to 10% of overspecifications in Experiment I)

Collaborative Models in Situated Dialogue

[Fang et al., 2014]

- assumption: perceptual basis between human and agent (dialogue system) differs
- generate multiple small expressions that gradually lead to the target object
- reinforcement learning through human feedback

Collaborative Models in Situated Dialogue

[Fang et al., 2014]

Episodic description

sequence of smaller noun phrases that lead to the target

A: below the orange, next to the apple, it's the red bulb.

Installment description

- waits for explicit feedback from the partner
- iterative process

A: under the pepper we just talked about.

B: yes.

A: there is a group of three objects.

B: OK.

A: there is a yellow object on the right within the group.

Collaborative Models in Situated Dialogue

[Fang et al., 2014]

Episodic model

- Branch-and-Bound & Graph Search → find path to the target with the lowest cost
- nodes = objects + concatenation of describing attributes (type, color, type with color, etc.) and their preference cost

Installment model

landmark object ("current" object confirmed by user)

Action: Object + RE + SP

RE = generation strategy (describes type, color, size, group)

SP = spacial location wrt. the landmark

<u>Transition Function:</u> updates landmark

<u>Reward:</u> 100 is target is reached and identified, 10 for correct intermediate steps, -1 else

Adapting to User Knowledge in Spoken Dialogue Systems

[Janarthanam, Lemon, 2010]

- reinforcement learning framework (hierarchical SARSA)
- technical support dialogue → set up home broadband connection
- learn to chose the appropriate referring expressions based on user's domain expertise

Jargon: Please plug one end of the broadband cable into the broadband filter.

Descriptive: Please plug one end of the thin white cable with grey ends into the small white box.

Adapting to User Knowledge in Spoken Dialogue Systems

[Janarthanam, Lemon, 2010]

Adapting to User Knowledge in Spoken Dialogue Systems

[Janarthanam, Lemon, 2010]

Conclusion

- generate a referring expression
- Incremental Algorithm is too restricted
- attributes and overspecification can be primed
- Dialogue Systems need to produce
 - human-like referring expressions
 - a model of the dialogue partner
- Applications:
 - collaborative models
 - adapt to user-knowledge

References

Books

[Stent and Bangalore, 2014] Stent, A. and Bangalore, S. (2014). Natural Language Generation in Interactive Systems. Cambridge.

[Jurafsky and Martin, 2009] Jurafsky, D. and Martin, J. H. (2009). Speech and Language Processing. Pearson International Edition, 2 edition.

[Reiter and Dale, 2000] Reiter, E. and Dale, R. (2000). Building Natural Language Generation Systems. Cambridge University Press.

Papers

General

[Krahmer and van Deemter, 2012] Krahmer, E. and van Deemter, K. (2012). Computational Generation of Referring Expressions: A Survey. Computational Linguistics, 38(1):173–218.

[Gatt et al., 2011] Gatt, A., Goudbeek, M., and Krahmer, E. (2011b). Attribute preference and priming in reference production: Experimental evidence and computational modeling. In Proceedings of the 33th Annual Meeting of the Cognitive Science Society, CogSci 2011, Boston, Massachusetts, USA, July 20-23, 2011.

Application

[Fang et al., 2014] Fang, R., Doering, M., and Chai, J. Y. (2014). Collaborative Models for Referring Expression Generation in Situated Dialogue. In Proceedings of the Twenty-Eighth AAAI Conference on Artificial Intelligence, July 27 -31, 2014, Qu'ebec City, Qu'ebec, Canada., pages 1544–1550.

[Janarthanam and Lemon, 2010] Janarthanam, S. and Lemon, O. (2010). Learning to Adapt to Unknown Users: Referring Expression Generation in Spoken Dialogue Systems. In ACL 2010, Proceedings of the 48th Annual Meeting of the Association for Computational Linguistics, July 11-16, 2010, Uppsala, Sweden, pages 69–78.