The Dialog State Tracking Challenge and Bayesian approach

Quan Nguyen

5qnguyen@informatik.uni-hamburg.de

22.06.2016

Outline

- Motivation
- Dialog State Tracking Problem
- Bayesian Approach
- Conclusion
- References

Motivation

- From agent's perspective:
- What do we have so far?

(common knowledge)

- What do the user need?(requested slots)
- What do I need from the user?

(informable slots)

- What should I say?

(conversation acts)

Motivation (2)

- Measuring the accuracy of agent's understanding
 - No common evaluation metrics
 - Different domain
 - Different techniques
 - Different (learning) data
- One state tracker for multiple strategies, multiple domain?

Dialog State Tracking Problem

State of Dialog

Dialog State Tracking Problem (2)

Tracker's output

Dialog State Tracking Problem (3)

Tracker's input (end-to-end system)

Dialog state tracker inputs					Dialog state trac	Dialog state tracker outputs	
System action / user response	ASR output		SLU output		State	Score	
How can I help you? welcome()	CHEAP RESTAURANT	0.6	inform(price=cheap)	0.5	price=cheap		
	RESTAURANT	0.2	inform(food=italian)	0.3	food=italian		
An Italian restaurant	ITALIAN	0.1		•	food=italian, price=cheap		
					[none]		
					'		
Sorry, what price did you want? request(price)	EAST AREA	0.5	inform(area=east)	0.6	price=cheap		
	ITALIAN	0.3	inform(food=italian)	0.3	food=italian		
Uh, Italian	YEAH	0.1	affirm()	0.2	food=italian, price=cheap		
					area=east		
					food=italian, area=east		
					price=cheap, area=east		
				italian, price=cheap, area=east			

The DSTC challenge

- Different trackers similar train and test data
 - Mixed strategies
 - Shared ontology?
- Baseline
 - Admissible heuristic
 - Check for improvement
 - Incorporate past solutions
- Evaluation metrics
 - Schedule when to measure.
 - Accuracy number of correct turns
 - L2 vector distance with one-hot encoding
 - AvgP average score

Bayesian approach

- How to build statistical frameworks?
- How to estimate Bayesian networks' parameters (tracker's experience)?
- Tractability?

Bayesian approach (2)

Basic statistical framework (Williams et. al, 2007)

$$b'(s') = k \cdot p(o'|s', a) \sum_{s \in S} p(s'|a, s)b(s).$$

- Where
 - s and s' are dialog state
 - o' is agent's observations (ASR and SLU output)
 - a is agent's action (speech act)
 - k is normalization constant
 - b(s) and b'(s'): state distribution before and after action a

Bayesian approach (2)

- Tracker's experiences:
 - Hand-crafted nodes and edges (Paek et. al, 2000)

- Reinforcement learning: Optimal Policy (Williams et. al, 2007)
 - Value Iteration

Bayesian approach (3)

- Tracker's experiences (cont):
 - States with continuous values and/or search methods
 - Particle filters: Continuous -> Discrete (Williams 2007)
 - Beam search: M-best most likely states
- Tractability
 - Training phase + Value iteration approach: quadratic in number of states and number of actions (per iteration)
 - End-to-end system: quadratic in number of states

Bayesian approach (4)

- Hand-crafted nodes and rewards
 - Infeasible in complex domain
- Only works under certain assumptions
 - Independence
 - Short-term dependence (dialog history)

Conclusion

- Trackers are crucial in dialog systems
 - What the agents know
 - What the agents should do
- The DSTC challenge
 - Common testing framework
- Bayesian approach
 - Statistical framework -> room for tracking methods
 - Works under certain assumptions (Markov, short-term dependence, small state space)

Adaptation to

- DSTC2: user goal changes
- DSTC3: unseen concepts in test data

The End

Thank you for your attention. Any question?

Literature:

- Williams, Raux and Henderson. The DSTC Series: A review. Dialog and Discourse, 2007
- Williams and Young. Partially observable Markov decision processes for spoken dialog system. Computer Speech and Language, 21(2):393-422, 2007a
- Paek and Horvitz. Conversation as Action Under Uncertainty. UNCERTAINTY IN ARTIFICIAL INTELLIGENCE PROCEEDINGS, 2000
- Williams. Using Particle filters to track dialogue state. In Proc IEEE Workshop on Automatic Speech Recognition and Understanding (ASRU), Kyoto, Japan, 2007