
Speech Decoding with SPHINX-4
Max Friedrich, Ahmed Saad, Liisa Vaht, Morteza Hagheshenas

Universität Hamburg, Speech Technology Lab, Summer Semester 2016

1. Introduction

SPHINX-4 [2] is an automatic speech recognition
(ASR) framework written in the Java program-
ming language. It is used both in research and
consumer software.
On this poster, we describe SPHINX-4’s archi-
tecture before reporting on two experiments that
highlight specific features of the framework.

2. Architecture

SPHINX-4’s main feature is a pluggable architec-
ture which makes it flexible and easily extensible.
Figure 1 shows an overview of the framework.SMLI TR2004-0811 c⃝2004 SUN MICROSYSTEMS INC. 2

Fig. 1. Sphinx-4 Decoder Framework. The main blocks are the FrontEnd, the Decoder, and the Linguist. Supporting blocks include the ConfigurationManager
and the Tools blocks. The communication between the blocks, as well as communication with an application, is depicted.

III. SPHINX-4 FRAMEWORK
The Sphinx-4 framework has been designed with a high degree of flexibility and modularity. Figure 1 shows the overall

architecture of the system. Each labeled element in Figure 1 represents a module that can be easily replaced, allowing researchers
to experiment with different module implementations without needing to modify other portions of the system.
There are three primary modules in the Sphinx-4 framework: the FrontEnd, the Decoder, and the Linguist. The FrontEnd

takes one or more input signals and parameterizes them into a sequence of Features. The Linguist translates any type of
standard language model, along with pronunciation information from the Dictionary and structural information from one or
more sets of AcousticModels, into a SearchGraph. The SearchManager in the Decoder uses the Features from the FrontEnd
and the SearchGraph from the Linguist to perform the actual decoding, generating Results. At any time prior to or during the
recognition process, the application can issue Controls to each of the modules, effectively becoming a partner in the recognition
process.
The Sphinx-4 system is like most speech recognition systems in that it has a large number of configurable parameters,

such as search beam size, for tuning the system performance. The Sphinx-4 ConfigurationManager is used to configure such
parameters. Unlike other systems, however, the ConfigurationManager also gives Sphinx-4 the ability to dynamically load and
configure modules at run time, yielding a flexible and pluggable system. For example, Sphinx-4 is typically configured with a
FrontEnd (see Section IV) that produces Mel-Frequency Cepstral Coefficients (MFCCs) [15]. Using the ConfigurationManager,
however, it is possible to reconfigure Sphinx-4 to construct a different FrontEnd that produces Perceptual Linear Prediction
coefficients (PLP) [16] without needing to modify any source code or to recompile the system.
To give applications and developers the ability to track decoder statistics such as word error rate [17], runtime speed, and

memory usage, Sphinx-4 provides a number of Tools. As with the rest of the system, the Tools are highly configurable, allowing
users to perform a wide range of system analysis. Furthermore, the Tools also provides an interactive runtime environment
that allows users to modify the parameters of the system while the system is running, allowing for rapid experimentation with
various parameters settings.
Sphinx-4 also provides support for Utilities that support application-level processing of recognition results. For example,

these utilities include support for obtaining result lattices, confidence scores, and natural language understanding.

IV. FRONTEND
The purpose of the FrontEnd is to parameterize an Input signal (e.g., audio) into a sequence of output Features. As illustrated

in Figure 2, the FrontEnd comprises one or more parallel chains of replaceable communicating signal processing modules called
DataProcessors. Supporting multiple chains permits simultaneous computation of different types of parameters from the same
or different input signals. This enables the creation of systems that can simultaneously decode using different parameter types,
such as MFCC and PLP, and even parameter types derived from non-speech signals such as video [3].

Figure 1: Overview of the SPHINX-4 framework
architecture. [2, Fig. 1]

Recognizer Contains the main components of
the framework. Applications interact with the
SPHINX-4 system mainly via the Recognizer.

FrontEnd Transforms an audio signal into a se-
quence of features, e.g. phones.

Linguist Constructs a SearchGraph using a
LanguageModel, Dictionary, and Acoustic-
Model.
LanguageModel Provides language structure

at the word level. Typical language model im-
plementations are either grammar-based (e.g.
word list, context-free grammar) or stochastic
(e.g. n-gram).

Dictionary Maps words to their pronuncia-
tions, e.g. phones.

AcousticModel Maps phones to hidden
Markov models (HMMs) that can be scored
against FrontEnd features. Training acous-
tic models requires very large amounts of
speech data.

SearchGraph Search space data structure,
shown in Figure 2.

Decoder Combines FrontEnd output features
and the Linguist output SearchGraph to gener-
ate speech recognition results.

SPHINX-4 provides multiple implementations of
most components. They can be configured via
XML files or by adapting a ConfigurationManager
at runtime.SMLI TR2004-0811 c⃝2004 SUN MICROSYSTEMS INC. 5

Fig. 3. Example SearchGraph. The SearchGraph is a directed graph composed of optionally emitting SearchStates and SearchStateArcs with transition
probabilities. Each state in the graph can represent components from the LanguageModel (words in rectangles), Dictionary (sub-word units in dark circles)
or AcousticModel (HMMs).

The graph is a directed graph in which each node, called a SearchState, represents either an emitting or a non-emitting
state. Emitting states can be scored against incoming acoustic features while non-emitting states are generally used to represent
higher-level linguistic constructs such as words and phonemes that are not directly scored against the incoming features. The
arcs between states represent the possible state transitions, each of which has a probability representing the likelihood of
transitioning along the arc.
The SearchGraph interface is purposely generic to allow for a wide range of implementation choices, relieving the assumptions

and hard-wired constraints found in previous recognition systems. In particular, the Linguist places no inherent restrictions on
the following:

• Overall search space topology
• Phonetic context size
• Type of grammar (stochastic or rule based)
• N-Gram language model depth
A key feature of the SearchGraph is that the implementation of the SearchState need not be fixed. As such, each Linguist

implementation typically provides its own concrete implementation of the SearchState that can vary based upon the characteris-
tics of the particular Linguist. For instance, a simple Linguist may provide an in-memory SearchGraph where each SearchState
is simply a one-to-one mapping onto the nodes of the in-memory graph. A Linguist representing a very large and complex
vocabulary, however, may build a compact internal representation of the SearchGraph. In this case, the Linguist would generate
the set of successor SearchStates by dynamically expanding this compact representation on demand.
The manner in which the SearchGraph is constructed affects the memory footprint, speed, and recognition accuracy. The

modularized design of Sphinx-4, however, allows different SearchGraph compilation strategies to be used without changing
other aspects of the system. The choice between static and dynamic construction of language HMMs depends mainly on the
vocabulary size, language model complexity and desired memory footprint of the system, and can be made by the application.

E. Implementations
As with the FrontEnd, Sphinx-4 provides several implementations of the Linguist to support different tasks.
The FlatLinguist is appropriate for recognition tasks that use context-free grammars (CFG), finite-state grammars (FSG),

finite-state transducers (FST) and small N-Gram language models. The FlatLinguist converts any of these external language
model formats into an internal Grammar structure. The Grammar represents a directed word graph where each GrammarNode
represents a single word, and each arc in the graph represents the probability of a word transition taking place. The FlatLinguist
generates the SearchGraph directly from this internal Grammar graph, storing the entire SearchGraph in memory. As such, the
FlatLinguist is very fast, yet has difficulty handling grammars with high branching factors.
The DynamicFlatLinguist is similar to the FlatLinguist in that is is appropriate for similar recognition tasks. The

main difference is that the DynamicFlatLinguist dynamically creates the SearchGraph on demand, giving it the capability to
handle far more perplex grammars. With this capability, however, comes a cost of a modest decrease in run time performance.
The LexTreeLinguist is appropriate for large vocabulary recognition tasks that use large N-Gram language models. The

order of the N-Grams is arbitrary, and the LexTreeLinguist will support true N-Gram decoding. The LexTreeLinguist organizes
the words in a lex tree [6], a compact method of representing large vocabularies. The LexTreeLinguist uses this lex tree to
dynamically generate SearchStates, enabling it to handle very large vocabularies using only a modest amount of memory. The
LexTreeLinguist supports ASCII and binary language models generated by the CMU-Cambridge Statistical Language Modeling
Toolkit [22].

Figure 2: An example SearchGraph [2, Fig. 3].
Contains components from LanguageModel
(words in rectangles), Dictionary (sub-word units
in dark circles), and AcousticModel (HMMs).

3. Experiments

We describe two experiments that each highlight
a feature of the SPHINX-4 framework. Speech
recognition performance is measured by the com-
mon metric word error rate (WER).

3.1 Language Models
•Compare ASR performance on connected digit

speech data when using:
1. a general purpose language model: the de-

fault stochastic en-us.lm.
2. a domain-specific language model: grammar-

based with only ten words (zero – nine, oh).

3.1.1 Setup

• 50 utterances (average length 4.86 digits) taken
from the ICSI Meeting Recorder Digits Corpus
(MRD) [1], a collection of desktop microphone
recordings of various speakers made in meet-
ing rooms.

•Recordings contain considerable noise and
echo, speech volume is low.

•Normalize volume of all recordings in a prepro-
cessing step, as no speech at all was recog-
nized before.

3.1.2 Results

0

1m

2m

0 %

50 %

100 %

General Purpose Digits Grammar

WER Time

Figure 3: Word error rate and computation time
needed when transcribing 50 MRD utterances.

3.1.3 Discussion

•Most errors originate from words not being rec-
ognized at all rather than mis-recognized, e.g.
of the uttered digits “8986”, the grammar recog-
nizer transcribed only “nine eight”, resulting in a
50% WER.

•Performing manual noise reduction on a small
subset of the recordings improves recognition
performance but reliable automatic noise reduc-
tion is out of scope for this experiment.

•Relative improvement in WER and time shows
that it is reasonable to switch the language
model if the expected utterance is of a specific
nature, e.g. commands, “yes” / “no”, or digits.

3.2 Acoustic Model Adaptation
•SPHINX-4 offers an easy way to adapt the

default acoustic model to speakers, recording
environment, and accents with relatively little
speech data needed [3].

•Compare ASR performance on spoken text
when using:
1. a general purpose acoustic model.
2. an acoustic model adapted to utterances of

the same speaker.

3.2.1 Setup

•Spoken Wikipedia [4] article “2005 Atlantic hur-
ricane season”

•The default acoustic model en-us is adapted to
50, then 150 utterances of the same speaker’s
recording of the article “2006 Atlantic hurricane
season” (average length 8.68 words, 4.1 sec-
onds).

•Transcribe 100 utterances of the “2005” record-
ing (average length 9.76 words).

3.2.2 Results

0

15m

30m

0 %

50 %

100 %

General Purpose Adapted (50) Adapted (150)

WER Time

Figure 4: Word error rate and computation time
needed when transcribing 100 spoken Wikipedia
utterances.

3.2.3 Discussion

•Time required for adaptation is negligible.
•Adaptation with 50 utterances (about 200 sec-

onds of speech data) already shows a modest
improvement in WER.

•Adapted acoustic models have a significant ef-
fect on results. Of the 100 utterances examined
in the “2005” article, only 11 were transcribed
equally across the different models. For exam-
ple, “becoming the third” was transcribed as:
– “you coming to herd” (133% WER)
– “becoming hard” (66% WER)
– “becoming a third” (33% WER)

•Time needed for transcription is constant.

4. Conclusion

•SPHINX-4’s architecture allows flexible configu-
ration at runtime.

•Using a domain-specific language model yields
significant WER and computation time improve-
ments, if applicable.

•Adapting the default acoustic model is easy and
yields modest WER improvements.

References

[1] Adam Janin, Don Baron, Jane Edwards, Dan Ellis, David
Gelbart, Nelson Morgan, Barbara Peskin, Thilo Pfau,
Elizabeth Shriberg, Andreas Stolcke, et al. The ICSI
meeting corpus. In Acoustics, Speech, and Signal Pro-
cessing, 2003. Proceedings. (ICASSP ’03). 2003 IEEE
International Conference on, volume 1, pages I–364.
IEEE, 2003.

[2] Willie Walker, Paul Lamere, Philip Kwok, Bhiksha Raj,
Rita Singh, Evandro Gouvea, Peter Wolf, and Joe
Woelfel. Sphinx-4: A flexible open source framework for
speech recognition. 2004.

[3] Sphinx Wiki. Adapting the default acoustic model. http:
//cmusphinx.sourceforge.net/wiki/tutorialadapt, 2016.

[4] Wikipedia. WikiProject Spoken Wikipedia. https://en.
wikipedia.org/wiki/Wikipedia:Spoken Wikipedia, 2016.


