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1. Introduction

SPHINX-4 [2] is an automatic speech recognition
(ASR) framework written in the Java program-
ming language. It is used both in research and
consumer software.

On this poster, we describe SPHINX-4’s archi-
tecture before reporting on two experiments that
highlight specific features of the framework.

2. Architecture

SPHINX-4’s main feature is a pluggable architec-
ture which makes it flexible and easily extensible.
Figure 1 shows an overview of the framework.
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Figure 1: Overview of the SPHINX-4 framework
architecture. [2, Fig. 1]

Recognizer Contains the main components of
the framework. Applications interact with the
SPHINX-4 system mainly via the Recognizer.

FrontEnd Transforms an audio signal into a se-
guence of features, e.g. phones.

Linguist Constructs a SearchGraph using a
LanguageModel, Dictionary, and Acoustic-
Model.

LanguageModel Provides language structure
at the word level. Typical language model im-
plementations are either grammar-based (e.qg.
word list, context-free grammar) or stochastic
(e.g. n-gram).

Dictionary Maps words to their pronuncia-
tions, e.g. phones.

AcousticModel Maps phones to hidden
Markov models (HMMs) that can be scored
against FrontEnd features. Training acous-
tic models requires very large amounts of
speech data.

SearchGraph Search space data structure,
shown in Figure 2.

Decoder Combines FrontEnd output features
and the Linguist output SearchGraph to gener-
ate speech recognition results.

SPHINX-4 provides multiple implementations of
most components. They can be configured via
XML files or by adapting a ConfigurationManager

at runtime.
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Figure 2: An example SearchGraph [2, Fig. 3].
Contains components from LanguageModel
(words in rectangles), Dictionary (sub-word units
In dark circles), and AcousticModel (HMMs).

3. Experiments

We describe two experiments that each highlight
a feature of the SPHINX-4 framework. Speech
recognition performance is measured by the com-
mon metric word error rate (WER).

3.1 Language Models

e Compare ASR performance on connected digit
speech data when using:

1.a general purpose language model: the de-
fault stochastic en-us. 1m.

2. a domain-specific language model: grammar-
based with only ten words (zero — nine, oh).

3.1.1 Setup

¢ 50 utterances (average length 4.86 digits) taken
from the ICSI Meeting Recorder Digits Corpus
(MRD) [1], a collection of desktop microphone
recordings of various speakers made in meet-
Ing rooms.

e Recordings contain considerable noise and
echo, speech volume is low.

e Normalize volume of all recordings in a prepro-
cessing step, as no speech at all was recog-
nized before.

3.1.2 Results
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Figure 3: Word error rate and computation time
needed when transcribing 50 MRD utterances.

3.1.3 Discussion

e Most errors originate from words not being rec-
ognized at all rather than mis-recognized, e.g.
of the uttered digits “8986”, the grammar recog-
nizer transcribed only “nine eight”, resulting in a
50% WER.

e Performing manual noise reduction on a small
subset of the recordings improves recognition
performance but reliable automatic noise reduc-
tion is out of scope for this experiment.

¢ Relative improvement in WER and time shows
that it is reasonable to switch the language
model if the expected utterance is of a specific
nature, e.g. commands, “yes” / “no”, or digits.

3.2 Acoustic Model Adaptation

e SPHINX-4 offers an easy way to adapt the
default acoustic model to speakers, recording
environment, and accents with relatively little
speech data needed [3].

e Compare ASR performance on spoken text
when using:
1.a general purpose acoustic model.

2.an acoustic model adapted to utterances of
the same speaker.

3.2.1 Setup

e Spoken Wikipedia [4] article “2005 Atlantic hur-
ricane season’

¢ [ he default acoustic model en—us is adapted to
50, then 150 utterances of the same speaker’s
recording of the article “2006 Atlantic hurricane
season” (average length 8.68 words, 4.1 sec-
onds).

e Transcribe 100 utterances of the “2005” record-
iIng (average length 9.76 words).

3.2.2 Results
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Figure 4: Word error rate and computation time
needed when transcribing 100 spoken Wikipedia
utterances.

3.2.3 Discussion

e Time required for adaptation is negligible.

e Adaptation with 50 utterances (about 200 sec-
onds of speech data) already shows a modest
improvement in WER.

e Adapted acoustic models have a significant ef-
fect on results. Of the 100 utterances examined
in the “2005” article, only 11 were transcribed
equally across the different models. For exam-
ple, “becoming the third” was transcribed as:
—“you coming to herd” (133% WER)
—“becoming hard” (66% WER)

—“pbecoming a third” (33% WER)

e Time needed for transcription is constant.

4. Conclusion

e SPHINX-4’s architecture allows flexible configu-
ration at runtime.

e Using a domain-specific language model yields
significant WER and computation time improve-
ments, if applicable.

e Adapting the default acoustic model is easy and
yields modest WER improvements.
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