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Introduction

I A language model
. Captures the prominent statistical characteristics of the distribution of

sequences of words in a natural language
. Allows to make probabilistic predictions of next words given preceding ones

I Problem: curse of dimensionality
. Sequence of 10 words with vocabulary of 10 000 words has 1040 different

possibilities
I Approaches: N-gram models, Neural networks, . . .

Modelling Language with Recurrent Neural Networks

I Recurrent neural networks (RNNs):
. Represent time recursively by

recurrent connections among
hidden units associated with a time
delay

. Building up of an internal context
of previous states

I RNNs can naturally model the
sequential character of language

I Many different parameters

⇒ Which parameters influence the performance most?

Dataset

I European Parliament Proceedings Parallel Corpus (Europarl) [1]
I Only a monolingual English subset of the Corpus used for the following

language modelling tasks
I Dataset consists of 2 218 201 words constructing 53 974 751 English

sentences
I Dataset partitioning:
. 98 % of the data reserved as training data
. 1 % of the data used for validation, 1 % for testing
. Training dataset fractions of different size are used in the following

experiments to test effects of training data size on model performance

Training dataset (98%)

Validation set  (1%)
Test set   (1%)

Experiments

I Implementation used: Faster RNNLM (HS/NCE) toolkit
(https://github.com/yandex/faster-rnnlm)

Experiment 1: Perplexity with respect to training data size

I Train a RNN with hidden layer size of 100 NCE GRU units on dataset
fractions of different size

I Investigate the effect of training set size on the networks performance in
terms of perplexity

Experiment 2: Perplexity obtained by different network
architectures

I Train RNNs with different architectures on 1 % of the dataset
I Investigate the effects of different activation functions and hidden layer sizes
I RNNs used:
. Rectified linear unit (relu) activation function, varying hidden layer size
. Sigmoid activation function, varying hidden layer size
. Gated recurrent unit (gru) activation function, varying hidden layer size

Experiment 3: Perplexity with respect to the learning rate

I Train RNNs with 100 NCE GRU units on 1 % of the training dataset
I Varying learning rate to investigate its effect on performance

Evaluating the Model: Perplexity

I The best language model is one that best predicts an unseen test set
. Given the highest P(sentence)

I Perplexity is the inverse probability of the test set, normalized by the
number of words

PP(W ) = n

√√√√ N∏
i=1

1

P(wi|wi−1)
(1)

I Minimizing perplexity is the same as maximizing probability
I Lower perplexity = better model

Results: Perplexity with respect to training data size

012 4 8 16 32 64

% of dataset used for training

80

90

100

110

120

130

140

P
er

pl
ex

ity

Results: Perplexity obtained by different network architectures

25 50 75

Hidden layer size

100

200

300

400

500

600

700

P
er

pl
ex

ity

GRU
ReLu
Sigmoid

Results: Perplexity with respect to the model’s learning rate
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Conclusion

I An increasing training data size has a positive effect on the model’s
performance which however saturates when having supplied enough training
examples (8 % of the training dataset)

I Distinct activation functions perform differently well, more sophisticated
activation functions (gru) achieve better results than simple ones (relu)

I Hidden layer size does not have a significant impact on performance
I When choosing an appropriate learning rate in the range of 0.01 to 0.5,

differences in performance are negligible
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