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Dialog Management

[Jokinen and McTear, 2009]
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Dialog Control

FramesGraphs

[Jokinen and McTear, 2009]

Classical approaches: graphs and frames
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Dialog Control

• Handcrafted rules are hard to create 

• Error handling, when to ask for confirmation, … 

• Alternative: Statistical approaches, including 
Reinforcement Learning
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Recap: Reinforcement 
Learning (RL)
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• “Goal directed learning from interaction” 

• Finds a policy π that maximizes reward 

• Between supervised and unsupervised learning 

• Problems often specified as Markov Decision 
Processes (MDP)

[Sutton and Barto, 2008; Marsland, 2009]
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[Jokinen and McTear, 2009; Levin et al., 2000]

 S set of system states

 A set of actions that the system can take

 T transition probabilities PT(st|st-1, at-1)

 R immediate rewards R : S ⨉ A → ℝ
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Markov Decision Process 
(MDP)

Policy π :  S  → A
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MDP Dialog Management

redrawn after [Young, 2006]

What are problems with MDP Dialog Management? 
(small groups, 3 minutes)
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Limitations of MDP DM
• Huge state space 

• Much training required 

• What is a good reward function? 

• Dialog state is estimated – Single dialog hypothesis 

• “Handcrafted vs Machine Learning”
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Single Hypothesis Problem
Example: Dialog system that offers travel booking 
and coffee making
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 U
“Please make me a cup of coffee” 
[40% “I want to go to Berlin”, 20% “Please make me a cup of 
coffee”]

 M When do you want to go? 
– Dialog state: user wants to go to Berlin

 U “Coffee!” 
[70% “Coffee”, 20% “Tonight”] – how to proceed?
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Partially Observable Markov 
Decision Process (POMDP)

[Jokinen and McTear, 2009; Williams and Young, 2007]

 O observations

 Z observation probabilities PZ(st|st-1, at-1)

 S set of system states

 A set of actions that the system can take

 T transition probabilities PT(st|st-1, at-1)

 R immediate rewards R : S ⨉ A ⨉ O → ℝ
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POMDP Dialog Management

redrawn after [Young, 2006]
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POMDP Dialog Management

redrawn after [Williams et al., 2005]

Travel domain (3 cities)
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Limitations of POMDP DM

• Even bigger state space, very hard to scale. 
Approximations are needed 

• Training, reward function, “Handcrafted vs Machine 
Learning”: same as MDP 

• „Hidden Information State“ [Young et al., 2010] 
addresses state space problems
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Conclusion
• Dialog Control with Graphs and Frames 

• MDP Dialog Management 

• POMDP Dialog Management is more robust, 
explicitly models uncertainty 

• State space problem 

• “Handcrafted vs. Machine Learning” problem
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