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Parametric Speech Synthesis:
Vocoding & HMM parameter estimation
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|dea: Filtering

o the glottal folds produce a primary
(saw-tooth-like) signal

— rich in overtones/harmonics

e thevocal tractactsasa
(frequency) filter

— mostly attenuation

o if we know primary signal and filter parameters,
we just need to combine the two
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Parameters for Speech Synthesis

o previously for recognition:

— reduce signal to a more compact representation
— conventionally: ,acoustic-phonetic” parameters like MFCCs

— rizing: parameters optimized with NNs
o for speech synthesis:

— design a vocoder that allows for good re-synthesis performance
from parameter streams

— old-school: rule-based generation of parameters from target
sequence

— current: HMM-based generation of parameter streams

— rizing: NN-based generation of parameter streams



Main Difference Between
Recognition vs. Synthesis



Main Difference Between
Recognition vs. Synthesis

we know what to say but we don't know what to understand

o search is necessary for speech recognition

— HMMs are excellent for search, RNNs are still comparatively

harder to train

o no search is required for speech synthesis

we already know the state sequence (from target sequence)

all we want is to find a likely parameter emission sequence
to feed to the synthesizer

optimal emissions given a state sequence can be found by solving
a linear equation (details e.g. in Taylor, 2009)

« much cheaper than search!!



HMMs for Parameter Estimation

? ? ?

initial\ 1.0 ? state 2 ? 1.0
state /al/

o challenges:

— estimate emission parameters (already solved for recognition)
— HMMs bad at duration modelling

« good enough to accept speech timing, but too bad to generate

- ,most likely” emission is always at p — is that good?



State Duration Modelling

o HMMs are bad at duration modelling:

o finding state durations means
that we do have to conduct a
search (optimize how long to
stay in a given state)
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« much better: use external duration model (e.g. decision
trees) that use target sequence, linguistic information, ...

— better timings

— avoids the need for a search
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Dynamic Features

o Challenge: 1 is always the N
most likely observation: o e

— non-realistic contours wf b fr o R
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— in recognition, we used A-features to capture continuous change

o Solution: introduce dynamic features

— A-constraint can be added to the
linear equation and little extra cost

images from Taylor (2009).
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— in recognition, we used A-features to capture continuous change

A-feature: (feature; — feature; ;)
o Solution: introduce dynamic features

— A-constraint can be added to the
linear equation and little extra cost

images from Taylor (2009).
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e contours become

— unfortunately, this cannot
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Summary

o Speech synthesis does not need to search as it can be
formulated as a (linear) optimization problem

 Vocoder is not trained but designed
— interpretable input

o optimality criterion of the HMM approach is far from
optimal
— still, it's good enough, can be improved with NNs

— change input to vocoder outside of the optimization

(after the break)



Thank you.

baumann@informatik.uni-hamburg.de

https://nats-www.informatik.uni-hamburg.de/SLP16

Universitat Hamburg, Department of Informatics
Natural Language Systems Group




Further Reading

o Speech Synthesis in General:

— D.Jurafsky & J. Martin (2009): Speech and Language Processing. Pearson
International. InfBib: A JUR 4204x

o Details of Speech Synthesis:

— P Taylor (2009): Text-to-Speech Synthesis. Cambridge University Press.
« Recent work on HMM-based and NN-based Parametric Synthesis by

— Heiga Zen (e.g. Tutorial at the UK Speech Conference:
http://research.google.com/pubs/pub42624.html)
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Desired Learning Outcomes

o know the vocoder and be able to relate it to the source-filter
model

o understand the limitations of vocoding and parameter
estimation, discuss their relative importance

o understand the optimization process in HMM-based speech
synthesis

o be able to discuss the advantage of feature stream
independence over unit-selection synthesis



