Specialization Module

Speech Technology

Timo Baumann baumann@informatik.uni-hamburg.de

Parametric Speech Synthesis: Vocoding & HMM parameter estimation

Process diagram of Speech Synthesis

Process diagram of Speech Synthesis

Idea: Filtering

- the glottal folds produce a primary (saw-tooth-like) signal
 - rich in overtones/harmonics
- the vocal tract acts as a (frequency) filter
 - mostly attenuation
- if we know primary signal and filter parameters, we just need to combine the two

- few parameters in the standard model
 - still, good parameters are the bottleneck (remember eSpeak?)
- extensions: mixed voicing, model for primary signal, ...

- few parameters in the standard model
 - still, good parameters are the bottleneck (remember eSpeak?)
- extensions: mixed voicing, model for primary signal, ...

Parameters for Speech Synthesis

- previously for recognition:
 - reduce signal to a more compact representation
 - conventionally: "acoustic-phonetic" parameters like MFCCs
 - rizing: parameters optimized with NNs
- for speech synthesis:
 - design a vocoder that allows for good re-synthesis performance from parameter streams
 - old-school: rule-based generation of parameters from target sequence
 - current: HMM-based generation of parameter streams
 - rizing: NN-based generation of parameter streams

Main Difference Between Recognition vs. Synthesis

Main Difference Between Recognition vs. Synthesis

we know what to say but we don't know what to understand

- search is necessary for speech recognition
 - HMMs are excellent for search, RNNs are still comparatively harder to train
- no search is required for speech synthesis
 - we already know the state sequence (from target sequence)
 - all we want is to find a likely parameter emission sequence to feed to the synthesizer
 - optimal emissions given a state sequence can be found by solving a linear equation (details e.g. in Taylor, 2009)
 - much cheaper than search!!

HMMs for Parameter Estimation

• challenges:

- estimate emission parameters (already solved for recognition)
- HMMs bad at duration modelling
 - good enough to accept speech timing, but too bad to generate
- "most likely" emission is always at μ is that good?

State Duration Modelling

HMMs are bad at duration modelling:

• finding state durations means that we do have to conduct a search (optimize how long to stay in a given state)

- much better: use external duration model (e.g. decision trees) that use target sequence, linguistic information, ...
 - better timings
 - avoids the need for a search

Dynamic Features

- Challenge: μ is always the most likely observation:
 - non-realistic contours
 - disregards continuous nature of speech

- in recognition, we used Δ -features to capture continuous change
- Solution: introduce *dynamic features*
 - Δ -constraint can be added to the linear equation and little extra cost

Dynamic Features

- Challenge: μ is always the most likely observation:
 - non-realistic contours
 - disregards continuous nature of speech

– in recognition, we used Δ -features to capture continuous change

 Δ -feature: (feature_i – feature_{i-1})

- Solution: introduce *dynamic features*
 - Δ -constraint can be added to the linear equation and little extra cost

Dynamic Features II

- contours become continuous but blurred
- (not just μ)
- 280 • optimize to boost σ as well 260 240 220 • Global Variance optimization 200 0.5 0.3 0.4 0.6 0.7 0.8 0.9

320

300

 unfortunately, this cannot be done as a simple constraint but requires a local search

Summary

• Speech synthesis does not need to search as it can be formulated as a (linear) optimization problem

•

- Vocoder is not trained but designed
 - interpretable input
- *optimality criterion* of the HMM approach is far from optimal
 - still, it's good enough, can be improved with NNs
 - change input to vocoder outside of the optimization (after the break)

Thank you.

baumann@informatik.uni-hamburg.de

https://nats-www.informatik.uni-hamburg.de/SLP16

Further Reading

- Speech Synthesis in General:
 - D. Jurafsky & J. Martin (2009): *Speech and Language Processing*. Pearson International. InfBib: A JUR 4204x
- Details of Speech Synthesis:
 - P. Taylor (2009): *Text-to-Speech Synthesis*. Cambridge University Press.
- Recent work on HMM-based and NN-based Parametric Synthesis by
 - Heiga Zen (e.g. Tutorial at the UK Speech Conference: http://research.google.com/pubs/pub42624.html)

Notizen

Desired Learning Outcomes

- know the vocoder and be able to relate it to the source-filter model
- understand the limitations of vocoding and parameter estimation, discuss their relative importance
- understand the optimization process in HMM-based speech synthesis
- be able to discuss the advantage of feature stream independence over unit-selection synthesis