Specialization Module

Speech Technology

Timo Baumann baumann@informatik.uni-hamburg.de

Speech Recognition: Wrap-up

Overview (once more)

- $\hat{W} = \arg \max W : \mathbf{P(O|Ph)} \times \mathbf{P(Ph|W)} \times \mathbf{P(W)}$
 - language model often trained on text (there's more)
 - text is different from spoken words :-(
 - closed language \mathcal{L} for W
 - we cannot recognize words that aren't accepted by the language model
 - problem formulation ignores P(O)
 - no way of knowing P(W|O), i.e., how likely something was spoken at all!
 - acoustic model trained for multiple speakers
 - every speaker has their own ways of speaking
- Token-Pass algorithm / Viterbi decoding
 - overall best sequence vs. optimal word sequence

Language Model trained on text

- text normalization revisited:
 - people don't speak commas or periods
 - people are more restricted than Unicode and often don't speak symbols the way one would expect
- numbers are very sparsely represented in training data
 - same for cities, company names, ...
- remedy: class-based language models: replace all digits by a marker (1984 \rightarrow 5555, USD 123.45 \rightarrow \$u \$s dollar 555.55)
- have a separate (rule-based?) model to expand digit sequences from the language model to (all possible) number sequences that could be spoken (many...)
- likewise for cities, countries, names, ...
 - lists of names can later easily be changed in the application, but the common characteristic of name-placement in text is preserved

Words Unknown to the Language Model

- replace infrequent words by their character sequence
 - makes data less sparse (yet, reduces history)
 - take provisions that every utterance of a "real" word more likely results in the word, rather than a character sequence.
 - only works for infrequent words but not for new words
- or: try to find stretches where recognition is likely faulty (see next) and redecode only these parts with a sound-based model
 - try to come up with a spelling for the recognized sound sequence
 - Austrian 3G-provider "3"...

Confidence estimation

- we don't solve the original question arg max W: P(W|O)
 - hence, we can't use the probability to say how confident we are
 - we do this because P(O) is untractable to compute and we need to use Bayes' rule
- come up with a heuristic to generate a *confidence measure/rejection threshold* (per sentence or better per word)
 - based on search parameters, acoustic parameters, language model probabilities, dialogue state, multi-modal information, confusion matrices, ...
 - highly useful for downstream processing: "Sorry, I am unsure: did you say Dallas Airport or Dulles Airport in DC area?" more useful than "Sorry, I am unsure, can you repeat please?" which is more useful than "Ok, I'll look for flights to Dallas."

Speaker adaptation

- each individual speaker has characteristic differences to the acoustic model that is averaged over many speakers
 - simple: sound characteristics due to vocal tract length, personality, ...
 - hard: temporal anomalies due to disabilities, stuttering, ...
- we probably don't have training data (or time for retraining)
- standard model to get a rough estimate, use this to rebalance the model, then re-recognize
 - → multi-pass decoding
 - downside: no results during speaking but only afterwards

Extended output from Token Passing

• keep not just one, but multiple hypotheses and build a lattice:

- simplify to a "sausage",
 then compute overall likelihood of words (i.e., optimize for WER)
- use confusions for confidence heuristics

The State of the Art

NIST STT Benchmark Test History - May. '09

more recent results on Switchboard

	One-pass		Multi-pass/ combination		
Year	GMM	DNN	GMM	DNN	Details
2011	23.6	16.1	17.1	-	(Seide 2011)
2012	18.9	13.3	15.1	-	(Kingsbury 2012). DNN Sequence training
2013	18.6	12.6		-	(Ve se ly 2013). DNN Sequence training [^]
2014		11.5	14.5	10.7	(Sainath 2014). Convolutional ne ural ne twork

Paul Dixon: Talk at ETH Zurich, 2014.

Summary

- Speech recognition has its limitations
- many of these can be solved to some extent
- perfect recognition has never been achieved
 - when low WERs were achieved, researchers moved on to harder tasks
- humans are not perfect either
 - often, it's more profitable to invest into other parts of the system (interactional quality!)

Thank you.

baumann@informatik.uni-hamburg.de

https://nats-www.informatik.uni-hamburg.de/SLP16

Further Reading

- Speech Recognition in General:
 - D. Jurafsky & J. Martin (2009): *Speech and Language Processing*. Pearson International. InfBib: A JUR 4204x

Notizen

Desired Learning Outcomes

- understand the limitations of the standard approach to speech recognition and know some ways of how to overcome them;
- see implications of ASR performance on the whole-system perspective
- be able to discuss lattice decoding