
Specialization Module

Speech Technology

Timo Baumann
baumann@informatik.uni-hamburg.de

Universität Hamburg, Department of Informatics
Natural Language Systems Group

Language Modelling

The Speech Recognition Task

● Given a language L
● and a sensory impression (observation) O

– sequence of (MFCC) parameters over sliding windows
● we search Ŵ in L such that

– Ŵ = arg max W : P(W|O)
the most likely word sequence given the observation

– Ŵ = arg max W : P(O|Ph)P(O|Ph)××P(Ph|W)P(Ph|W)×P(W)P(W)

What information do you/humans use when
estimating the likelihood of word sequences?

small groups, 3 minutes

Language Modelling

assigns a probability to every word sequence W in L
● L is a closed language

– the vocabulary of L is fixed
– only word sequences in L can be recognized

● no handling of out-of-vocabulary words (OOV)
– no matter what the input,

a word sequence in L will be recognized
– Example: let L contain all German even numbers

I say “drei”, the recognizer considers “zwei” or “dreißig”
● how to reject hypotheses when OOV words are spoken?

Language Modelling

assigns a probability to every sentence W in L
● two types

– structural: weighted grammar (PCFG)
● cannot (easily) be learned from data → manually constructed
● no probabilities for partial sentences, only for complete sentences→ this makes the speech recognition search less efficient
● simplifies natural language understanding (NLU)→ often used in applied spoken dialogue systems

– surface-based: N-Gram model
● next word's probability computed from previous N-1 words
● probability of the sequence is approximated by concatenating the

probabilities of subsequences of length N

Deriving the N-Gram Model:

● problem is data sparsity, we simply can't estimate P(W) for
many sentences by looking at data

● however, P(W) = P(w1)P(w2|w1)P(w3|w1,w2) ...
P(wn|w1,w2, ..., wn-1)

● assumption: recent history ismore relevant than more
distant history → limit history to a fixed number of words

word history

Definition of the N-Gram Model

W = w1, w2, … wn = w1..n

● using the chain rule of probability, we get:
P(W) = ∏k=1..n P(wk|w1..k-1)
– each word's probability depends on its contextual history

● N-Grams approximate the contextual history:
P(wk|w1..k-1) ≈ P(wk|wk-N..k-1)

● the larger N, the better the approximation
● however, the larger N,

the larger the original problem of data sparsity

A simple example:

“the dog barks”
● simplest form: unigrams (N=1)

P(the dog barks) ≈ P(the) × P(dog) × P(barks)
– not accurate as context is completely ignored

“dog” is more likely than e.g. “from” after “the”
“the dog” vs. “the from”

● context: bigrams/trigrams
P(the dog barks) ≈ P(the|⟨s⟩) × P(dog|the) × P(barks|dog) × P(⟨/s⟩|barks)

A simple example:

“the dog barks”
● simplest form: unigrams (N=1)

P(the dog barks) ≈ P(the) × P(dog) × P(barks)
– not accurate as context is completely ignored

“dog” is more likely than e.g. “from” after “the”
“the dog” vs. “the from”

● context: bigrams/trigrams
P(the dog barks) ≈ P(the|⟨s⟩) × P(dog|the) × P(barks|dog) × P(⟨/s⟩|barks)

start/end
markers

Relative Frequencies:
Counting Words over Time

● probability of words is estimated by counting their relative
occurrence in large amounts of textual data

Counts from Google N-Grams: http://books.google.com/ngrams

speech recognition phonetics computer science multi - modal internet steam engine

1900 1905 1910 1915 1920 1925 1930 1935 1940 1945 1950 1955 1960 1965 1970 1975 1980 1985 1990 1995 2000
0,00%

0,00005%

0,0001%

0,00015%

0,0002%

0,00025%

From Counts to Probabilities

P (wn|wn−1)≈
Count (wn−1wn)

Count (wn−1)

From Counts to Probabilities

● count occurrence of N-gram w1..wn in data
● divide by count of w1..wn-1 in data

● for bigrams:

● what happens if some count is zero?

P (wn|wn−1)≈
Count (wn−1wn)

Count (wn−1)

An example trigram

● when looking at the Billion Word Corpus:
P('s|the world) = .33
P(.|the world) = .14
P(,|the world) = .10
P(and|the world) = .02
P(everything else|the world) = .41

● vocabulary limited to 100000 words;
99996 words share less than half the probability

● among those words are things like:
symbols (42 times in first 10 million words),
Sinatra (19 times in first 10 million words),
introspection (3 times in first 10 million words)

Zipf's law

the frequent occurrence of rare events

● language uses few symbols very often and the vast majority
of symbols very infrequently

Zipf's law

the frequent occurrence of rare events

● language uses few symbols very often and the vast majority
of symbols very infrequently

 1

 10

 100

 1000

 10000

 100000

 1e+06

 0 2000 4000 6000 8000 10000 12000 14000 16000 18000 20000

'bill.01.sortedwfreq' using 0:2 every 10

 0

 500000

 1e+06

 1.5e+06

 2e+06

 2.5e+06

 0 10 20 30 40 50 60 70 80 90 100

n
u

m
b

e
r

o
f

u
n
iq

u
e
 w

o
rd

 t
y
p

e
s

size of corpus x 10 million tokens

occurrence of word types in the Billion Word Corpus

Zipf's law

● most things that you will see in practice, you will never have
observed in your training material

● not even the vocabulary is saturated at a billion words
(half of the vocabulary, you've just seen once)

Data-Sparsity and Interpolation

● fix the vocabulary to some number that you like. There's nothing that
you can do for the less frequent words.
– change infrequent words to <UNK> (or some other tag)
– remove sentences that contain infrequent words

● deal with data sparsity of N-grams for the remaining corpus
– move some probability mass to non-occurring N-grams (discounting)
– back-off to N-1 gram if N-gram count is zero
– use a mix of N, N-1, N-2, … N-Grams,

carefully estimate ideal mixture parameters
– use a mix of N-Gram models estimated on different data

Shifting Probability Mass to Unseen Events

● add count of 1 to every N-gram count before estimating
probabilities (has largest effect on zero-occurrence N-grams, → Laplace discounting)
– generalization add α instead of 1, estimate α on development data

● better: estimate the probability for an N-gram that does not
occur in training based on N-grams that occurred once
– generalization: of N-gram that occurred X times based on those

that occurr X+1 times (→ Good-Turing discounting)

N-gram Backoff

● we may never have seen neither „Scottish beer drinkers“ nor
„Scotting beer eaters“ in our corpus (e.g. American data)
– simple discounting will assign identical probabilities, smarter

discounting may do slightly better
● how about „beer drinkers“ vs. „beer eaters“?
● backoff to lower-order n-gram

– however, now we are mixing probability spaces → add a weighing
factor (backoff weight) to fix this, can be computed during model
estimation

Example from Philipp Koehn's slides on this topic, see references.

Advanced smoothing methods

● even better: shift probability mass based on diversity of
words predicted by a history → Witten-Bell discounting

● still better: shift mass based on diversity of histories → Kneser-Ney discounting
● combine with interpolation across model orders
● Kneser-ney discounting with interpolation

usually works best
– and by far outperforms LSTMs :-)

Combining Language Models
with Different Characteristics

● previous slide: LSTMs are not as good as N-gram models
– however, they make different kinds of mistakes

● P(W) = λP1(W) + (1-λP2(W))

– combination of two models is (almost) always better than each
individual model (averaging effect)

● reason: grave mistakes are improved by a larger magnitude than small
improvements are reduced

1e-07

1e-06

1e-05

0.0001

0.001

0.01

0.1

1

Initial
vn
-

reaction
vn
-

from
v‾n
-

Lavrov
vn
2-1

and
vn
2-2

Serdyukov
vn
3-2

,
vn
2-2

though
v‾n
2-2

,
vn
3-3

was
v‾n
4-4

less
v‾n
-3

gracious
‾v‾n
2-2

.
‾v‾n
2-2

standard
split

Evaluating Language Models

● LM should be a good source of information ...
(→ information theory)
... in general (we approximate with some test material)

● test performance on unseen(!) material:
– cross-entropy: estimate number of bits necessary to encode each

word in a sentence given the language model's predictions:

– above measure is in bit (frequent values ~5-10 bit)
– more frequently used: 2H is called perplexity

● interpretation as average branching factor after each word

Ĥ=−
1
m

log2(P (w1 ,w2 ,w3 , ... ,wm))

More Data is Better Data

 6.5

 7

 7.5

 8

 8.5

 1 2 4 8 16 32 64 99

m
o
d

e
l
p

e
rp

le
x
it

y
 /

 e
n
tr

o
p

y
 i
n
 b

it

training size in million sentences

2-gram
3-gram
4-gram
5-gram

one of the largest freely available corpora has barely enough data to saturate bigram training.

Summary

● Ŵ = arg max W : P(O|Ph)  ×P(Ph|W)×P(W)
– P(W): Word Sequence Model → N-Gram

● N-Gram training is simple (counting) and feasible on large
amounts of data

● the limiting factor is often the data
more degrees of freedom → less data per item → ...

● „more advanced“ approaches interpolate with Kneser-Ney
interpolating 5-gram models to get high performance

Thank you.

baumann@informatik.uni-hamburg.de

https://nats-www.informatik.uni-hamburg.de/SLP16

Universität Hamburg, Department of Informatics
Natural Language Systems Group

Further Reading

● Introduction to Language Modelling:

– D. Jurafsky & J. Martin (2009): Speech and Language Processing. Pearson
International. InfBib: A JUR 4204x

● Particularly good explaination (in my view) including details in:

– Philipp Koehn (2010): Statistical Machine Translation. Cambridge University
Press. InfBib: A KOE 45521

Notizen

Desired Learning Outcomes

● know that N-gram models are a good representation of
language and be able to explain why

● understand the problems arising from the estimation of
probabilities from observations, in particular given Zipf 's
law

● remedies: smoothing, interpolation across N-gram order

