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Language Modelling



The Speech Recognition Task

● Given a language L 
● and a sensory impression (observation) O 

– sequence of (MFCC) parameters over sliding windows
● we search Ŵ in L such that 

– Ŵ = arg max W : P(W|O)
the most likely word sequence given the observation

– Ŵ = arg max W : P(O|Ph)P(O|Ph)××P(Ph|W)P(Ph|W)×P(W)P(W)



What information do you/humans use when
estimating the likelihood of word sequences?

small groups, 3 minutes



Language Modelling

assigns a probability to every word sequence W in L 
● L is a closed language 

– the vocabulary of L is fixed
– only word sequences in L can be recognized

● no handling of out-of-vocabulary words (OOV)
– no matter what the input, 

a word sequence in L will be recognized
– Example: let L contain all German even numbers

I say “drei”, the recognizer considers “zwei” or “dreißig”
● how to reject hypotheses when OOV words are spoken?



Language Modelling

assigns a probability to every sentence W in L 
● two types

– structural: weighted grammar (PCFG)
● cannot (easily) be learned from data → manually constructed
● no probabilities for partial sentences, only for complete sentences→ this makes the speech recognition search less efficient
● simplifies natural language understanding (NLU)→ often used in applied spoken dialogue systems

– surface-based: N-Gram model
● next word's probability computed from previous N-1 words
● probability of the sequence is approximated by concatenating the 

probabilities of subsequences of length N



Deriving the N-Gram Model:

● problem is data sparsity, we simply can't estimate P(W) for 
many sentences by looking at data

● however, P(W) = P(w1)P(w2|w1)P(w3|w1,w2) ...
P(wn|w1,w2, ..., wn-1)

● assumption: recent history ismore relevant than more 
distant history → limit history to a fixed number of words

word history



Definition of the N-Gram Model

W = w1, w2, … wn = w1..n

● using the chain rule of probability, we get:
P(W) = ∏k=1..n P(wk|w1..k-1)
– each word's probability depends on its contextual history

● N-Grams approximate the contextual history:
P(wk|w1..k-1) ≈  P(wk|wk-N..k-1)

● the larger N, the better the approximation
● however, the larger N, 

the larger the original problem of data sparsity



A simple example:

“the dog barks”
● simplest form: unigrams (N=1)

P(the dog barks) ≈  P(the) × P(dog) × P(barks)
– not accurate as context is completely ignored 

“dog” is more likely than e.g. “from” after “the”
“the dog” vs. “the from”

● context: bigrams/trigrams
P(the dog barks) ≈  P(the|⟨s⟩) × P(dog|the) × P(barks|dog) × P(⟨/s⟩|barks)
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markers



Relative Frequencies: 
Counting Words over Time

● probability of words is estimated by counting their relative 
occurrence in large amounts of textual data

Counts from Google N-Grams: http://books.google.com/ngrams
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From Counts to Probabilities

P (wn|wn−1)≈
Count (wn−1wn)

Count (wn−1)



From Counts to Probabilities

● count occurrence of N-gram w1..wn in data
● divide by count of w1..wn-1 in data

● for bigrams:

● what happens if some count is zero?

P (wn|wn−1)≈
Count (wn−1wn)

Count (wn−1)



An example trigram

● when looking at the Billion Word Corpus:
P('s|the world) = .33
P(.|the world) = .14
P(,|the world) = .10
P(and|the world) = .02
P(everything else|the world) = .41

● vocabulary limited to 100000 words; 
99996 words share less than half the probability

● among those words are things like: 
symbols (42 times in first 10 million words),
Sinatra (19 times in first 10 million words),
introspection (3 times in first 10 million words)



Zipf's law

the frequent occurrence of rare events

● language uses few symbols very often and the vast majority 
of symbols very infrequently
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● most things that you will see in practice, you will never have 
observed in your training material

● not even the vocabulary is saturated at a billion words
(half of the vocabulary, you've just seen once)



Data-Sparsity and Interpolation

● fix the vocabulary to some number that you like. There's nothing that 
you can do for the less frequent words.
– change infrequent words to <UNK> (or some other tag)
– remove sentences that contain infrequent words

● deal with data sparsity of N-grams for the remaining corpus
– move some probability mass to non-occurring N-grams (discounting)
– back-off to N-1 gram if N-gram count is zero
– use a mix of N, N-1, N-2, … N-Grams, 

carefully estimate ideal mixture parameters
– use a mix of N-Gram models estimated on different data



Shifting Probability Mass to Unseen Events

● add count of 1 to every N-gram count before estimating 
probabilities (has largest effect on zero-occurrence N-grams, → Laplace discounting)
– generalization add α instead of 1, estimate α on development data

● better: estimate the probability for an N-gram that does not 
occur in training based on N-grams that occurred once
– generalization: of N-gram that occurred X times based on those 

that occurr X+1 times (→ Good-Turing discounting)



N-gram Backoff

● we may never have seen neither „Scottish beer drinkers“ nor 
„Scotting beer eaters“ in our corpus (e.g. American data)
– simple discounting will assign identical probabilities, smarter 

discounting may do slightly better
● how about „beer drinkers“ vs. „beer eaters“?
● backoff to lower-order n-gram

– however, now we are mixing probability spaces → add a weighing 
factor (backoff weight) to fix this, can be computed during model 
estimation

Example from Philipp Koehn's slides on this topic, see references.



Advanced smoothing methods

● even better: shift probability mass based on diversity of 
words predicted by a history → Witten-Bell discounting

● still better: shift mass based on diversity of histories → Kneser-Ney discounting
● combine with interpolation across model orders
● Kneser-ney discounting with interpolation 

usually works best
– and by far outperforms LSTMs :-)



Combining Language Models 
with Different Characteristics

● previous slide: LSTMs are not as good as N-gram models
– however, they make different kinds of mistakes

● P(W) = λP1(W) + (1-λP2(W))

– combination of two models is (almost) always better than each 
individual model (averaging effect)

● reason: grave mistakes are improved by a larger magnitude than small 
improvements are reduced
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Evaluating Language Models

● LM should be a good source of information ...
(→ information theory)
... in general (we approximate with some test material)

● test performance on unseen(!) material: 
– cross-entropy: estimate number of bits necessary to encode each 

word in a sentence given the language model's predictions:

– above measure is in bit (frequent values ~5-10 bit)
– more frequently used: 2H is called perplexity

● interpretation as average branching factor after each word

Ĥ=−
1
m

log2(P (w1 ,w2 ,w3 , ... ,wm))



More Data is Better Data
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Summary

● Ŵ = arg max W : P(O|Ph)  ×P(Ph|W)×P(W)
– P(W): Word Sequence Model → N-Gram

● N-Gram training is simple (counting) and feasible on large 
amounts of data

● the limiting factor is often the data 
more degrees of freedom → less data per item → ...

● „more advanced“ approaches interpolate with Kneser-Ney 
interpolating 5-gram models to get high performance



Thank you.
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Further Reading

● Introduction to Language Modelling:

– D. Jurafsky & J. Martin (2009): Speech and Language Processing. Pearson 
International. InfBib: A JUR 4204x

● Particularly good explaination (in my view) including details in:

– Philipp Koehn (2010): Statistical Machine Translation. Cambridge University 
Press. InfBib: A KOE 45521



Notizen



Desired Learning Outcomes

● know that N-gram models are a good representation of 
language and be able to explain why

● understand the problems arising from the estimation of 
probabilities from observations, in particular given Zipf 's 
law

● remedies: smoothing, interpolation across N-gram order


