Specialization Module

Speech Technology

Timo Baumann baumann@informatik.uni-hamburg.de

Speech Recognition

The Chain Model of Communication

Speaker

decoded linguistic representation

sensory impression

Listener

derived from: Pétursson/Neppert: Elementarbuch der Phonetik, 1996.

The Speech Recognition Task

- Given a language \mathcal{L}
- and a sensory impression (observation) **O**
 - sequence of (MFCC) parameters over sliding windows
- we search $\hat{\mathbf{W}}$ in \mathcal{L} such that
 - $\hat{\mathbf{W}} = \arg \max \mathbf{W} : P(\mathbf{W}|\mathbf{O})$ the *most likely* word sequence given the observation
 - maximum-likelihood principle

- how to determine P(W|O)?
- how to organize the search?

Bayes' Rule

Given conditional probabilities A and B:

•
$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$
 $\hat{\mathbf{W}} = \arg \max \mathbf{W} : P(\mathbf{W}|\mathbf{O})$

$$\hat{\mathbf{W}} = \arg\max \mathbf{W} : P(\mathbf{W}|\mathbf{O})$$

- our formula uses arg max \rightarrow the denominator P(B) does not matter, we can ignore it:
- $P(A|B) \sim P(B|A) \times P(A)$

The Speech Recognition Task (II)

- $-\hat{W} = \arg\max W : P(W|O)$

• applying Bayes' rule:
$$P(A|B) = \frac{P(B|A) \times P(A)}{P(B)}$$

- $\hat{W} = \arg \max W : \mathbf{P(O|W)} \times \mathbf{P(W)}$
- P(O|W): acoustic model
 - observation likelihood given a word sequence
 - What do words sound like?
- P(W): language model
 - a priori probability for word sequences
 - What word sequences are likely?

Words or Phonemes?

- acoustics primarily depend on phonemes, not on words
- words have an internal structure (cmp. last week)
 - this was disregarded in early approaches e.g. for single-word recognition. Hence it's almost always ignored in descriptions.
- thus we should rather estimate P(O|Ph), instead of P(O|W)

• we need an additional conversion step that relates words to phoneme sequences P(Ph|W)

The Lexicon – linking acoustic and language models

• thus, we get:

```
\hat{W} = arg max W : \mathbf{P(O|Ph)} \times \mathbf{P(Ph|W)} \times \mathbf{P(W)}
```

- simple lexicons map each word to a phone sequence
- extensions:
 - pronunciation variants for words
 - adapt lexicon at runtime to speaker's pronunciation (tempo, context, dialect, ...)
 - rule-based grapheme-to-phoneme conversion (model phonological rules; may include weighted variants)

The Speech Recognition Task (III)

- $\hat{W} = \arg \max W : \mathbf{P(O|Ph)} \times \mathbf{P(Ph|W)} \times \mathbf{P(W)}$
 - we'll discuss P(W) next week. The simplest form could be a list of possible sentences or a simple context-free grammar
 - we skip **P(Ph|W)** (will be dealt with in one of the labs)
- the acoustic model P(O|Ph)
 - assesses the observed speech signal wrt. a phoneme hypothesis
 - describes the signal by sequence of acoustic features
- $\mathbf{O} = (o_1, o_2, o_3, o_4, \dots o_{tmax})$, with o_i being the feature vectors (e.g. MFCCs) based on short stretches of audio (previous lecture)

From Observations to Probabilities

- each phone model is associated with an acceptance function to map an observation o_i to a probability
- often based on Gaussian distributions:
 - just two parameters: μ and σ
- probability can be computed based on observed value
- o_i could belong to any phone
 - → compute distribution for all phones

From Observations to Probabilities

- each phone model is associated with an acceptance function to map an observation o_i to a probability
- often based on Gaussian distributions:
 - just two parameters: μ and σ
- probability can be computed based on observed value
- o_i could belong to any phone
 - → compute distribution for all phones

Phone Models

- usually, a speech sound will last longer than one observation
 - but how long exactly?
- we model this using transition probabilities
 - phone(states) differ in *likely* duration
- transition probabilities + observation probabilities
 - ... plus Lexicon plus Language Model ...
 - → Hidden Markov Models to the rescue!

Hidden-Markov Models

- unifying model for the speech recognition process
- Markov assumption: we can model the future without looking too far into the past
 - no need for full history to differentiate next observation, the present state is sufficient
- we can construct a state-graph where each state contains the full (relevant) history for determining the next state in the graph

built from language model (here: $S \rightarrow$ "one" | "two"), lexicon (one \rightarrow /W AX N/, two \rightarrow /T OO/), and phone models

• transition probabilities from language model

• expansion to sounds from the lexicon

• acoustic model: transition probabilities (A) and emission/observation probabilities (B)

all we need to do is find the most likely path through the graph

Decoding: Searching the Graph

- we're looking for the path in the graph that
 - distributes the observations to (emitting) phone states
 - while keeping costs at a minimum (identical to the highest probability)

Token-Pass Algorithm: Basic Idea

- time-synchronous search of the observations
 - at every point in time, keep a number of hypotheses, that are represented each by a token
 - generate new tokens from old tokens in every step
 - the winner: best token that reaches the final state in the end

Token-Pass Algorithm: Basic Idea

- every token
 - stores the current state in the graph
 - the sum of costs incurred so far
 - possibly differentiated for LM and AM costs
 - details to preceding token (necessary to recover path)

Token-Pass Algorithm en détail

- start with an empty token in the initial state
- for all tokens
 - take the next observation
 - generate all successor tokens from the current state
 - add costs (transition, observation)
 - of all token that are in one state keep only the best token
 - principle of *dynamic programming*: the best path leading here is the only relevant path in the globally best path

Token-Pass Algorithm

- Initialization: put a token into initial state
- find next tokens (forward to next emitting state)
 - add transition costs for edges
 - add emission/acceptance cost of observation

Token-Pass Algorithm

- Initialization: put a token into initial state
- find next tokens (forward to next emitting state)
 - add transition costs for edges
 - add emission/acceptance cost of observation

- different alignments of observations to one state path
- only the best path needs to be kept
 - all others can't be on the best final path

- different alignments of observations to one state path
- only the best path needs to be kept
 - all others can't be on the best final path

- different alignments of observations to one state path
- only the best path needs to be kept
 - all others can't be on the best final path

- different alignments of observations to one state path
- only the best path needs to be kept
 - all others can't be on the best final path

Limiting the Search

- The search graph may become very large
- remedy:
 - dynamically expand the search graph during recognition
 - only expand where hypotheses are likely
 - purge unlikely hypotheses
 - make the graph more compact by sharing common prefixes

Token-Pass Algorithm: Extensions

- sort tokens by cost in every step and
 - prune list to a maximum of N tokens at every time step
 - keep only tokens that are 'good' relative to the best token
 - → reduces search space but may result in non-optimal path
- it's not necessary to operate time-synchronously
 - could e.g. also use A* search
- more administrative complexity when using dynamic search graph, LexTree, Triphones, ...

Training the HMM-parameters: Baum-Welch Algorithm

- computing Gaussian μ and σ is straightforward from training data
 - ... if we know phoneme/state boundaries beforehand
- in practice we only have texts and corresponding audio
 - 1) turn text into phoneme/state sequence
 - 2) split audio into as many parts as there are states in the sequence
 - 3) estimate parameters based on these state boundaries
 - 4) use parameters to re-align state boundaries
 - 5) goto 3) until convergence

Phone Models (II)

reality is slightly more complex:

- the observation vector is multi-dimensional
 → multi-dimensional Gaussian
- man annensional Gaassian
- there are usually three states per phone (transition/stable phase/next transition) → more states
- phone context shapes acoustics → use Triphone contexts → more states
- probability distribution is not necessarily Gaussian in practice
 - complex distributions can be modelled by mixing multiple Gaussians
 → more parameters per state
- drawback: need to estimate many parameters during training
 - remedy: share mixtures between some phonemes (sharing strategy is determined from training data)

Summary

- Noisy-channel model
- Problem: $\hat{W} = \arg \max W : P(W|O)$
- Solution: $\hat{W} = \arg \max W : P(O|Ph) \times P(Ph|W) \times P(W)$
 - P(W): Word Sequence Model → N-Gram, (weighted) Grammar
 - P(Ph|W): Pronunciation Model → e.g. table lookup, rules, ...
 - P(O|Ph): Allophone Model → Hidden Markov Models
- Search Problem
 - time-synchronous search, dynamic programming
 - Token Pass Algorithmus
 - idea of Baum-Welch training

Thank you.

baumann@informatik.uni-hamburg.de

https://nats-www.informatik.uni-hamburg.de/SLP16

Further Reading

- Speech Recognition in General:
 - D. Jurafsky & J. Martin (2009): *Speech and Language Processing*. Pearson International. InfBib: A JUR 4204x
- Token-Pass Algorithm:
 - Young, Russel, Thornton (1989): "Token Passing: A Simple Conceptual Model for Connected Speech Recognition Systems", *Tech.Rep. CUED/F-INFENG/TR*, Cambridge University.
- The Sphinx-4 Speech Recognizer:
 - Walker et al. (2004): "Sphinx-4: A Flexible Open Source Framework for Speech Recognition", *Tech. Rep. SMLI TR2004-0811*, Sun Microsystems.

Notizen

Desired Learning Outcomes

- understand the optimization target of speech recognition and see implications on the whole-system perspective
- know and understand the details of the basic speech decoding algorithm based on token-passing, as well as be able to discuss its properties