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Speech Recognition



The Chain Model of Communication
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derived from: Pétursson/Neppert: Elementarbuch der Phonetik, 1996.



Noisy-Channel Model
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C. Shannon, W. Weaver: The mathematical theory of communication, 1949.



Noisy-Channel Model
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C. Shannon, W. Weaver: The mathematical theory of communication, 1949.
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Noisy-Channel Model

Listener
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What words,
given the
Sensory impression?
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C. Shannon, W. Weaver: The mathematical theory of communication, 1949.



Noisy-Channel Model
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What words,
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[W = arg max W : P(W|O)
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C. Shannon, W. Weaver: The mathematical theory of communication, 1949.



The Speech Recognition Task

o Given a language £

o and a sensory impression (observation) O
— sequence of (MFCC) parameters over sliding windows
o we search W in £ such that

- W =arg max W : P(W|O)
the most likely word sequence given the observation

— maximum-likelihood principle

« how to determine P(W|O)?

» how to organize the search?



Bayes' Rule

Given conditional probabilities A and B:

P(BJA)xP(A)

* P(AIB)= 5(5)

{W = arg max W : P(W|O)}

o our formula uses arg max — the denominator P(B)
does not matter, we can ignore it:

« P(A|B) ~ P(B|A)xP(A)



The Speech Recognition Task (II)

- W =arg max W : P(W|O)

P(BIA)XP(A)]

o applying Bayes' rule: {P(AB)z P()

- W =arg max W : P(O|W)xP(W)

- P(O|W): acoustic model
» observation likelihood given a word sequence
o What do words sound like?

- P(W): language model
» a priori probability for word sequences

o What word sequences are likely?



Words or Phonemes?

o acoustics primarily depend on phonemes, not on words

« words have an internal structure (cmp. last week)

— this was disregarded in early approaches e.g. for single-word
recognition. Hence it's almost always ignored in descriptions.

o thus we should rather estimate P(O|Ph), instead of P(O|W)

« we need an additional conversion step that relates words to
phoneme sequences P(Ph|W)



The Lexicon - linking acoustic and
language models

o thus, we get:

W = arg max W : P(O|Ph)x P(Ph|W)xP(W)

o simple lexicons map each word to a phone sequence
e extensions:

— pronunciation variants for words

— adapt lexicon at runtime to speaker's pronunciation (tempo,
context, dialect, ...)

— rule-based grapheme-to-phoneme conversion
(model phonological rules; may include weighted variants)



The Speech Recognition Task (lll)

e W =arg max W : P(O|Ph)x P(Ph|W)xP(W)

— well discuss P(W) next week. The simplest form could be a list of
possible sentences or a simple context-free grammar

~ we skip P(Ph|W) (will be dealt with in one of the labs)
o the acoustic model P(O|Ph)

— assesses the observed speech signal wrt. a phoneme hypothesis

— describes the signal by sequence of acoustic features

e 0= (Ob 02,03, 04, ... Otrnax)>
with o; being the feature vectors (e.g. MFCCs)
based on short stretches of audio (previous lecture)



From Observations to Probabilities

o cach phone model is associated with an acceptance function
to map an observation o; to a probability

o often based on Gaussian distributions:
— just two parameters: tand o

o probability can be computed *
based on observed value

e 0; could belong to any phone
— compute distribution
for all phones

phone probability

observed value 0,



From Observations to Probabilities

o cach phone model is associated with an acceptance function
to map an observation o; to a probability

o often based on Gaussian distributions:
— just two parameters: tand o

o probability can be computed * o]
based on observed value
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Phone Models

o usually, a speech sound will last longer than one observation
— but how long exactly?

« we model this using transition probabilities
— phone(states) differ in likely duration

o transition probabilities + observation probabilities

— ... plus Lexicon plus Language Model ...
— Hidden Markov Models to the rescue!



Hidden-Markov Models

o unifying model for the speech recognition process

« Markov assumption: we can model the future without
looking too far into the past

— no need for full history to differentiate next observation,
the present state is sufhicient

e we can construct a state-graph where each state contains the
full (relevant) history for determining the next state in the

graph



The Search Graph
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aus: Walker et al., Sphinx-4: A Flexible Open Source Framework for SR, 2004.



The Search Graph
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The Search Graph
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e expansion to sounds from the lexicon



The Search Graph
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o acoustic model: transition probabilities (A) and
emission/observation probabilities (B)




all we need to do is find the most likely
path through the graph



Decoding: Searching the Graph

 we're looking for the path in the graph that

— distributes the observations to (emitting) phone states

— while keeping costs at a minimum

(identical to the highest probability)
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Token-Pass Algorithm:
Basic Idea

o time-synchronous search of the observations

— at every point in time, keep a number of hypotheses, that are
represented each by a token

— generate new tokens from old tokens in every step

— the winner: best token that reaches the final state in the end
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Token-Pass Algorithm:
Basic Idea

o every foken

— stores the current state in the graph

— the sum of costs incurred so far
o possibly differentiated for LM and AM costs
— details to preceding token (necessary to recover path)
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Token-Pass Algorithm
en détail

o start with an empty token in the initial state

o for all tokens

— take the next observation
— generate all successor tokens from the current state
— add costs (transition, observation)

— of all token that are in one state keep only the best token

o principle of dynamic programming: the best path leading here is the only
relevant path in the globally best path



Token-Pass Algorithm

o Initialization: put a token into initial state

o find next tokens (forward to next emitting state)

— add transition costs for edges

— add emission/acceptance cost of observation
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Token-Pass Algorithm

o Initialization: put a token into initial state

o find next tokens (forward to next emitting state)

— add transition costs for edges

— add emission/acceptance cost of observation
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Token-Pass Algorithm:
Multiple Tokens in the Same State

» different alignments of observations to one state path

o only the best path needs to be kept
— all others can't be on the best final path
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Token-Pass Algorithm:
Multiple Tokens in the Same State

» different alignments of observations to one state path

o only the best path needs to be kept
— all others can't be on the best final path

;%»Q»@
HMM for /W/ &
W

Oo1nce




Token-Pass Algorithm:
Multiple Tokens in the Same State

» different alignments of observations to one state path

o only the best path needs to be kept
— all others can't be on the best final path
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Token-Pass Algorithm:
Multiple Tokens in the Same State

» different alignments of observations to one state path

o only the best path needs to be kept
— all others can't be on the best final path
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Limiting the Search

o The search graph may become very large

o remedy:

— dynamically expand the search graph during recognition

— only expand where hypotheses are likely
o purge unlikely hypotheses

— make the graph more compact by sharing
common prefixes

Ferse

——» Verse

//,, T \\\ //,, T \\\ //,, TN \ "/,f T \\‘
f »E » 6 > n > fen

t | »C > fertig

\\\\\\\\\\\\\\\\\\\\\\\\\




Token-Pass Algorithm:
Extensions

o sort tokens by cost in every step and

— prune list to a maximum of N tokens at every time step

— keep only tokens that are "good' relative to the best token

> reduces search space but may result in non-optimal path
o it's not necessary to operate time-synchronously

— could e.g. also use A* search

» more administrative complexity when using dynamic search
graph, LexTree, Triphones, ...



Training the HMM-parameters:
Baum-Welch Algorithm

« computing Gaussian p and o is straightforward
from training data

— ...if we know phoneme/state boundaries beforehand
o in practice we only have texts and corresponding audio

1) turn text into phoneme/state sequence
2) split audio into as many parts as there are states in the sequence

)
)
3) estimate parameters based on these state boundaries
4) use parameters to re-align state boundaries

)

5) goto 3) until convergence



Phone Models (Il

reality is slightly more complex:

the observation vector is multi-dimensional
— multi-dimensional Gaussian

there are usually three states per phone
(transition/stable phase/next transition) — more states

phone context shapes acoustics — use Triphone contexts — more states
probability distribution is not necessarily Gaussian in practice

— complex distributions can be modelled by mixing multiple Gaussians
— more parameters per state

drawback: need to estimate many parameters during training

— remedy: share mixtures between some phonemes
(sharing strategy is determined from training data)



Sphinx-4: A Flexible Open Source
Framework for Speech Recognition
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Walker et al., Sphinx-4: A Flexible Open Source Framework for SR, 2004.




Sphinx-4: A Flexible Open Source
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Sphinx-4: A Flexible Open Source
Framework for Speech Recognition
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Sphinx-4: A Flexible Open Source
Framework for Speech Recognltlon
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Summary

Noisy-channel model

Problem: W = arg max W : P(W|O)

Solution: W = arg max W : P(O|Ph) xP(Ph|W)xP(W)

— P(W): Word Sequence Model — N-Gram, (weighted) Grammar

— P(Ph|{W): Pronunciation Model — e.g. table lookup, rules, ...
~ P(O|Ph): Allophone Model — Hidden Markov Models

Search Problem

— time-synchronous search, dynamic programming
— Token Pass Algorithmus

— idea of Baum-Welch training



Thank you.
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Further Reading

o Speech Recognition in General:

— D.Jurafsky & J. Martin (2009): Speech and Language Processing. Pearson
International. InfBib: A JUR 4204x

o Token-Pass Algorithm:

— Young, Russel, Thornton (1989): “Token Passing: A Simple Conceptual Model
for Connected Speech Recognition Systems’, Tech. Rep. CUED/F-
INFENG/TR, Cambridge University.

o 'The Sphinx-4 Speech Recognizer:

—  Walker et al. (2004): “Sphinx-4: A Flexible Open Source Framework for
Speech Recognition’, Tech.Rep. SMILI TR2004-0811, Sun Microsystems.



Notizen



Desired Learning Outcomes

o understand the optimization target of speech recognition
and see implications on the whole-system perspective

« know and understand the details of the basic speech
decoding algorithm based on token-passing, as well as be
able to discuss its properties



