
Specialization Module

Speech Technology

Timo Baumann
baumann@informatik.uni-hamburg.de

Universität Hamburg, Department of Informatics
Natural Language Systems Group

Speech Recognition

The Chain Model of Communication

Speaker Listenerdecoded
linguistic

representation

sensory
impression

derived from: Pétursson/Neppert: Elementarbuch der Phonetik, 1996.

speech sound

Noisy-Channel Model

Speaker Listener

C. Shannon, W. Weaver: The mathematical theory of communication, 1949.

Word, Word, Word.

speech sound

Noisy-Channel Model

Speaker Listener

C. Shannon, W. Weaver: The mathematical theory of communication, 1949.

Word, Word, Word.

speech sound

Noise!Noise!

distorteddistorted sensory
impression

Noisy-Channel Model

Speaker Listener

C. Shannon, W. Weaver: The mathematical theory of communication, 1949.

Word, Word, Word.

speech sound

Noise!Noise!

What words,
given the

sensory impression?

distorteddistorted sensory
impression

Noisy-Channel Model

Speaker Listener

C. Shannon, W. Weaver: The mathematical theory of communication, 1949.

Word, Word, Word.

speech sound

Noise!Noise!

What words,
given the

sensory impression?

distorteddistorted sensory
impression

Ŵ = arg max W : P(W|O)Ŵ = arg max W : P(W|O)

The Speech Recognition Task

● Given a language L
● and a sensory impression (observation) O

– sequence of (MFCC) parameters over sliding windows
● we search Ŵ in L such that

– Ŵ = arg max W : P(W|O)
the most likely word sequence given the observation

– maximum-likelihood principle

● how to determine P(W|O)?
● how to organize the search?

Bayes' Rule

Given conditional probabilities A and B:

●

● our formula uses arg max   → the denominator P(B)
does not matter, we can ignore it:

● P(A|B) ~ P(B|A)×P(A)

P (A∣B)=
P(B∣A)×P (A)

P(B)
Ŵ = arg max W : P(W|O)Ŵ = arg max W : P(W|O)

The Speech Recognition Task (II)

– Ŵ = arg max W : P(W|O)

● applying Bayes' rule:

– Ŵ = arg max W : P(O|W)P(O|W)×P(W)P(W)

– P(O|W): acoustic modelacoustic model
● observation likelihood given a word sequence
● What do words sound like?

– P(W): language modellanguage model
● a priori probability for word sequences
● What word sequences are likely?

P (A∣B)=
P (B∣A)×P (A)

P (B)

Words or Phonemes?

● acoustics primarily depend on phonemes, not on words
● words have an internal structure (cmp. last week)

– this was disregarded in early approaches e.g. for single-word
recognition. Hence it's almost always ignored in descriptions.

● thus we should rather estimate P(O|Ph), instead of P(O|W)

● we need an additional conversion step that relates words to
phoneme sequences P(Ph|W)

The Lexicon – linking acoustic and
language models

● thus, we get:

Ŵ = arg max W : P(O|Ph)P(O|Ph)×P(Ph|W)P(Ph|W)×P(W)P(W)

● simple lexicons map each word to a phone sequence
● extensions:

– pronunciation variants for words
– adapt lexicon at runtime to speaker's pronunciation (tempo,

context, dialect, …)
– rule-based grapheme-to-phoneme conversion

(model phonological rules; may include weighted variants)

The Speech Recognition Task (III)

● Ŵ = arg max W : P(O|Ph)P(O|Ph)×P(Ph|W)P(Ph|W)×P(W)P(W)
– we'll discuss P(W)P(W) next week. The simplest form could be a list of

possible sentences or a simple context-free grammar
– we skip P(Ph|W)P(Ph|W) (will be dealt with in one of the labs)

● the acoustic model P(O|Ph)acoustic model P(O|Ph)
– assesses the observed speech signal wrt. a phoneme hypothesis
– describes the signal by sequence of acoustic features

● O = (o1, o2, o3, o4, … otmax),
with oi being the feature vectors (e.g. MFCCs)
based on short stretches of audio (previous lecture)

From Observations to Probabilities

observed value oi

ph
on

e
pr

ob
ab

ili
ty

● each phone model is associated with an acceptance function
to map an observation oi to a probability

● often based on Gaussian distributions:
– just two parameters: µ and σ

● probability can be computed
based on observed value

● oi could belong to any phone → compute distribution
for all phones

From Observations to Probabilities

observed value oi

ph
on

e
pr

ob
ab

ili
ty

[p] [t] [k]

● each phone model is associated with an acceptance function
to map an observation oi to a probability

● often based on Gaussian distributions:
– just two parameters: µ and σ

● probability can be computed
based on observed value

● oi could belong to any phone → compute distribution
for all phones

Phone Models

● usually, a speech sound will last longer than one observation
– but how long exactly?

● we model this using transition probabilities
– phone(states) differ in likely duration

● transition probabilities + observation probabilities
– … plus Lexicon plus Language Model … → Hidden Markov Models to the rescue!

Hidden-Markov Models

● unifying model for the speech recognition process
● Markov assumption: we can model the future without

looking too far into the past
– no need for full history to differentiate next observation,

the present state is sufficient
● we can construct a state-graph where each state contains the

full (relevant) history for determining the next state in the
graph

The Search Graph

built from language model (here: S→“one”|“two”),
lexicon (one→/W AX N/, two→/T OO/), and phone models

aus: Walker et al., Sphinx-4: A Flexible Open Source Framework for SR, 2004.

The Search Graph

● transition probabilities from language model

The Search Graph

● expansion to sounds from the lexicon

The Search Graph

● acoustic model: transition probabilities (A) and
emission/observation probabilities (B)

all we need to do is find the most likely
path through the graph

Decoding: Searching the Graph

● we're looking for the path in the graph that
– distributes the observations to (emitting) phone states
– while keeping costs at a minimum

(identical to the highest probability)

Token-Pass Algorithm:
Basic Idea

● time-synchronous search of the observations
– at every point in time, keep a number of hypotheses, that are

represented each by a token
– generate new tokens from old tokens in every step
– the winner: best token that reaches the final state in the end

Token-Pass Algorithm:
Basic Idea

● every token
– stores the current state in the graph
– the sum of costs incurred so far

● possibly differentiated for LM and AM costs
– details to preceding token (necessary to recover path)

Token-Pass Algorithm
en détail

● start with an empty token in the initial state
● for all tokens

– take the next observation
– generate all successor tokens from the current state
– add costs (transition, observation)
– of all token that are in one state keep only the best token

● principle of dynamic programming: the best path leading here is the only
relevant path in the globally best path

Token-Pass Algorithm

● Initialization: put a token into initial state
● find next tokens (forward to next emitting state)

– add transition costs for edges
– add emission/acceptance cost of observation

Token-Pass Algorithm

● Initialization: put a token into initial state
● find next tokens (forward to next emitting state)

– add transition costs for edges
– add emission/acceptance cost of observation

Token-Pass Algorithm:
Multiple Tokens in the Same State

● different alignments of observations to one state path
● only the best path needs to be kept

– all others can't be on the best final path

Token-Pass Algorithm:
Multiple Tokens in the Same State

● different alignments of observations to one state path
● only the best path needs to be kept

– all others can't be on the best final path

Token-Pass Algorithm:
Multiple Tokens in the Same State

● different alignments of observations to one state path
● only the best path needs to be kept

– all others can't be on the best final path

Token-Pass Algorithm:
Multiple Tokens in the Same State

● different alignments of observations to one state path
● only the best path needs to be kept

– all others can't be on the best final path

Limiting the Search

● The search graph may become very large
● remedy:

– dynamically expand the search graph during recognition
– only expand where hypotheses are likely

● purge unlikely hypotheses
– make the graph more compact by sharing

common prefixes

E n6

@z

t

f

I C

Ferse

Verse

fern

fertig

Token-Pass Algorithm:
Extensions

● sort tokens by cost in every step and
– prune list to a maximum of N tokens at every time step
– keep only tokens that are `good' relative to the best token
➔ reduces search space but may result in non-optimal path

● it's not necessary to operate time-synchronously
– could e.g. also use A* search

● more administrative complexity when using dynamic search
graph, LexTree, Triphones, …

Training the HMM-parameters:
Baum-Welch Algorithm

● computing Gaussian µ and σ is straightforward
from training data
– ... if we know phoneme/state boundaries beforehand

● in practice we only have texts and corresponding audio
1) turn text into phoneme/state sequence
2) split audio into as many parts as there are states in the sequence
3) estimate parameters based on these state boundaries
4) use parameters to re-align state boundaries
5) goto 3) until convergence

Phone Models (II)

reality is slightly more complex:
● the observation vector is multi-dimensional→ multi-dimensional Gaussian
● there are usually three states per phone

(transition/stable phase/next transition) → more states
● phone context shapes acoustics → use Triphone contexts → more states
● probability distribution is not necessarily Gaussian in practice

– complex distributions can be modelled by mixing multiple Gaussians → more parameters per state
● drawback: need to estimate many parameters during training

– remedy: share mixtures between some phonemes
(sharing strategy is determined from training data)

Sphinx-4: A Flexible Open Source
Framework for Speech Recognition

Walker et al., Sphinx-4: A Flexible Open Source Framework for SR, 2004.

Sphinx-4: A Flexible Open Source
Framework for Speech Recognition

Walker et al., Sphinx-4: A Flexible Open Source Framework for SR, 2004.

speech signalspeech signal
parameterizationparameterization

observationobservation
vector every vector every

10 ms10 ms

Sphinx-4: A Flexible Open Source
Framework for Speech Recognition

Walker et al., Sphinx-4: A Flexible Open Source Framework for SR, 2004.

speech signalspeech signal
parameterizationparameterization

observationobservation
vector every vector every

10 ms10 ms SearchGraph is an interfaceSearchGraph is an interface
 → → allows all sorts of graph layoutsallows all sorts of graph layouts

P(O | Ph)P(O | Ph)
W Ph→W Ph→
P(W)P(W)

Sphinx-4: A Flexible Open Source
Framework for Speech Recognition

Walker et al., Sphinx-4: A Flexible Open Source Framework for SR, 2004.

speech signalspeech signal
parameterizationparameterization

observationobservation
vector every vector every

10 ms10 ms SearchGraph is an interfaceSearchGraph is an interface
 → → allows all sorts of graph layoutsallows all sorts of graph layouts

P(O | Ph)P(O | Ph)
W Ph→W Ph→
P(W)P(W)

Ŵ = arg max W : P(W|O) Ŵ = arg max W : P(W|O) 

 → → Token Pass AlgorithmusToken Pass Algorithmus

Summary

● Noisy-channel model
● Problem: Ŵ = arg max W : P(W|O) 
● Solution: Ŵ = arg max W : P(O|Ph)  ×P(Ph|W)×P(W)

– P(W): Word Sequence Model → N-Gram, (weighted) Grammar
– P(Ph|W): Pronunciation Model → e.g. table lookup, rules, ...
– P(O|Ph): Allophone Model → Hidden Markov Models

● Search Problem
– time-synchronous search, dynamic programming
– Token Pass Algorithmus
– idea of Baum-Welch training

Thank you.

baumann@informatik.uni-hamburg.de

https://nats-www.informatik.uni-hamburg.de/SLP16

Universität Hamburg, Department of Informatics
Natural Language Systems Group

Further Reading

● Speech Recognition in General:

– D. Jurafsky & J. Martin (2009): Speech and Language Processing. Pearson
International. InfBib: A JUR 4204x

● Token-Pass Algorithm:

– Young, Russel, Thornton (1989): “Token Passing: A Simple Conceptual Model
for Connected Speech Recognition Systems”, Tech.Rep. CUED/F-
INFENG/TR, Cambridge University.

● The Sphinx-4 Speech Recognizer:

– Walker et al. (2004): “Sphinx-4: A Flexible Open Source Framework for
Speech Recognition”, Tech.Rep. SMLI TR2004-0811, Sun Microsystems.

Notizen

Desired Learning Outcomes

● understand the optimization target of speech recognition
and see implications on the whole-system perspective

● know and understand the details of the basic speech
decoding algorithm based on token-passing, as well as be
able to discuss its properties

