A machine translation system into a minority language

Petr Homola & Vladislav Kuboň.

RANLP MT workshop 2005, Borovets

September 24, 2005

Overview

- Lower Sorbian basic facts
- similarity of languages
- MT a shallow approach
- system architecture
- final remarks & future work

Lower Sorbian

- spoken in Lower Lusatia
- West Slavonic
- centre: Chóśebuz/Cottbus
- -10,000 speaker

Lower Sorbian (2)

- rich inflection
- free word order (unmarked: SOV)
- archaic features
 - dual, aorist, imperfect, supine
- influenced by German

Česílko – motivation

- assumption: MT among closely related languages doesn't require full syntactic analysis and transfer
- advantages: shallow MT is more robust and simpler to implement
- basic question: how 'deep' do we have to analyze sentences?

Levels of language similarity

- closely related languages (e.g., Czech/Slovak, Upper/Lower Sorbian)
- related languages
 - one family (e.g., Slovak/Polish/Russian)
 - across families (e.g., Polish/Lithuanian)
- other cases (e.g., English/Hungarian)

Česílko: languages

Baltic

Russian, Serbo-Croatian Polish Sorbian Slovak Czech Czech-Slovak West-Slavic

System architecture

Morphological processing

- analysis
 - over 800.000 lemmas (20 mio inflected word forms)
 - 15 positional tags
- disambiguation
 - stochastical, trained on the Prague
 Dependency Treebank
 - accuracy 95%

Dictionaries

- domain-related
 - individual words, multiple-word terms
 - organized hierarchically (most specific first)
- general
- translating: lemmas, tagsets

Partial syntactic analysis

- rule based
- analyzing simple constituents (e.g., NP, PP)
- partial (e.g., no embedded sentences in NPs)
- implementation:
 - chunk parser & feature structures
 - similar to LFG

Partial SA (2)

- context-free rules
 - result: c-structure (phrase structure tree)
 - \blacksquare e.g., NP \rightarrow A N
- constraints (equations for unification)
 - result: f-structure (feature structure)

Transfer: morphology

- different morphological features
- example: jazyk "language"
 - Czech: gender=masc
 - Sorbian: lemma=*rěc*, gender=*fem*

Transfer: problems

- for example:
 - agreement (e.g., $srbsk\acute{y}_{masc}$ $jazyk \rightarrow serbska_{fem}$ $r\check{e}c$ "Sorbian language")
 - structural difference (e.g., $kniha_{sg}je_{aux,3sg}$ $psána_{pass,part}$ $otcem_{ins} \rightarrow knigly_{pl}se_{refl}pišu_{3pl}$ wót $nana_{gen}$ "a/the book is being written by the father")

Shallow SA: example

kniha je psána otcem"a/the book is being written by the father"

syntactic tree

Shallow SA: example (2)

kniha je psána otcem "a/the book is being written by the father"

partial syntactic trees

Transfer: example

shallow

Transfer: example (2)

Example: input FS

#input[POS: 'subst', CASE: #nom[],
ORDER: '1', CAPITAL: '1', FORM: 'Praha',
NEG: 'pos', GENDER: #fem[], LEMMA:
'Praha', ORIGTAG: 'NNFS1-----',
NUMBER: #sg[]]

Example: rule

```
[SPAN: 3,
   COND: 'fs1#subtype("word") & fs2#type() = "filler" &
   fs3#subtype("word")
   & fsi#featureValue("POS") = "adj" &
   fs3#featureValue("POS") = "subst"
   & setFsVar("GENDER", fs1#unifyAtt(fs3, "GENDER"))!
   null & setFsVar("CASE", fs1#unifyAtt(fs3, "CASE"))! null &
   setFsVar("NUMBER", fs1#unifyAtt(fs3, "NUMBER"))! null',
   NEW: 'clone(fs3)#setFsAtt("ADJ",
   fsi)#setTextAtt("PHRASE", fsi#featureValue("PHRASE") +
  " " +
   fs3#featureValue("PHRASE"))#replaceFsAtt("GENDER",
   getFsVar("GENDER"))#replaceFsAtt("CASE",
   getFsVar("CASE"))#replaceFsAtt("NUMBER",
   getFsVar("NUMBER"))',
   LOG: "R1"]
```

Evaluation

- tool: Trados Translator's Workbench
- translated text corrected manually to ensure grammaticality
- average accuracy ~ weighted average of accuracy over all sentences
 - weight: the length of the sentence (number of words)

Evaluation (2)

from Czech into Lower Sorbian

	tagger	manual
no parser	92%	93%
shallow	93%	95%

Evaluation (3)

source language: Czech

target language	w eighted avg.	synt. analysis
Slovak	90%	none
Polish	71.4%	none
Lithuanian	87.6%	shallow
Lower Sorbian	93%	shallow

Limits

- only local dependencies
- no non-projective structures
- valence (verbs, adjectives...)
- information structure (topic/focus articulation)

In progress: deep analysis

- taking verbal valence into account
- goal: recognize all projective dependencies
- comparison with shallow approach
 - shallow: -40% sentences translated correctly
 - deep: lower variance of ill-formed sentences

Final remarks

- shallow MT is sufficient to produce raw translation between related languages
- saves work of human translators
- comparatively easy to implement
 - only 10 syntactic rules (-40 for deep analysis so far)

Future work

- many errors caused by the tagger
 - try to use non-disambigusted output
- other problem: semantic ambiguity
 - e.g., Sorbian: dajo
 - 1. "to give"
 - 2. "there is..."

Thank you