
MetaMorpho TM:

a linguistically enriched

translation memory

Gábor Hodász and Gábor Pohl
Pázmány Péter Catholic University

Faculty of Information Technology

Budapest, Hungary
{hodasz, pohl}@morphologic.hu

24th September, 2005.

Introduction - 1

• Translation Memory (TM):
the most important task is:

searching for similar segments that are
translated previously

• Example Based Machine Translation
(EBMT):

building segments from pieces in the TM
which makes the Memory more reusable

- what is a piece?

- how to build?

Introduction – 2

• widely used search algorithms:

– character based similarity

– fuzzy index

– language independent

– not effective in the case of
agglutinative languages (like hungarian)

– quick and small algorithms

Our solution – 1

Linguistic based similarity measure:

– based on Levenshtein distance

– calculated on tokens

– uses morphological tagging

• PRO:

– gives better result, especially in the
case of agglutinative languages

• CON:

– language dependent

– morphological ambiguity

Our solution – 2

The use of sub-sentential segments
– noun phrases (NPs)

– morphological tagging

– automatic NP alignment

• PRO:
– answers can be modular

– and can be linguistically evaluated and
transformed

• CON:
– difficult task to determine a NP

– language dependent

Levels of Analysis

• Word-level analysis

– stemming and morphology

• NP parsing

– shallow structure retained only

• Sentence skeletons

– NPs are substituted by NP slots

– with certain properties (features)
registered

Process overview - 1

add new entry:

• analyse segments on both sides (SL, TL)

– > NPs, skeletons

– > morphological tagging

• align NPs

• store in DB:

– skeleton pairs

– NP pairs

Process overview - 2

entry lookup:

• analyse segment on SL side

• searching:
– similar whole sentences

– similar sentence skeletons

– similar NPs

• building a tiled sentence from
components

• morphological transformation
according to the search sentence

Linguistic Similarity

• based on Levenshtein distance

• on morphologically analysed tokens

• calculated on 3 levels of similarity:

– surface form (L1)

– lemma (L2)

– class (L3)

• ambiguity is managed with a POS
tagger (Brill)

Multilayer Similarity Measure

between sequences of terms

where

- the ith similarity layer of the
nth segment (sentence or NP)

- the sequence of tokens

- the Levenshtein distance

- the similarity vector

()

))](),((

)),...,(),(()),(),(([

)(),(

1,21,11

1,21,11,2,1

21

LLL

LiLiLiLiLiLi

SSed

SSedSSed

SSED

!!

!!!!

!!

"""

=

i
Ln

S
,

()S!

()ji SSed ,

),(YXED

English-Hungarian

NP-alignment

En-Hu NP-alignment

Previous Work

• Corpus-based (offline) methods

– word alignment models

– Julian Kupiec: An Algorithm for finding Noun
Phrase Correspondences in Bilingual Corpora.
(ACL 1993)

• simple NP chunk alignment

• Parse tree alignment

– Groves, D, Hearne, M and Way, A.: Robust Sub-
Sentential Alignment of Phrase-Structure
Trees. (COLING'04)

• EN-FR tree alignment

En-Hu NP-alignment

Reasons for developing a new means

• Requirements
– speed

– accuracy

• Statistics-based tools
– require large corpora

– offline processing

– Hungarian has a rich morphology
• stemming helps — but which stem to choose?

• Parse tree alignment
– (So far) only for languages with similar parse

trees.

!Dictionary and POS-based alignment of
parsed English and Hungarian NPs.

En-Hu NP-alignment

NP similarity score

• For each possible NP pair we calculate a
heuristic matching score from the number
of tokens matched by:

– dictionary-based matching
• stemmed search

• expressions covered by longer ones are filtered
(e.g. inside “hard disk drive”)

– cognate matching

– POS-matching among lexically unmatched tokens

– number of unmatched content words and
ignored grammar words (PRON, DET, etc.)

En-Hu NP-alignment

How to find NPs?

• English side:
– MetaMorpho English parser

• Hungarian side:
– MetaMorpho Hungarian parser (still in early

development) ! bad precision / recall

– Guess Hungarian NP candidates corresponding to
the parsed English NPs using dictionary matching,
cognate matching, POS matching and a simple
Hungarian NP grammar.

En-Hu NP-alignment

First results with guessed Hungarian NPs

• We used a relatively small dictionary

– 116,000 word/expression pairs

• 40 test sentence pairs from a translated book
on computer networks

– average sentence length: 23 words

• Only 56% of parsed English NPs had an
alignable translation in the Hungarian side.

• Alignment precision: 84%

– 91% without sentence pairs where more than half
of the NPs were translated to VPs.

• Alignment recall: 65%

Implementation

• Relational database (MySQL)

– storing aligned sentences and NPs

• Similarity calculation and NP alignment
implemented in C++

• fully functioning graphical user
interface implemented in C#

Conclusion

Our approach attempts at providing

significantly higher quality translations:

• using 3 level similarity on tokens

• using aligned sub-sentential segments

(NPs and sentence skeletons)

• building a tiled suggestion of translation

• with morphologically correct answer

generation

Future work

• Indexing algorithm to improve
performance

• Automatic (offline) dictionary building to
extend alignment dictionary

• Evaluation
– Selecting the proper method

– Doing the work

• Integration of a terminology management
system

• Fallback to traditional fuzzy indexing

!"#$%&#'(!

