Gábor Hodász and Gábor Pohl

Pázmány Péter Catholic University Faculty of Information Technology Budapest, Hungary

{hodasz, pohl}@morphologic.hu

24th September, 2005.

Fides et Rais

Introduction - 1

- Translation Memory (TM): the most important task is:
 - searching for similar segments that are translated previously
- Example Based Machine Translation (EBMT):

building segments from pieces in the TM which makes the Memory more reusable

- what is a piece?
- how to build?

Introduction - 2

- widely used search algorithms:
 - character based similarity
 - fuzzy index
 - language independent
 - not effective in the case of agglutinative languages (like hungarian)
 - quick and small algorithms

Our solution - 1

Linguistic based similarity measure:

- based on Levenshtein distance
- calculated on tokens
- uses morphological tagging
- PRO:
 - gives better result, especially in the case of agglutinative languages
- CON:
 - language dependent
 - morphological ambiguity

Our solution - 2

The use of sub-sentential segments

- noun phrases (NPs)
- morphological tagging
- automatic NP alignment
- PRO:
 - answers can be modular
 - and can be linguistically evaluated and transformed
- CON:
 - difficult task to determine a NP
 - language dependent

Levels of Analysis

- Word-level analysis
 - stemming and morphology
- NP parsing
 - shallow structure retained only
- Sentence skeletons
 - NPs are substituted by NP slots
 - with certain properties (features) registered

b C d

Process overview - 1

add new entry:

- analyse segments on both sides (SL, TL)
 - > NPs, skeletons
 - > morphological tagging
- align NPs
- store in DB:
 - skeleton pairs
 - NP pairs

Process overview - 2

entry lookup:

- analyse segment on SL side
- searching:
 - similar whole sentences
 - similar sentence skeletons
 - similar NPs
- building a tiled sentence from components
- morphological transformation according to the search sentence

Linguistic Similarity

- based on Levenshtein distance
- on morphologically analysed tokens
- calculated on 3 levels of similarity:
 - surface form (L1)
 - lemma (L2)
 - class (L3)
- ambiguity is managed with a POS tagger (Brill)

Multilayer Similarity Measure between sequences of terms

$$\begin{split} &ED\big(\sigma(S_{1}),\sigma(S_{2})\big) = \\ &[ed_{Li}(\sigma(S_{1,Li}),\sigma(S_{2,Li})),ed_{Li-1}(\sigma(S_{1,Li-1}),\sigma(S_{2,Li-1})),...,\\ &ed_{L1}(\sigma(S_{1,L1}),\sigma(S_{2,L1}))] \end{split}$$

where

 S_{n,L_i} - the ith similarity layer of the nth segment (sentence or NP)

 $\sigma(S)$ - the sequence of tokens

 $ed(S_i, S_j)$ - the Levenshtein distance

ED(X,Y) - the similarity vector

En-Hu NP-alignment Previous Work

- Corpus-based (offline) methods
 - word alignment models
 - Julian Kupiec: An Algorithm for finding Noun Phrase Correspondences in Bilingual Corpora. (ACL 1993)
 - simple NP chunk alignment
- Parse tree alignment
 - Groves, D, Hearne, M and Way, A.: Robust Sub-Sentential Alignment of Phrase-Structure Trees. (COLING'04)
 - EN-FR tree alignment

En-Hu NP-alignment

Reasons for developing a new means

- Requirements
 - speed
 - accuracy
- Statistics-based tools
 - require large corpora
 - offline processing
 - Hungarian has a rich morphology
 - stemming helps but which stem to choose?
- · Parse tree alignment
 - (So far) only for languages with similar parse trees.
- → Dictionary and POS-based alignment of parsed English and Hungarian NPs.

En-Hu NP-alignment

NP similarity score

- For each possible NP pair we calculate a heuristic matching score from the number of tokens matched by:
 - dictionary-based matching
 - stemmed search
 - expressions covered by longer ones are filtered (e.g. inside "hard disk drive")
 - cognate matching
 - POS-matching among lexically unmatched tokens
 - number of unmatched content words and ignored grammar words (PRON, DET, etc.)

En-Hu NP-alignment

How to find NPs?

- English side:
 - MetaMorpho English parser
- Hungarian side:
 - MetaMorpho Hungarian parser (still in early development) → bad precision / recall
 - Guess Hungarian NP candidates corresponding to the parsed English NPs using dictionary matching, cognate matching, POS matching and a simple Hungarian NP grammar.

"[1] have read [his recently published book]."

"Elolvastam | ←a nemrég kiadott könyvét → | ."

NP expansion

En-Hu NP-alignment

First results with guessed Hungarian NPs

- We used a relatively small dictionary
 - 116,000 word/expression pairs
- 40 test sentence pairs from a translated book on computer networks
 - average sentence length: 23 words
- Only 56% of parsed English NPs had an alignable translation in the Hungarian side.
- Alignment precision: 84%
 - 91% without sentence pairs where more than half of the NPs were translated to VPs.
- Alignment recall: 65%

- storing aligned sentences and NPs
- Similarity calculation and NP alignment implemented in C++
- fully functioning graphical user interface implemented in C#

Conclusion

Our approach attempts at providing significantly higher quality translations:

- using 3 level similarity on tokens
- using aligned sub-sentential segments
 (NPs and sentence skeletons)
- building a **tiled** suggestion of translation
- with morphologically correct answer generation

- Indexing algorithm to improve performance
- Automatic (offline) dictionary building to extend alignment dictionary
- Evaluation
 - Selecting the proper method
 - Doing the work
- Integration of a terminology management system
- Fallback to traditional fuzzy indexing

Благодаря!

