
Automatic Subtitle Generation

Project Report

2016 Speech Technology Project BSc./MSc.

Universität Hamburg

Contents

1 Goals and Motivation 5

2 Previous Work 7

3 Development 9
3.1 Software- and Datastructure . 9
3.2 Input . 10
3.3 Fake Timings . 11
3.4 Denormalize . 12
3.5 Repairs . 12

3.5.1 Defining fillers and articles . 13
3.5.2 Removal of excess fillers . 13
3.5.3 Repairing of articles . 14
3.5.4 Repairs where a filler is between identical words 14
3.5.5 Repairs where a filler is between articles 15
3.5.6 Repairs where a filler is in between 4 words 15
3.5.7 Tagging remaining fillers . 16

3.6 Punctuation . 17
3.6.1 Sphinx Postprocessing Framework 17
3.6.2 punctatuor2.py . 18
3.6.3 Comparison . 20

3.7 Syntax . 20
3.8 Abbreviate . 21
3.9 Chunkify . 22

3.9.1 Chunking rules . 22
3.9.2 Chunking modules . 23

3.10 Output . 24

4 Evaluation 27
4.1 Framework . 27
4.2 Utilities . 28

3

4 Contents

4.3 Study . 28
4.3.1 Quantitative Results . 28
4.3.2 Qualitative Results . 29

5 Conclusion 31

Bibliography 33

A Who wrote what 35

Chapter 1

Goals and Motivation

In this year’s Speech Technology project, our task was to write software that au-
tomatically generates subtitles for German lecture videos by using transcripts. We
were, however, free to further specify this task and decide for ourselves what kind
of subtitles we wanted to generate. As a target audience we chose both hear-
ing impaired students that might want to watch lectures online and students that
just wanted to read a transcript without listening to the lecture. What both these
groups have in common when it comes to subtitles is, that the subtitles should be
as comfortable to read as possible. Our criteria to work towards good readability
on the screen were the removal of excess fillers like “äh” or “ähm”, trying to fix
more complicated mistakes in speech, denormalizing numbers, adding common
abbreviations and punctuation and then creating chunks of text that are split syn-
tactically well and have a good length for reading. Other aspects that weren’t as
important consequently were the accurate reproduction of the speakers words and
alignment to the video.
The starting point from where we’ve been working are transcripts of lectures that
have been created manually and look like automatic speech recognition output.
That means we can assume everything that has been said is written down cor-
rectly, including unfinished words and repetitions. Punctuation and capitalization
depending on punctuation are not included, other capitalization is. This is of
course a bit of a special case, so the software might have to be modified slightly to
work well on automatic speech recognition output.
Last year’s project also worked on automated subtitling, albeit in English, so we
reviewed and reused some of their results, particularly in our software structure.
It’s a pipeline of different modules that will be explained in the order they’re tra-
versed in the development part of this report. We conducted a study concerning
the quality of our pipeline output, which will be discussed in the evaluation sec-
tion.

5

Chapter 2

Previous Work

Most notably this years project relies on the work done in last years project. It was
also focused on subtitles for videos, although with different input. The project fo-
cused on aligning a given transcript to a given video and segmenting the transcript
into chunks which are appropriate for display as subtitles. They used transcripts
written by humans, and isolated the alignment problem.

In contrast, this project uses speech recognition output instead of human writ-
ten transcripts, which means that for generating subtitles, the alignment of the text
to the video is not a problem, because speech recognition output already has tim-
ings attached to the words. However, the output of speech recognition is not the
same as a traditional transcript; it is missing punctuation, capitalization of words
and various other properties a human does on the fly.

The previous project established various technical basics which were reused.
Transforming the input to video subtitles is done in multiple steps, therefore the
software uses a pipeline structure. Last years project decided to use python to
write the pipeline, because this makes it easy to also integrate other programs
written in different languages into the pipeline, such as CMU Sphinx, MaryTTS
or a Syntaxparser (See 3.7). Other basic software infrastructure was also reused,
such as reading input files, writing output files and handling configuration files
and command line switches, as these parts of a program are always necessary and
mostly independent of what the software actually does.

7

Chapter 3

Development

Software- and Datastructure

This years project is build upon the software which was created by the last Speech
Technology project. The basic software structure is a pipeline of different modules
which all interact with a central data structure. The software takes a config file as
input, in which the user can specify which modules he wants to run. When the
software is executed the config gets read and it runs all chosen modules one after
another. Additional information which might be needed for individual modules is
also passed on from the config file.
Since modules can’t interact directly with each other a central data structure is
needed to pass along the pipeline. This data structure is an instance of the Data
class, which is structured in the following way:

1 {
2 "words": [],
3 "sentences": [],
4 "chunks":[]
5 }

The Data class consists of three lists of Objects:

1. words:
A Word object represents one individual word of the transcript. Every Word
object has attributes like a string of the word itself, an index which shows
the position of the word in the transcript and additional information that is
added by the different modules.

1 {
2 "original": "ja",
3 "index": 0,
4 "syntax_relation": "S",

9

10 Chapter 3. Development

5 ...
6 }

2. sentences:
A Sentence object represents one sentence of the transcript. All Sentences have
the index of the first and last word, marking the beginning and end of the
sentence, as attributes.

1 {
2 "start_word": 0,
3 "end_word": 34
4 }

3. chunks:
A Chunk object represents one subtitle. All Chunks have the index of their
start- and end-words as attributes. They also hold start- and end-timings for
the subtitle if the input-transcript provided timing information.

1 {
2 "start_word": 0,
3 "end_word": 11,
4 "start_time": 960,
5 "end_time": 7420
6 }

During runtime each module reads from this Data object and modifies it. After a
module has finished its job the Data object is updated and then passed along to
the next module in the pipeline. The end-product of the pipeline is a list of Chunk
objects that can be output as an .srt subtitle file.
The following sections will cover the individual modules of the pipeline.

Input

The input module is always the beginning of the pipeline. It has the purpose of
initialising the Data object with the data from the input-transcript.
The module splits the text from the transcript into single-word tokens and adds
them with their index to the Word-list in the Data object.
If the input-transcript was already a subtitle file (.eaf or .srt), the module also
takes the preexisting subtitles and adds them to the Chunk-list in the Data obe-
jct. These Chunks will be overwritten later by the chunkify module (3.9, but the
fake_timings module (3.3) uses the timing information that is provided by them.

3.3. Fake Timings 11

Fake Timings

The fake_timings module is responsible for creating timings for individual words.
It could also be called "infer word timings".

Input files which are also used as complimentary subtitle files for videos, like
.eaf, contain only partial information about the timing of each word in the subtitle,
because there is only timing information about chunks of words. Because a subtitle
is usually displayed for the entire time the text in the subtitle is said, this duration
can be taken as the time it takes to say the words in the subtitle. One subtitle which
is displayed for a few seconds is called a chunk.

Subtitle formats contain information how long the subtitle is displayed, which
corresponds to the time it takes to say the words in the subtitle. If the chunking
is reorganized later in the pipeline, it is necessary to have the timings for each
individual word, so the timeframe in which a subtitle should be displayed can be
calculated. The timing information from the input chunks can be used to estimate
a time frame for each individual word in the chunk.

The most basic estimate would be to give each word in a chunk the same
amount of time, but this is obviously not correct, as there are shorter and longer
words. The module relies on sayit.py, a small script by Hal Daumé [4] that es-
timates how long it will take to say a word, based on various features extracted
from the word. There are various features used, for example number of characters,
number of vowels, number of vowel-consonant switches, if the words starts with
a vowel or with a consonant or character counts of specific unicode characters.
Which feature is used with which coefficient is decided via a regression problem.
As input the author used 50k to 100k of the most frequent german words and
synthesized them with MaryTTS [1] to determine how long it takes to say these
words.

For each word in a chunk the duration is estimated with sayit.py and then
multiplied by a factor to make the durations of all words in a chunk add up to
the duration that was given by the input file for the complete chunk. A chunk
is usually displayed for two to four seconds. Because this is a small time frame
already, if it is combined with the output of sayit.py, the resulting time frames
for each word are fairly close to the actual time the speaker takes to say each word.
Additionally the tolerance for duration errors is quite high, because it does not
matter if the subtitle switches a few milliseconds too late or too early. Overall the
approach is a very effective solution to finding word timings considering the given
requirements.

12 Chapter 3. Development

Denormalize

The denormalization module converts numbers written in text to numbers consist-
ing of digits, as in converting "twenty" to 20. It is common to use digits instead of
words to represent numbers above twelve, also this conversion is intended to make
the subtitles easier and faster to read, especially for longer numbers like years.

The way it works is inspired by the way normalization of numbers - convert-
ing digits to words - works in MaryTTS [1]. The biggest parts of a number are
converted first, and then the rest gets denormalized again. For example in "ne-
unzehnhundertvierundachtzig" the biggest part of the number is indicated by the
"hundert" in the middle of the number. The part before it ("neunzehn") is then
used as a multiplier for "hundert" (100) and the rest after it is recursively de-
normalized and added. This means after the first step the value is 1900 (19 ×
100) and "vierundachtzig" is still to be denormalized. There are multiple ways
of writing the same number. The variant described above is common when the
number refers to a year, but for lengths, weights and other metrics the same num-
ber would usually be written as "eintausendneunhundertvierundachtzig" or just
"tausendneunhundertvierundachtzig". The same mechanism can be used, only in
this case the biggest part of the number is marked by the "tausend", so in the first
step the value would be 1000 plus the denormalization of "neunhundertvierun-
dachtzig".

To avoid converting false positives like "ein" or "sieb", which are number pre-
fixes but not real numbers on their own, it is checked if the word contains at least
one of a selection of essential substrings and after that it is matched with a regex
to ensure no non-number parts are in the word.

For every next bigger part of a number, a new case has to be programmed
manually. The implementation in this project works for numbers where the biggest
part is "tausend", which means it currently works up to 999.999.

To improve the module further, multi token numbers could be implemented.
Currently only one token is looked at and then it is decided if this token is a
number or not. In actual speech recognition output a year like 1984 would look
more like "neun zehn hundert vier und achtzig", so multiple tokens have to be
looked at to get the complete number. Support for decimal numbers could also be
implemented, though these are relatively rarely found in transcripts.

Repairs

The task in the Repairs module is to detect instances where there are mistakes in
the speech data and take actions to correct them. Examples of such mistakes can
be as simple as the utterance of filler words like "ahm" or "äh" in the transcribed
speech data. It can get as complex as interrupting a sentence midway to rephrase

3.5. Repairs 13

that sentence completely.
It is important to note that the input is the data that has been through only one

module, the Denormalize module and therefore there are no additional informa-
tion for the data that are processed. The following subsections each describe the
different stages in this module.

Defining fillers and articles

The algorithms in the Repairs module depend mainly on the fillers. Consequently,
a list of possible fillers is defined for use in the next stages. Most of the algorithms
perform three general steps. Firstly, the filler is detected. Secondly the algorithm
determines whether a repair can be applied. And lastly, the repair is applied and
the filler is removed.

However, using only fillers would limit the number of algorithms that could
be used on the data and therefore reduce the number of repairs and quality of the
output data. This is where articles are important because more algorithms can be
used given this new information. And as it was the case for the fillers, they are
also provided to the algorithms as a list.

The two lists, fillers and articles, which are essential for the Repairs module are
handcrafted and could be modified/extended in future work.

Removal of excess fillers

The first algorithm is tasked with the removal of excess fillers. These fillers are not
important to the other algorithms but will increase processing time and complexity.
Therefore it makes sense to remove the excess fillers for efficiency in the very first
procedure itself. The other leading reason to remove them is because the filler acts
only as a marker to indicate the occurrence of a possible repair.

Figure 3.1: Removing Excess Fillers

14 Chapter 3. Development

Repairing of articles

This algorithm caters for the correction of the speech data where any two consec-
utive non-deleted words are articles. This makes sense in case where the speaker
utters the same article twice or corrects the article in the second occurrence. How-
ever, this problem cannot be solved by only looking at words at they do not contain
any information about their use in the sentence. Additional information could be
generated by POS-Tagging which is done later in the pipeline. Doing repairs before
POS-Tagging improves the result of the tagging which is why the modules were
ordered in this way. It might be interesting to investigate how tagging and repairs
benefit each other in future work.

Figure 3.2: Repairing Articles

Repairs where a filler is between identical words

In this stage, this specific algorithm detects cases where there are two similar words
that are separated by a filler. Usually, this scenario occurs as a hesitation in speech
and one of those reoccurring words and the filler must be removed. However, since
the word surrounding the filler does not have to be specifically a non-article, it also
filters out cases where there are two similar articles with a filler in between. This
might lead to the same problem concerning the articles as discussed in 3.5.3.

Figure 3.3: Repairing cases of filler between identical words

3.5. Repairs 15

Repairs where a filler is between articles

This part of the repair module deals with cases where there are two articles that
are separated by a filler. Note that there is no possibility of having two similar
articles separated by a filler since that would have been dealt with in the previous
step. As with the previous stage, this scenario occurs when there is a hesitation in
speech and the first article is redundant and the filler must be removed. Again, this
might also, in some rare cases, lead to the same problem concerning the articles as
discussed in 3.5.3.

Figure 3.4: Repairing cases of filler between articles

Repairs where a filler is in between 4 words

The last repair algorithm treats cases where there is a filler between four words.
However, there is no simple or direct procedure to correct such a scenario. Some
simple heuristics are used to find some cases that can be repaired. Using the format
[Word1] [Word2] [Filler] [Word3] [Word4] for the data, there are three cases that
are considered.

1. [Word1] = [Word3] and [Word2] = [Word4]
This leads to the format [Word1] [Word2] [Filler] [Word1] [Word2] and there-
fore the first occurrences of [Word1] [Word2] along with the filler can be
removed.

2. [Word1] = [Word3] = "und"
This leads to the format [Word1] [Word2] [Filler] [Word1] [Word4] and there-
fore only the filler can be removed since there is a conjunction here.

3. [Word1] = [Word3] and [Word2], [Word4] ∈ Articles
This leads to the format [Word1] [Word2] [Filler] [Word1] [Word4] and there-
fore the first occurrence of [Word1], [Word2] and the filler can be removed
since it is being repaired after the filler.

16 Chapter 3. Development

Figure 3.5: Repairing cases of filler between 4 words

Tagging remaining fillers

In this last part of the Repairs module, all the repair algorithms have been applied
on the data but there are still some fillers remaining. The task is to remove them
from the subtitles. But in doing so, it is important to acknowledge that these fillers
have not been removed when the repair algorithms have been used. The reason
is that no possible repairs could be made using those algorithms. The optimal
decision is to tag those remaining fillers and then they can either be removed com-
pletely for subtitles or shown as they can be helpful to explain speech hesitations
in the video. As a possible future work, in-depth repairs using those tagged fillers
could be made at a later stage after POS-tagging is done.

3.6. Punctuation 17

Punctuation

For chunking the subtitles, we decided to continue using syntax information and
punctuation like in last year’s project. That, however, means generating punctua-
tion which turned out to be a rather difficult task. We wanted to work only on the
transcripts, not using audio information, and eventually selected two tools to work
with: the CMU Sphinx post-processing framework and the punctuator 2. The data
they both have been trained on were German Wikipedia articles without special
characters and tagged in places with punctuation symbols. Additionally, Sphinx
was trained to capitalize text. We trained both of them to insert only periods and
commas, that means question or exclamation marks as well as other punctuation
symbols won’t be found. The training size and data sets were different for them
both, but comparing the two of them on the same texts yielded very clear results
as to which one worked better. Before discussion this, though, the tools themselves
will be examined in greater detail.

Sphinx Postprocessing Framework

The Sphinx Postprocessing Framework [7] is a tool that restores punctuation and
capitalization for lower-case text without punctuation like the output of automatic
speech recognizers. To achieve that it scores word sequences based on a language
model, discards low scoring sequences and provides the best scoring sequence of
the same length as the input text as a result. The language model used for the
scoring has to be trained on a text with correct capitalization where periods and
commas have been marked (<PERIOD> instead of . and <COMMA> instead of ,).

For this project language models were trained with SRILM [8] on parts of the
German Wikipedia. Models were trained with different amounts of training data
and evaluated on Wikipedia text which was not part of the training data. The
results can be found in table 3.1.

Table 3.1: Performance of Sphinx PPF with different language models

Wikipedia text Precision Recall F-Score

1 MB
Period 0.56 0.42 0.48
Comma 0.13 0.22 0.16

10 MB
Period 0.4 0.51 0.44
Comma 0.06 0.10 0.08

100 MB
Period 0.51 0.32 0.39
Comma 0.07 0.14 0.09

Strangely enough increasing the training data did not improve the results. Because
of the low scores for comma recovery we built new language models for periods
only with the 1 and 10 megabyte training data. These language models performed

18 Chapter 3. Development

slightly worse (0.51/0.42/0.46 for 1 MB and 0.40/0.49/0.44 for 10 MB)1 which
suggests that comma recovery, poor as it is, still benefits the recovery of periods.
In some cases the postprocessing framework puts a comma after every word in a
sentence which is why commas restored by the sphinx postprocessing framework
should be removed in the displayed subtitle. Furthermore period recovery is the
more important task in punctuation recovery, because sentence boundaries are
needed for part-of-speech tagging and subtitle chunking.

The results reported by the developers who trained and tested on texts from
the Gutenberg project are similar for period recovery (0.57/0.55/0.56)1 and much
better for the recovery of commas (0.63/0.44/0.52)1 which might be related to the
difference between English and German rules for comma placement.

punctatuor2.py

The punctuator 2 [9] a python tool that uses the deep learning library theano to
train neural networks to insert punctuation into text. It can work with plain text,
the mode we used in this project, or pause-annotated text. The network archi-
tecture it uses is called Bidirectional Long Short Term Memory recurrent network
(BLSTM/RNN) which has been shown to work very well for speech processing.
Its precessor, the punctuator worked similarly with LSTM recurrent networks and
outperformed N-gram models on text and speech recognition output [10].
There are, of course, reasons why this kind of network structure is particularly
well suited for speech processing in general and punctuation recovery in particu-
lar. First, the fact that the net is recurrent, that is that is that neurons in the neural
net have conncetions to neurons that are in the same or even previous layers, means
that previous inputs can influence the proccessing of following signals. As there
are no bounds on these connections inside the neural net, recurrent nets aren’t lim-
ited to taking in account only the preceding N − 1 words in the same way other
net architectures and N-gram models are [6]. This is ideal for speech processing as
dependencies can span the whole sentence and therefore might not be processed
properly otherwise. The LSTM architecture only reinforces this ability to draw
from the input history as it helps the net "remember" long term dependencies bet-
ter. It adds LSTM layers to a network that contain recurrently connected neurons
with three different gates: input, output and forget. The forget gate enables the
neuron to reset itself and forget the maybe no longer needed bit of input history,
the other two gates multiply the input and output to the neuron. These layers
save potentionally important dependencies and use them to influence new inputs
traveling through the net via their recurrent connections. Using these LSTM nets
bidirectionally means using two networks and one input sequence that is given
to the first network in original order and backwards to the second net. They’re

1precision/recall/f-score

3.6. Punctuation 19

connected to the same output layer, forming a BLSTM net. The advantage of using
this structure is that now the network doesn’t only have information about preced-
ing input but also about the input still to follow [5]. Therefore, BLSTM networks
are very good at taking dependencies over greater distances in account, which is
important for recovering punctuation and other speech processing tasks.
There is no official data on how well the punctuator 2 does in comparison to its pre-
decessor, but there is an online demo version (http://bark.phon.ioc.ee/punctuator)
that worked remarkably well when we tried it. Combined with the net architecture
and better documentation, it seemed like a good idea to use the punctuator 2. An
additional argument was the training data size used for the online demo which
was just 350MB. It seemed as though the relatively small amount of data needed
to train a fairly well working model (about 50MB according to the creator) would
make the training relatively fast as well.
To train a model, first the data has to be cleaned. In this case, it was Wikipedia arti-
cles that were stripped of all special characters and punctuation except for periods
and commas. Then they were lower cased and commas and periods were replaced
by ",COMMA" and ".PERIOD" tags, respectively. The data then has to be processed
into pickle files before starting the training of a model. The output doesn’t have
periods and commas, but the same tags as the input. They’re then replaced in the
punctuation module that also restores the original punctuation. As the punctuator
2 doesn’t capitalize text, we also added capitalization after periods in the module.
The rest of the transcripts is already capitalized, so the only additional capitaliza-
tion that is needed would be the one after a period. This way, the capitalization
is consistent with the punctuation and in places with correctly set periods it’s also
correct.
We chose the suggested standard configuration of a hidden layer size of 256 neu-
rons and a learning rate of 0.02. Training, however, wasn’t as fast as we hoped and
so out model is a bit smaller. Part of that was that the 25MB model we are using
currently took about 11 days to train whereas Tilk told us to expect less than 20
hours for 50MB (he’s using a high performance graphics processor, so that’s most
likely what makes the difference), the other was that the 25MB model worked well
already. After training the model, we tested it on a piece of text from the Wikipedia
that wasn’t used as training data. This file was about 1MB in size, without empty
lines and the like just like the training data, so the amount of characters should
be around one million. The model performance was measured in a recall (the per-
centage of expected punctuation that was found), precision (the percentage of the
found punctuation that was correct) and F-Score value (computed from the former:
F = 2 · recall·precision

recall+precision) for periods and commas each. It could probably still be im-
proved by more data, but with an F-Score of 0.71 for periods and 0.47 for commas,
the punctuator model works relatively well on Wikipedia articles. Furthermore,
the accuracy of this model is relatively high (0.81 precision on periods and 0.69

20 Chapter 3. Development

on commas), so that wrong periods that might irritate viewers as well as the later
modules don’t appear very often. In general, wrong periods and commas are still
near the correct positions and are spaced out evenly along the text.
On lecture transcripts, the model makes different mistakes, but works similarly
well as on Wikipedia article. An automated analysis isn’t possible because of the
lack of pre-existent punctuation, so we did a manual analysis of three shorter text
fragments (about 2 minutes each) from three different speakers. As speakers tend
to make long sentences and sometimes don’t finish them properly, there have un-
surprisingly been much more commas than in the Wikipedia texts. Sometimes
commas are also placed where a periods might be more appropriate although the
comma isn’t necessarily wrong. This leads to very long sentences overall and mis-
placed periods at the end of such sentences. Still there were no comma or period
sequences and even misplaced punctuation was at least close to where it should
have been. With an F-Score of 0.57 for periods and 0.62 for commas and the subjec-
tive impression that the punctuation is helpful, the punctuator 2 recovers periods
and commas well enough to give a good basis for the following syntax analysis
and the chunking.

Comparison

The syntax module 3.7 and the chunkify module 3.9 both rely on (correct) punctua-
tion. To decide which punctuation tool should be used in the pipeline we tested the
Sphinx Postprocessing Framework and the punctuator2.py on 1mb of wikipedia text,
which was not part of the training data. As table 3.2 shows, punctuator2.py greatly
outperformed the Sphinx Postprocessing Framework and consequently was used
in the pipeline.

Table 3.2: Comparison of Sphinx PPF and punctuator2.py

Precision Recall F-Score

Period
Sphinx PPF 0.31 0.40 0.35
punctuator2.py 0.81 0.64 0.71

Comma
Sphinx PPF 0.12 0.16 0.14
punctuator2.py 0.69 0.35 0.47

Syntax

The syntax module was taken over from last years project and didn’t get modified
much. The module is a python wrapper for the Turboparser, which is a depen-
dency parser written in C++. It inputs every sentence from the transcript to the
Turboparser, which does denpendency parsing and Part-of-Speech tagging on it.

3.8. Abbreviate 21

The results of the parser get added to the Word objects in Data.

1 {
2 "original": "Dank",
3 "index": 2,
4 "syntax_relation": "S",
5 "pos_tag": "NN",
6 "syntax_parent_local": 0
7 }

The syntax relations and Part-of-Speech tags are prerequisite for the chunkify mod-
ule, which uses this information to make informed decisions about how to split the
transcript into subtitles.

Abbreviate

The abbreviate module is similar to the denormalization module in its idea. Like
the denormalization module converts written out numbers into digits, the abbre-
viate module converts common expressions into their common abbreviations. An
Example:

"was natürlich in der Natur der Sache liegt näml. in der Natur der
Rechtsfragen"

Here "nämlich" is abbreviate as "näml.", common abbreviations include "zum
Beispiel" as "z.B.", "bezüglich" as "bzgl." or "und so weiter" as "usw.". The idea is
that the subtitle becomes faster to read because "usw." is faster to read than "und so
weiter" but conveys the same meaning. However, with less popular abbreviations
to cognitive load of decoding the abbreviation can be quite high, which leads to an
overall slower reading speed.

The implementation relies on a simple dictionary mapping complete words
and multiple word expressions to their abbreviations. A dictionary mapping ab-
breviations to their complete expressions is included in MaryTTS and used for
denormalization.

The selection of expressions which get abbreviated includes only common
terms, and no abbreviations that are common only in a specific field like law stud-
ies, or medicine, as these would be difficult to understand for an outsider. For
the implementation this meant that large parts of the MaryTTS dictionary were
removed, as the dictionary was written to include all abbreviations which could
possibly be encountered in a text, to guarantee that every abbreviation will be
denormalized.

22 Chapter 3. Development

Chunkify

The next step is determining which segments of subtitles ("chunks") to display at
a given time. This means that the text generated by previous steps has to be split
at certain points, and that it has to be decided what makes a splitting position
or a chunk “proper” or “improper”. By chunkifying a couple of video snippets
manually, we found that the quality of a chunk mainly depends on two criteria:
The total length of the chunk and the position of the two splits a chunk consists
of in the respective sentence’s syntactic structure. For each of these criteria, we
agreed on a set of rules based on our experience with the snippets we worked on.

Chunking rules

Penalty system

The quality of a split is represented by an integer called “penalty score” where a
low penalty score represents a split that should be preferred over a split with a
higher penalty score. For every possible split, the module computes two separate
penalties, one for the syntax and one for the length. The two scores are added, and
the sums are compared.

Optimal length of subtitles

During the discussion about the manually produced chunks, the thoughs about
the maximal length of subtitles were rather different. The highest number of char-
acters mentioned was 110, the lowest 60. For creating the java program’s basic
structure, we agreed to work with a maximum length of 85 characters and the old,
syntaxbased module has a preset maximum length of 68, both of which led to con-
vincing results. In both approaches towards subtitling, the maximum length can
be configured, but for the evaluation of the modules, we continued working with
68 (syntaxbased) and 85 (java) characters.
As for the minimum length of a chunk, the two modules differ due to the syn-
taxbased module working with two-lined subtitles. The preset minimum length in
the syntaxbased module is 34, while the most useable results of the java module
were generated with a minimum length of 22 characters. Similarly to the maximum
length, both of these values can be configured.

Syntactical position of splits

The very first step of both chunking modules is splitting the text at every full
stop. While the java module requires this step due to its internal structure, the
syntaxbased module’s main motivation are performance issues.
After the text is split into sentences, the java module takes in one step further and

3.9. Chunkify 23

splits at every comma2. The syntaxbased output tends to produce splits after com-
mas as well, but since the length rules are more restrictive than they are in the java
module, it makes no sense to split at these spots forcibly.

We found that in german, it is almost always harmful to split directly before a
verb or a noun - unless there is a comma (or a full stop) in front of it, most of those
are required for the previous word to make sense. Thus, we decided to prefer
splitting before pronomina, articles, conjunctions, prepositions and appositions.
Among these, we created preferences by testing different settings and counting
cases where they produced strange or improper splits on the basis of rather long
texts (mostly written speech) and then choosing the setting with the most convinc-
ing results. This resulted in us agreeing on the following rules:

• 0 penalty points for splitting before a preposition

• 3 penalty points for splitting before an enumerating word (erstens, zweitens,
einerseits, andererseits)

• 6 penalty points for splitting before a preposition or an apposition (except for
"sich", a special case as this word frequently appears directly after one of the
above)

• 9 penalty points for splitting before a pronomen, an article or "sich"

• 12 penalty points in any other case.

Chunking modules

Since the chunkify modules of last year’s project did not work when we started
building our project and was additionally set up to work with english texts, we
decided to program an additional module using java. When working on the mod-
ules, we quickly decided to throw two of the existing ones out and keep only the
module chunkify_syntaxbased as well as chunkify_java.

chunkify_syntaxbased

Out of the three modules provided by last year’s project, the chunkify_syntaxbased
module delivered the best results according to the report. Even though it was nec-
essary to rewrite parts of the module in order to make it work on german texts
(and in order to make it work at all in the first place), we decided to keep it and
throw the other two modules, chunkify_greedy and chunkify_naiv out.

The first step taken by the module is splitting the text into sentences. Afterwards,

2The commas generated by the punctuation module were unreliable and therefore ignored.

24 Chapter 3. Development

every possible way of splitting a sentence is simulated and rated after the set of
rules. The computed values are then compared, the lowest (best) one is chosen
and used. Since the total amount of possible splittings grows exponentially with
the number of words in a sentence (every gap between two words can either be
a split or not, giving a total of 2 to the power of n possibilities), the performance
decreases drastically on very long sentences. Since it is possible that abnormally
long sentences are generated by the punctuation module, we added a cap so that
long sentences are first shortened by performing a single split in the way described
under chunkify_java and then processed as described above. An implementation
of the Dijkstra algorithm finds optimal splits for a sentence based on the penalties.

chunkify_java

The java module works a little different. Similarly to its Python counterpart, it
starts of splitting the text at full stops. Afterwards, however, it looks at each sen-
tence individually and checks whether the sentence’s length is within the prede-
fined boundaries. Every sentence that is not will be split into two parts by comput-
ing the specific penalty rule of every possible split and then choosing the lowest
(if two or more scores are equal, the most central one is chosen). After finishing
this step for every sentence that is considered “too long”, a script iterates over the
chunks produced this way and generates a new list of “too long” chunks. The
splitting process is then repeated recursively until every sentence is shorter than
the defined maximum length.
In the next step, the program will try to make extremely short sentences (such as
one-word-sentences that are generated by the punctuator module at some points)
more conveniently readable. This happens by iterating over all chunks that are
shorter than the minimum length and deciding whether the previous chunk is the
better choice to be glued to it or whether the next one is: The better chunk is cho-
sen by calculating which one of the resulting chunks (previous and this or this and
next) has a length closer to the median between minimum and maximum length.
If the resulting chunk is longer than the maximum length, it is once again split in
the “optimal” way.
This will result in undoing the glueing in some cases, but since the function did no
harm and was even helpful in some cases (such as lists of two or more subsequent
one-word-sentences), we decided to keep it.

Output

The output module is the last module of the pipeline. It generates the output files,
which are a subtitle file (.srt) and a text file that contain the generated subtitles.
The output module was taken over from last years project and not modified much.

3.10. Output 25

The module goes through all Chunk objects in Data and writes them to an output
file. The chosen subtitle file format for this software is .srt, which stands for
“SubRip text file format“.

1 1
2 00:00:09,560 --> 00:00:13,096
3 wenn man das hoert diese - diese
4 einzelnen Worte dann klingt es sehr

The .srt format is a very basic subtitle file format. Every subtitle has to have an
index (line 1) followed by the duration of the subtitle (line 2) and lastly the contents
of the subtitle (lines 3 - 4).

Chapter 4

Evaluation

Framework

In order to evaluate our pipeline and get an understanding of how well our auto-
matically generated subtitles are performing we set up an A/B-Test online based
on the beaqlejs-Framework [2]. Beaqlejs originally is designed to create listening
tests (its name is an acronym for “Browser based Evaluation of Audio Quality and
comparative Listening Environment”), which was very useful in our case as we
could realize a randomized Test-Order trivially utilizing the config.js-file. With a
few modifications using html, javascript and php we were able to use it for videos
and thus to evaluate the quality of our different approaches on chunking and error
repairs. We used social media and word of mouth to get people from different
backgrounds to help us evaluate our approaches.
With html5, video output on websites can be done purely in html and doesn’t rely
on Adobe Flash any more, however there are still some cross-browser issues when
dealing with these new standards. Initially we were using just one video file for
both A and B, as it decreases the load time of the website and it is possible to
embed different subtitles with additional files. With .srt files being created by the
pipeline, we just had to convert these to .vtt (or WebVTT, an acronym for Web
Video Text Tracks) which is the W3C standard for displaying timed text in html5.
When using Google Chrome though, there were some bugs using this technique,
the subtitles would be shown multiple times if one were to switch between A and
B videos time and again. Later on, we decided that due to these bugs we had to
“burn” the subtitles into the video files (see 4.2).
The results collected by the website were submitted to our server using php and
saved as .txt-files with the votings of the users for us to evaluate.

27

28 Chapter 4. Evaluation

Utilities

For A-B-Testing, whole subtitled lectures are impractical. Instead smaller snippets
need to be used, which lead to a few requirements:

• A snippet should be 25 to 35 seconds in duration, the snippet should neither
start nor end in the middle of a subtitle chunk. This should also be checked
if two different chunkings are evaluated against each other, in which case the
start and end of the snippets have to align in both chunking versions.

• If the snippet is found, the proper subsection of the video needs to be cut out
and put into a seperate file. The same applies to the subtitle files for the A
and B subtitles.

• later on it became clear that separate subtitle files and only one video file
save disk space, but are not as reliable as two different video files where the
subtitle is already edited into each frame of the video; so “burning in” the
subtitles into the videos became an additional requirement.

To generate snippets with the given requirements a snippetfinder.py script was
written, and later on a subburn.sh script, to account for two different video files
with different subtitles already edited into the video file. The snippetfinder takes
two output directories of the main pipeline, and a third directory where snippets
will be generated, and then generates all the snippets it can find. The subburn
script can then be run on the directory containing the snippets. After that, hand
selected snippets can be taken for evaluation, as the number of generated proposed
snippets is quite large.

Study

We conducted a study with 14 participants to evaluate the repair module (3.5)
and the two different chunking approaches (3.9). For both test sets we used nine
snippets from three different lecturers. We swapped A and B for half of the trials
and randomized the ordering to prevent order effects which can occur in a repeated
measures design [3].

Quantitative Results

Figure 4.1 shows that our participants seem to like B better than A in both tests,
which means they prefer repairs and two-line subtitles created by the module
chunkify_syntaxbased. This observation was confirmed by performing a chi-squared
test. The null hypothesis that there is no difference between A and B can be re-
jected at the 0.01 level for both repairs (χ2 = 38.707, p = 4.921 · 10−10) and chunking

4.3. Study 29

(χ2 = 18.256, p = 1.931 · 10−5). Missing data points can be ignored since they do
not change anything (p = 4.109 · 10−09 and p = 0.00018).

Figure 4.1: Results

Qualitative Results

Many participants gave additional feedback in the comment boxes. The general
opinion was, that fillers do not contain useful information and should be removed.
One participant suggested using “...” for fillers which is easy to recognize as “not
important”. Another comment was that for some pairs it was difficult to find dif-
ferences which could be solved by doing a side-by-side comparison. Most par-
ticipants commented that they like two-line subtitles better because of the shorter
line width which led to shorter movements for the eyes. There was a case though
where two-line subtitles obstructed the information presented on the slides, this
should be avoided. Also typos and missing punctuation were criticized, spell-
checking might be a good idea. In one case the chucks were split between “semi”
and “professionelle” which was perceived as a bad split. This is mainly because
the word “semiprofessionelle” is written as two words, which is a problem related
to compound words which are common in the German language. Since a speech
recognizer can produce both results this problem should be taken into account.

Chapter 5

Conclusion

In this report we presented the steps we took to implement software that automat-
ically generates subtitles. Our goal was to focus on the readability of subtitles for
people who are not able to or do not want to listen to a lecture. The main criteria
for good subtitles we identified were repairs of speech and fillers, chunking based on
syntax and length, reading speed (denormalization) and punctuation.

The pipeline we built consists of nine modules and uses json files as the central
data structure to store information. The input module prepares the given transcript
for the pipeline. Fake timings approximates the duration of words which is later
used for chunking and aligning subtitles. Denormalization and abbreviations are
similar but were split into two modules because other modules rely on different
parts of their output. The repairs module removes fillers and repairs word repeti-
tions which are unwanted in subtitles but often occur in speech because speakers
tend to restructure their sentences while talking. The punctuation module tries to
restore punctuation which is not part of the output of automatic speech recogniz-
ers but is needed for syntax parsing and chunking. We tested the Sphinx Postpro-
cessing Framework and punctuator2.py and found that punctuator2.py performs
significantly better. The syntax module is a turboparser wrapper which was taken
over from last years project and is needed for chunking. The chunkify module
splits the transcript based on punctuation, syntax, minimal and maximal accept-
able subtitle length as well as the number of lines a subtitle is allowed to have. The
output module saves the results of this process as an .srt subtitle file.

With respect to the goals we set in the beginning of the project, we evaluated
the value of repairs and compared the two chunking approaches. The study was
conducted online with beaqlejs which we modified so it was able to play videos.
We performed a repeated measure A-B-test with randomized ordering and found
that repairs significantly improve the quality of the generated subtitles (p < 0.01).
The comparison of the two chunking approaches showed, that two-line subtitles
were perceived as easier to read and thus rated significantly better (p < 0.01).

31

32 Chapter 5. Conclusion

In addition to to the quantitative evaluation we allowed the participants to leave
comments. From those we learned that people were irritated by the fillers and
liked shorter eye movements which implies that short one-line or two-line subtitles
are better. Participants also often criticized typos and missing punctuation.

With these results we are able to say that our ideas about good subtitles which
we collected at the beginning of the project and the goals which we derived from
those ideas were reasonable. The size of subtitles and repairs which we identified
as most important for readability are critical. Then again we underestimated punc-
tuation and spelling so these are two aspects that could be worked on. Furthermore
in the evaluation process we discovered the problem of dealing with German com-
pound words which, if handled properly, could improve the chunking of subtitles.

Bibliography

[1] url: http://mary.dfki.de/.

[2] url: https://github.com/HSU-ANT/beaqlejs.

[3] Paul C Bates Cozby et al. Methods in behavioral research. 150.72 C6. 2012.

[4] Hal Daumé. sayit.py. url: http://www.umiacs.umd.edu/~hal/sayit.py.

[5] Alex Graves and Jürgen Schmidhuber. “Framewise phoneme classification
with bidirectional {LSTM} and other neural network architectures”. In: Neu-
ral Networks 18.5–6 (2005). {IJCNN} 2005, pp. 602–610. issn: 0893-6080. doi:
http://dx.doi.org/10.1016/j.neunet.2005.06.042. url: http://www.
sciencedirect.com/science/article/pii/S0893608005001206.

[6] Tomas Mikolov et al. “Recurrent neural network based language model.” In:
Interspeech. Vol. 2. 2010, p. 3.

[7] Postprocessing Framework. url: http://cmusphinx.sourceforge.net/wiki/
postpframework.

[8] Andreas Stolcke et al. “SRILM-an extensible language modeling toolkit.” In:
Interspeech. Vol. 2002. 2002, p. 2002.

[9] Ottokar Tilk. Github - ottokart/punctuator2.py. url: https://github.com/
ottokart/punctuator2.

[10] Ottokar Tilk and Tanel Alumäe. “LSTM for Punctuation Restoration in Speech
Transcripts”. In: Interspeech 2015. Dresden, Germany, 2015.

33

http://mary.dfki.de/
https://github.com/HSU-ANT/beaqlejs
http://www.umiacs.umd.edu/~hal/sayit.py
http://dx.doi.org/http://dx.doi.org/10.1016/j.neunet.2005.06.042
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://www.sciencedirect.com/science/article/pii/S0893608005001206
http://cmusphinx.sourceforge.net/wiki/postpframework
http://cmusphinx.sourceforge.net/wiki/postpframework
https://github.com/ottokart/punctuator2
https://github.com/ottokart/punctuator2

Appendix A

Who wrote what

• Goals and Motivation - Theresa

• Previous Work - Felix

• Software- and Datastructure - Michael

• Input - Michael

• Fake Timings - Felix

• Denormalize - Felix

• Repairs - Khooshal

• Punctuation - Theresa

• Sphinx Postprocessing Framework - Kolja

• punctuator2.py - Theresa

• Comparison - Kolja

• Syntax - Michael

• Abbreviate - Felix

• Chunkify - Antonia, Tore

• Output - Michael

• Evaluation

• Framework - Jasper

• Utilities - Felix

• Study - Kolja

• Conclusion - Kolja

Additionally, Kolja, Michael and Felix went through the whole document to proof-
read and fix formatting or spelling errors.

35

	Front page
	Contents
	1 Goals and Motivation
	2 Previous Work
	3 Development
	3.1 Software- and Datastructure
	3.2 Input
	3.3 Fake Timings
	3.4 Denormalize
	3.5 Repairs
	3.5.1 Defining fillers and articles
	3.5.2 Removal of excess fillers
	3.5.3 Repairing of articles
	3.5.4 Repairs where a filler is between identical words
	3.5.5 Repairs where a filler is between articles
	3.5.6 Repairs where a filler is in between 4 words
	3.5.7 Tagging remaining fillers

	3.6 Punctuation
	3.6.1 Sphinx Postprocessing Framework
	3.6.2 punctatuor2.py
	3.6.3 Comparison

	3.7 Syntax
	3.8 Abbreviate
	3.9 Chunkify
	3.9.1 Chunking rules
	3.9.2 Chunking modules

	3.10 Output

	4 Evaluation
	4.1 Framework
	4.2 Utilities
	4.3 Study
	4.3.1 Quantitative Results
	4.3.2 Qualitative Results

	5 Conclusion
	Bibliography
	A Who wrote what

