
BLAH Reference Manual
0.95

Generated by Doxygen 1.3.8

Thu Oct 28 17:36:28 2004

Contents

1 The BLAH Reference Manual. 1

1.1 Introduction. 1

1.2 Usage . 1

1.3 Overview . 2

2 BLAH Module Index 3

2.1 BLAH Modules . 3

3 BLAH Data Structure Index 5

3.1 BLAH Data Structures. 5

4 BLAH Page Index 7

4.1 BLAH Related Pages. 7

5 BLAH Module Documentation 9

5.1 Arrays . 9

5.2 BitStrings .13

5.3 ByteVectors. .21

5.4 Hashtables. .29

5.5 Lists .38

5.6 ListAgenda .51

5.7 Memory .57

5.8 Primes. .58

5.9 Ringbuffers .61

5.10 Strings. .67

5.11 TreeAgenda. .73

5.12 Vectors .80

5.13 Main module .89

6 BLAH Data Structure Documentation 91

ii CONTENTS

6.1 ArrayStruct Struct Reference. 91

6.2 BitStringStruct Struct Reference. 93

6.3 ByteVectorStruct Struct Reference. 95

6.4 HashIteratorStruct Struct Reference. 97

6.5 HashtableEntryStruct Struct Reference. 98

6.6 HashtableStruct Struct Reference. 99

6.7 ListAgendaEntryStruct Struct Reference. .101

6.8 ListAgendaStruct Struct Reference. .102

6.9 ListStruct Struct Reference. .104

6.10 RingBufferStruct Struct Reference. .105

6.11 SharedStringStruct Struct Reference. .107

6.12 TANodeStruct Struct Reference. .108

6.13 TreeAgendaIteratorStruct Struct Reference. .110

6.14 TreeAgendaStruct Struct Reference. .111

6.15 VectorStruct Struct Reference. .114

7 BLAH Page Documentation 115

7.1 Todo List .115

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

Chapter 1

The BLAH Reference Manual.

Author:
Ingo Schröder
Kilian A. Foth
Michael Daum

1.1 Introduction

This is the reference manual for the BLAH library for the C programming language. BLAH stands for
bitstrings, lists, arrays and hashes — admittedly a poorly chosen giving the set of container data types most
usually used. Actually there are more data types than these but who cares if the name is funky enuf.

The BLAH library is copyright by The CDG Team; it is distributed under the GNU General Publice License
Version 2. You should have received a copy of the GPL with the software.

The maintainers of this software can be contacted at the following email address:

blah@nats.informatik.uni-hamburg.de

1.2 Usage

The BLAH library is installed as both shared and static versions of the library by default. In order to use it
your C code must include the header file

blah.h

For instance, if you installed the header file in a system directory, a minimal C program might look as
follows:

#include <stdio.h>
#include <blah.h>

int main(int argc, char **argv)
{

List squares=listNew();
int i;

for (i=0; i<100; i++)

2 The BLAH Reference Manual.

{
squares=listPrependElement(squares, (Pointer)(i*i));

}
printf("42th square is %d\n", (int)listNthElement(squares, 42));
listDelete(squares);

}

You have to link against the BLAH library as well as the math library to create a binary:

$ gcc -o blah-example -lblah -lm blah-example.c
$./blah-example
42th square is 3364
$

1.3 Overview

The BLAH library defines the following container data types:

• Arrays: An array stores information that is accessed using a number of indices. Arrays usually
have two or more dimensions. The number of dimensions as well as the size of each dimension
must be provided at creation time of the array and stay fixed. The required time to access a specific
information given the corresponding indices is constant; the memory is proportional to the product
of all dimension sizes.

• BitStrings: A bitstring stores a sequence of Booleans. The design emphasis is on memory efficiency.

• ByteVectors: A bitvector also stores a sequence of Booleans. However, one byte is used to store a
single Boolean. This data type is more time efficient than a bitstring.

• Hashtables: A hashtable stores key-value pairs. The key is used to access the actual information in
the value. Access time is (almost) constant for arbitrary sizes of the hashtable and arbitrary keys.

• Lists: A list stores a sequence of objects. Access to the head of the list is efficiently possible while
in general access to an arbitrary object requires linear time.

• ListAgenda: An agenda is created by sorting the items according to priority using a simple linked
list as its storage medium.

• Memory: Some basic Operations with the memory are done in this module.

• Primes: Prime is a module that makes use of Rabin’s Probablistic Primetest-Algorithm for generating
the prime numbers equal to the Hash table entries.

• Ringbuffers: It is similar to the vector that stores a series of objects, though the head and the tail are
attached inorder to enhance cyclic operations.

• Strings: Strings in C are represented by arrays of characters. The end of the string is marked with
a special character, the null character, which is simply the character with the value 0. Whenever
we write a string, enclosed in double quotes, C automatically creates an array of characters for us,
containing that string, terminated by theNULL character.

• TreeAgenda: An agenda is created by sorting the items according to the order of the priority using
an unbalanced binary tree.

• Vectors: A vector stores objects at a given index. The size of the vector is linear in the largest used
index. Time to access an object given the index is constant.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

Chapter 2

BLAH Module Index

2.1 BLAH Modules

Here is a list of all modules:

Arrays . 9
BitStrings .13
ByteVectors .21
Hashtables .29
Lists .38
ListAgenda .51
Memory .57
Primes .58
Ringbuffers .61
Strings .67
TreeAgenda .73
Vectors .80
Main module .89

4 BLAH Module Index

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

Chapter 3

BLAH Data Structure Index

3.1 BLAH Data Structures

Here are the data structures with brief descriptions:

ArrayStruct(Internal structure of an array) .91
BitStringStruct(Internal structure of a string of bits) .93
ByteVectorStruct(Internal representation of a bit vector) .95
HashIteratorStruct(Internal representation of the hash iterator)97
HashtableEntryStruct(Internal representation of the hash table entry)98
HashtableStruct(Internal representation of the hash table) .99
ListAgendaEntryStruct(This type represents an entry of an agenda)101
ListAgendaStruct(Quick, should be binary tree) .102
ListStruct(List node) .104
RingBufferStruct(Internal representation of the ring buffer)105
SharedStringStruct(Strings with reference counters) .107
TANodeStruct(This type represents an entry of an agenda) .108
TreeAgendaIteratorStruct(This structure instantiates the generic agenda iterator)110
TreeAgendaStruct(Quick, should be binary tree) .111
VectorStruct(Internal representation of a vector) .114

6 BLAH Data Structure Index

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

Chapter 4

BLAH Page Index

4.1 BLAH Related Pages

Here is a list of all related documentation pages:

Todo List .115

8 BLAH Page Index

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

Chapter 5

BLAH Module Documentation

5.1 Arrays

5.1.1 Detailed Description

Implementation of an array container.

An array is a matrix-like data structure with an arbitrary (but fixed) dimension and arbitrary (but fixed)
size. Items are accessed by a tuple of indices in constant time. Some of the functions of this module use a
variable number of arguments like

• arrayNew()

• arraySetElement()and

• arrayElement().

The defined dimension constructing and array witharrayNew()must match the number of indices you
provide toarraySetElement()andarrayElement().

Data Structures

• structArrayStruct

internal structure of an array.

Functions

• Array arrayNew(int i,...)

creates and returns a new vector.

• Array arrayClone(Array a)

copy an array into a new one.

• void arrayDelete(Array a)

deletes an array.

10 BLAH Module Documentation

• PointerarraySetElement(Array a, Pointer new,...)

sets an array element to a new value.

• void arraySetAllElements(Array a, Pointer new)

sets all array element to a new value

• PointerarrayElement(Array a,...)

retrieves an array element.

• int arrayDimension(Array a, int dim)

returns value for dimension dim.

5.1.2 Function Documentation

5.1.2.1 Array arrayClone (Array a)

copy an array into a new one.

Parameters:
a is the source for the cloning

Returns:
a new cloned array

Definition at line 107 of file array.c.

References vectorClone().

5.1.2.2 void arrayDelete (Arraya)

deletes an array.

Any future access to the array is illegal. Note that this function does not free the memory from the items
contained in the array.

Parameters:
a the array to be deleted.

Definition at line 130 of file array.c.

References vectorDelete().

5.1.2.3 int arrayDimension (Array a, int dim)

returns value for dimension dim.

Parameters:
a the array whose dimension has to be retrieved.

dim the dimension in which the size of the array has to be retrieved.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.1 Arrays 11

Returns:
the size of the array in the specified dimension.

Definition at line 230 of file array.c.

References vectorElement(), and vectorSize().

5.1.2.4 Pointer arrayElement (Array a, ...)

retrieves an array element.

Parameters:
a the array from which an element has to be retrieved.

... the indices that define which element has to be retrieved.

Returns:
the element identified by the indices.

Definition at line 198 of file array.c.

References vectorElement(), and vectorSize().

5.1.2.5 Array arrayNew (int i, ...)

creates and returns a new vector.

This function constructs a new array with an arbitrary number of dimensions.

Parameters:
i the first array dimension

... optional more dimensions

Returns:
a new Array

Definition at line 69 of file array.c.

References vectorAddElement(), and vectorNew().

5.1.2.6 void arraySetAllElements (Arraya, Pointer new)

sets all array element to a new value

Parameters:
a the array whose values should be set to a new value

new the new value to which all the elements of the array have to be set to.

Definition at line 183 of file array.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

12 BLAH Module Documentation

5.1.2.7 Pointer arraySetElement (Arraya, Pointer new, ...)

sets an array element to a new value.

Parameters:
a the array whose element should be set to a new value.

new the new value to which the element must be set to.

... the index of the new element in the array.

Returns:
the old value of the element

Definition at line 150 of file array.c.

References vectorElement(), and vectorSize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.2 BitStrings 13

5.2 BitStrings

5.2.1 Detailed Description

Implementation of a string of bits.

A bitstring is a memory efficient implementation of a sequence of Boolean information with arbitrary but
fixed length.

Data Structures

• structBitStringStruct

internal structure of a string of bits.

Defines

• #defineBITS_PER_BYTE8

defines our version of a BYTE definition

• #defineBYTES_PER_LONGsizeof(unsigned long)

defines the size of an unsigned long

• #defineBITS_PER_LONG(BITS_PER_BYTE∗BYTES_PER_LONG)

defines the number of bits in an unsigned long integer

• #defineE_SIZEMISMATCH-1

return code for size error messages

• #definecheck_magic(bs)

this is defined to a null operation when debugging is switched off.

Functions

• BitStringbitNew(int size)

creates a new bitstring with an initial size ofsizebits.

• BitStringbitClone(BitString bs)

creates a new bitstring which is a complete clone of bs.

• BitStringbitCopy(BitString dst, BitString src)

copies information from src to dst.

• void bitDelete(BitString bs)

deletes bitstringbsand frees memory.

• int bitSize(BitString bs)

returns the size of bitstringbs.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

14 BLAH Module Documentation

• void bitPrint (BitString bs)

prints a bitstring to stdout.

• void resize(BitString bs, int size)

resize bs to sizesize; sets length, mask and size.

• void bitSet(BitString bs, int no)

sets a bit.

• void bitClear(BitString bs, int no)

clears a bit.

• void bitSetAll (BitString bs)

sets all the bits to one.

• void bitClearAll (BitString bs)

sets all bits to zero.

• BitStringbitAnd (BitString a, BitString b)

computes a logicalAND between two sets of bits

• BitStringbitOr (BitString a, BitString b)

computes a logicalOR between two sets of bits

• BooleanbitCheck(BitString a, BitString b)

checks whether two sets have bits switched on in common

• BooleanbitGet(BitString bs, int no)

test for a bit

• BooleanbitIsAllCleared(BitString bs)

checks whether all bits are cleared

• BooleanbitIsAllSet (BitString bs)

checks whether all bits are set

5.2.2 Define Documentation

5.2.2.1 #define BITS_PER_BYTE 8

defines our version of a BYTE definition

Definition at line 48 of file bitstring.c.

5.2.2.2 #define BITS_PER_LONG (BITS_PER_BYTE∗BYTES_PER_LONG)

defines the number of bits in an unsigned long integer

Definition at line 58 of file bitstring.c.

Referenced by bitClear(), bitGet(), bitNew(), bitSet(), and resize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.2 BitStrings 15

5.2.2.3 #define BYTES_PER_LONG sizeof(unsigned long)

defines the size of an unsigned long

Definition at line 53 of file bitstring.c.

Referenced by bitClearAll(), bitClone(), bitCopy(), bitNew(), bitSetAll(), and resize().

5.2.2.4 #define check_magic(bs)

this is defined to a null operation when debugging is switched off.

Switch it on by compiling with -DBITSTRINGS_DEBUG Definition at line 121 of file bitstring.c.

Referenced by bitAnd(), bitCheck(), bitClear(), bitClearAll(), bitClone(), bitCopy(), bitDelete(), bitGet(),
bitIsAllCleared(), bitIsAllSet(), bitOr(), bitPrint(), bitSet(), bitSetAll(), bitSize(), bvAddElement(), bv-
AndElement(), bvCapacity(), bvClone(), bvDelete(), bvElement(), bvInsertElement(), bvIsEmpty(), bv-
NotElement(), bvOrElement(), bvRemoveElement(), bvSetElement(), bvSetElements(), bvSize(), and re-
size().

5.2.2.5 #define E_SIZEMISMATCH -1

return code for size error messages

Definition at line 63 of file bitstring.c.

5.2.3 Function Documentation

5.2.3.1 BitString bitAnd (BitString a, BitString b)

computes a logicalANDbetween two sets of bits

sets all the bits in bitstring a that are set to 0 in bitstring b to 0. bitstring b is never modified. the bitstrings
must be of the same size.

Parameters:
a the first set of bits

b the second set of bits

Returns:
a on success and NULL on failure.

Definition at line 368 of file bitstring.c.

References check_magic.

5.2.3.2 Boolean bitCheck (BitStringa, BitString b)

checks whether two sets have bits switched on in common

Parameters:
a the first set

b the second set of bits

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

16 BLAH Module Documentation

Returns:
TRUE on the first common bit (i.e. two bits at the same position which are switched on); otherwise
false is returned, that there are no common bits switched on. a->size == b->size

Definition at line 424 of file bitstring.c.

References check_magic.

5.2.3.3 void bitClear (BitString bs, int no)

clears a bit.

if no is larger than current size the bitstring is enlarged. intermediate bits are cleared. Bits are numbered
from zero upward

Parameters:
bs the bitstring from which a bit has to be cleared.

no the bit number that has to be cleared.

Definition at line 321 of file bitstring.c.

References BITS_PER_LONG, check_magic, and resize().

5.2.3.4 void bitClearAll (BitString bs)

sets all bits to zero.

Parameters:
bs the bitstring whose bits are to be cleared.

Returns:
the new bitstring after setting all its bits to zero.

Definition at line 350 of file bitstring.c.

References BYTES_PER_LONG, and check_magic.

5.2.3.5 BitString bitClone (BitString bs)

creates a new bitstring which is a complete clone of bs.

Parameters:
bs the bit string that has to be cloned

Returns:
a copy of the bitstring after cloning.

Definition at line 175 of file bitstring.c.

References bitNew(), BYTES_PER_LONG, and check_magic.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.2 BitStrings 17

5.2.3.6 BitString bitCopy (BitString dst, BitString src)

copies information from src to dst.

dst and src must be bitstrings of the same size

Parameters:
dst destination BitString

src source Bitstring

Returns:
1 on success, 0 on failure (e. g. , due to size mismatch)

Definition at line 197 of file bitstring.c.

References BYTES_PER_LONG, and check_magic.

5.2.3.7 void bitDelete (BitStringbs)

deletes bitstringbsand frees memory.

Parameters:
bs the bitstring that has to be deleted.

Definition at line 214 of file bitstring.c.

References check_magic.

5.2.3.8 Boolean bitGet (BitStringbs, int no)

test for a bit

This function checks whether a bitstring has bit at a certain position switched on.

Parameters:
bs the bitstring

no the position where to look at

Returns:
the state of the bit at the given position

Definition at line 454 of file bitstring.c.

References BITS_PER_LONG, and check_magic.

Referenced by bitPrint().

5.2.3.9 Boolean bitIsAllCleared (BitStringbs)

checks whether all bits are cleared

Parameters:
bs the bitstring we are talking about

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

18 BLAH Module Documentation

Returns:
FALSE on the first bit being switched on, or TRUE if all are switched off

Definition at line 475 of file bitstring.c.

References check_magic.

5.2.3.10 Boolean bitIsAllSet (BitStringbs)

checks whether all bits are set

See also:
bitIsAllCleared

Parameters:
bs the current bitstring

Returns:
FALSE on the first bit being swithced off, or TRUE of all bits are switched on

Definition at line 498 of file bitstring.c.

References check_magic.

5.2.3.11 BitString bitNew (int size)

creates a new bitstring with an initial size ofsizebits.

Parameters:
size specifies the size of the new bit vector to be created.

Returns:
a new bit vector of the specified size.

Definition at line 132 of file bitstring.c.

References BITS_PER_LONG, and BYTES_PER_LONG.

Referenced by bitClone().

5.2.3.12 BitString bitOr (BitString a, BitString b)

computes a logicalORbetween two sets of bits

sets all the bits in bitstring a that are set to 1 in bitstring b to 1. bitstring b is never modified. the bitstrings
must be of the same size.

Parameters:
a the first set of bits

b the second set of bits

Returns:
a on success and NULL on failure.

Definition at line 397 of file bitstring.c.

References check_magic.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.2 BitStrings 19

5.2.3.13 void bitPrint (BitString bs)

prints a bitstring to stdout.

Parameters:
bs the BitString to be printed

Definition at line 240 of file bitstring.c.

References bitGet(), and check_magic.

5.2.3.14 void bitSet (BitStringbs, int no)

sets a bit.

if no is larger than current size the bitstring is enlarged. intermediate bits are cleared. Bits are numbered
from zero upwards.

Parameters:
bs the bitstring in which a bit has to be set.

no the number of the bit that has to be set

Definition at line 302 of file bitstring.c.

References BITS_PER_LONG, check_magic, and resize().

5.2.3.15 void bitSetAll (BitString bs)

sets all the bits to one.

Parameters:
bs the bitstring whose bits are to be set.

Returns:
the new bitstring after setting all its bits to 1.

Definition at line 336 of file bitstring.c.

References BYTES_PER_LONG, and check_magic.

5.2.3.16 int bitSize (BitStringbs)

returns the size of bitstringbs.

Parameters:
bs the bitstring whose size has to be determined.

Returns:
the size of the bitstring bs

Definition at line 228 of file bitstring.c.

References check_magic.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

20 BLAH Module Documentation

5.2.3.17 void resize (BitStringbs, int size) [static]

resize bs to sizesize; sets length, mask and size.

Parameters:
bs the bitstring that has to be resized.

size the size to which the bitstring has to be resized.

Returns:
the new resized bitstring.

Definition at line 259 of file bitstring.c.

References BITS_PER_LONG, and BYTES_PER_LONG.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.3 ByteVectors 21

5.3 ByteVectors

5.3.1 Detailed Description

Implementation of a vector of bits.

A bitvector is a special case of a vector which is more memory efficient than a generic vector and more
time efficient than a bitstring.

Data Structures

• structByteVectorStruct

internal representation of a bit vector

• structByteVectorStruct

internal representation of a bit vector

Defines

• #defineRESIZEFACTOR 2
• #definecheck_magic(v)
• #defineRESIZEFACTOR 2
• #definecheck_magic(v)

Functions

• void resize(ByteVector v)

doubles capacity of ByteVector.

• ByteVectorbvNew(int capacity)

creates a new empty bitvector with an initial capacity.

• void bvDelete(ByteVector v)

deletes a bitvector and frees the associated memory.

• int bvAddElement(ByteVector v, char element)

adds a new element to the end of the ByteVector.

• charbvElement(ByteVector v, int index)

sets the element at the specific index to a new element.

• charbvRemoveElement(ByteVector v, int index)

removes element at the specified index.

• charbvInsertElement(ByteVector v, char element, int index)

inserts a new element at the given index.

• charbvSetElement(ByteVector v, char element, int index)

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

22 BLAH Module Documentation

sets element at the given index.

• charbvAndElement(ByteVector v, char element, int index)

computes AND to the element at the given index.

• charbvOrElement(ByteVector v, char element, int index)

computes OR to the element at the given index.

• charbvNotElement(ByteVector v, int index)

computes NOT to the element at the given index.

• void bvSetElements(ByteVector v, char element, int from, int to)

sets all the elements between indexfrom andto (excluding to) to a new value.

• void bvSetAllElements(ByteVector v, char element)

sets all the elements to a new value.

• int bvCapacity(ByteVector v)

finds the current capacity of bitvector.

• int bvSize(ByteVector v)

finds the number of entries(size) in the bitvector.

• charbvIsEmpty(ByteVector v)

finds if the bit vector is empty or not.

• ByteVectorbvClone(ByteVector v)

creates an exact copy of the specified bitvector.

• ByteVectorbvCopy(ByteVector dst, ByteVector src)

copies entries of one bitvector to another.

5.3.2 Function Documentation

5.3.2.1 int bvAddElement (ByteVectorv, char element)

adds a new element to the end of the ByteVector.

automatically increases the capacity of the ByteVector if necessary

Parameters:
v the vector to which the new element has to be added.

element the element that has to be added to the end of the bitvector v

Returns:
index of the vector

Definition at line 150 of file bitvector-old.c.

References check_magic, and resize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.3 ByteVectors 23

5.3.2.2 char bvAndElement (ByteVectorv, char element, int index)

computes AND to the element at the given index.

if necessary the vector automatically increases its capacity.

Parameters:
v the vector in which the element has to be set at the apecified index.

element the element that has to be set in the bitvector.

index the index at which the element to be set is present.

Returns:
The new value at the index.

Definition at line 310 of file bitvector-old.c.

References check_magic, and resize().

5.3.2.3 int bvCapacity (ByteVectorv)

finds the current capacity of bitvector.

Parameters:
v the bitvector whose capacity has to be retrieved.

Returns:
the capacity of the bitvector v.

Definition at line 436 of file bitvector-old.c.

References check_magic.

Referenced by bvClone().

5.3.2.4 ByteVector bvClone (ByteVectorv)

creates an exact copy of the specified bitvector.

Parameters:
v the bitvector for which cloning has to be performed.

Returns:
a complete independentCLONEof the bit vector v.

Definition at line 475 of file bitvector-old.c.

References bvCapacity(), bvCopy(), bvNew(), and check_magic.

5.3.2.5 ByteVector bvCopy (ByteVectordst, ByteVector src)

copies entries of one bitvector to another.

copying is done from bitVectorsrc to the bitvectordst. dstvector automatically increases its capacity.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

24 BLAH Module Documentation

Parameters:
src source index or the index from which copying has to be initiated.

dst destination index or the index until which the copying has to be done.

Returns:
the newdstvector with the elements copied into it.

Definition at line 496 of file bitvector-old.c.

Referenced by bvClone().

5.3.2.6 void bvDelete (ByteVectorv)

deletes a bitvector and frees the associated memory.

note that nothing user-defined is stored in a bitvector. therefore, the user does not need to free anything
himself.

Parameters:
v the bitvector that has to be deleted.

Definition at line 133 of file bitvector-old.c.

References check_magic.

5.3.2.7 char bvElement (ByteVectorv, int index)

sets the element at the specific index to a new element.

if necessary the bitVector automatically increases its capacity.

Parameters:
v the bitvector in which the specified element has to be set to a new element.

index the index of the element that has to be set.

Returns:
the old element orFalseat the specified index.

Definition at line 170 of file bitvector-old.c.

References check_magic.

5.3.2.8 char bvInsertElement (ByteVectorv, char element, int index)

inserts a new element at the given index.

if necessary the bitvector automatically increases its capacity. inefficient method,not recommended.

Parameters:
v the bitvector into which the new element has to be inserted.

element the new element that has to be inserted into the bitvector v.

index the index at which the new element has to be inserted in the bitvector v.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.3 ByteVectors 25

Returns:
the old element at the index.

Definition at line 227 of file bitvector-old.c.

References check_magic, and resize().

5.3.2.9 Boolean bvIsEmpty (ByteVectorv)

finds if the bit vector is empty or not.

Parameters:
v the bitvector for which emptiness is checked.

Returns:
TRUEif bitvector is empty andFALSEotherwise.

Definition at line 462 of file bitvector-old.c.

References check_magic.

5.3.2.10 ByteVector bvNew (intcapacity)

creates a new empty bitvector with an initial capacity.

Specifying a correct or nearly correct capacity slightly improves the efficiency. The bitvector roughly needs
capacity bytes.

Parameters:
capacity the capacity of the new vector to be created.

Returns:
a new and empty bit vector of the specified capacity.

Definition at line 107 of file bitvector-old.c.

Referenced by bvClone().

5.3.2.11 char bvNotElement (ByteVectorv, int index)

computes NOT to the element at the given index.

if necessary the vector automatically increases its capacity.

Parameters:
v the vector in which the element has to be set at the apecified index.

index the index at which the element to be set is present.

Returns:
The new value at the index.

Definition at line 363 of file bitvector-old.c.

References check_magic, and resize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

26 BLAH Module Documentation

5.3.2.12 char bvOrElement (ByteVectorv, char element, int index)

computes OR to the element at the given index.

if necessary the vector automatically increases its capacity.

Parameters:
v the vector in which the element has to be set at the apecified index.

element the element that has to be set in the bitvector.

index the index at which the element to be set is present.

Returns:
The new value at the index.

Definition at line 337 of file bitvector-old.c.

References check_magic, and resize().

5.3.2.13 char bvRemoveElement (ByteVectorv, int index)

removes element at the specified index.

size decreases and all later elements move one position to the front. inefficient method, not recommended.

Parameters:
v the bitvector from which the element has to be removed.

index the index at which the element to be removed is present.

Returns:
old element at the specifed index.

Definition at line 190 of file bitvector-old.c.

References check_magic.

5.3.2.14 void bvSetAllElements (ByteVectorv, char element)

sets all the elements to a new value.

the size increases to the current capacity of the bit vector.

Parameters:
v the bitvector in which all the elements have to be set.

element the elements at the specified indices.

Returns:
the bitvector after setting all the elements.

Definition at line 424 of file bitvector-old.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.3 ByteVectors 27

5.3.2.15 char bvSetElement (ByteVectorv, char element, int index)

sets element at the given index.

if necessary the vector automatically increases its capacity.

Parameters:
v the vector in which the element has to be set at the apecified index.

element the element that has to be set in the bitvector.

index the index at which the element to be set is present.

Returns:
The old element at the index.

Definition at line 277 of file bitvector-old.c.

References check_magic, and resize().

5.3.2.16 void bvSetElements (ByteVectorv, char element, int from, int to)

sets all the elements between indexfrom andto (excluding to) to a new value.

if necesaary the bit vector automatically increases in capacity.

Parameters:
v the bitvector in which the elements have to be set.

element the value of the bits at the corresponding indices.

from the source index from which all the elements in the bitvector have to be set.

to the destination index until which all the elements in the bitvector have to be set.

Returns:
the bitvector v after setting all the elements at the specified indices.

Definition at line 392 of file bitvector-old.c.

References check_magic, and resize().

5.3.2.17 int bvSize (ByteVectorv)

finds the number of entries(size) in the bitvector.

Parameters:
v the bitvector whose size has to be retrieved.

Returns:
the size of the bitvector v.

Definition at line 449 of file bitvector-old.c.

References check_magic.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

28 BLAH Module Documentation

5.3.2.18 void resize (ByteVectorv) [static]

doubles capacity of ByteVector.

Parameters:
v the bitvector that has to be resized.

Returns:
the bitvector after increasing its capacity.

Definition at line 89 of file bitvector-old.c.

References check_magic.

Referenced by bitClear(), bitSet(), bvAddElement(), bvAndElement(), bvInsertElement(), bvNot-
Element(), bvOrElement(), bvSetElement(), and bvSetElements().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.4 Hashtables 29

5.4 Hashtables

5.4.1 Detailed Description

Implementation of hashtables.

A hashtable stores an arbitrary number of objects that are accessed using an arbitrary key. The key is
converted to an integer value, so so-called hash value, by the hash function. A hash function should be
fast and should map the keys to integers in a highly irregular but consistent way, i.∼e., the keys should
be distributed evenly over the whole set of integers. Ideally, objects can then be accessed in constant time
based on their key.

Data Structures

• structHashtableEntryStruct

internal representation of the hash table entry.

• structHashtableStruct

internal representation of the hash table.

• structHashIteratorStruct

internal representation of the hash iterator.

Defines

• #definePRIME_TESTS 10

Functions

• void rehashHashtable(Hashtable ht)

rehashes the hashtable.

• HashtablehashNew(int capacity, double loadFactor, IntFunction∗hashFunction, IntFunction∗key-
EqualFunction)

creates a new hashtable with an initial capacity of c.

• PointerhashSet(Hashtable ht, Pointer key, Pointer value)

adds the object value with the keykey in the hashtable.

• PointerhashGet(Hashtable ht, Pointer key)

retrieves value associated with the key.

• Pointer∗ hashGetPointerToValue(Hashtable ht, Pointer key)

retrieves value associated with the key

• PointerhashRemove(Hashtable ht, Pointer key)

removes key/value pair from hashtable

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

30 BLAH Module Documentation

• int hashSize(Hashtable ht)

retrieves the size of the hashtable

• BooleanhashIsEmpty(Hashtable ht)

checks if the hashtable is empty.

• BooleanhashContainsKey(Hashtable ht, Pointer key)

checks if the hashtable contains the specified key.

• BooleanhashContainsValue(Hashtable ht, Pointer value)

checks if the hashtable contains a specific value.

• void hashDelete(Hashtable ht)

deletes the hashtable, but can’t free the memory for the content.

• void hashForEach(Hashtable ht, VoidFunction∗f)
calls the function ‘f(key,value)’ for each item in the hashtable.

• void hashForEachWithData(Hashtable ht, VoidFunction∗f, Pointer clientData)

calls the function ‘f(element,data)’ for each object in the hashtable.

• void hashForEachFree(Hashtable ht, VoidFunction∗f)
calls the function ‘f(key, value)’ for each item in the Hashtable.

• void hashForEachFreeValue(Hashtable ht, VoidFunction∗f)
List hashForEachFree(), but frees only the embedded value.

• List hashListOfKeys(Hashtable ht)

retrieves a list of keys of all objects in the hashtable.

• HashIteratorhashIteratorNew(Hashtable ht)

returns a new hash iterator object.

• PointerhashIteratorNextKey(HashIterator hi)

returns the next key of a hash-iterator.

• PointerhashIteratorNextValue(HashIterator hi)

returns the next value of a hash-iterator.

• void hashIteratorDelete(HashIterator hi)

deletes and frees hash iterator object

• int hashStringHashFunction(char∗s)

is an example has function for C strings that can be used in hashNew.

• int hashStringEqualFunction(char∗s, char∗t)
is an example equality function for C strings that can be used in hashNew.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.4 Hashtables 31

5.4.2 Function Documentation

5.4.2.1 Boolean hashContainsKey (Hashtableht, Pointer key)

checks if the hashtable contains the specified key.

Parameters:
ht the hashtable in which the specified key has to be checked.

key the key whose existance in the hashtable is to be checked.

Returns:
TRUEif the an object under the key exists andFALSEotherwise.

Definition at line 346 of file hashtable.c.

5.4.2.2 Boolean hashContainsValue (Hashtableht, Pointer value)

checks if the hashtable contains a specific value.

Objects are compared by the standard C operator == and this method is Expensive!!!

Parameters:
ht the hashtable in which the specific value has to be checked.

value the value whose existance in the hashtable has to be checked.

Returns:
TRUEif the object is contained in the hashtable andFALSEotherwise.

Definition at line 373 of file hashtable.c.

5.4.2.3 void hashDelete (Hashtableht)

deletes the hashtable, but can’t free the memory for the content.

Parameters:
ht the hashtable that has to be deleted.

Definition at line 396 of file hashtable.c.

5.4.2.4 void hashForEach (Hashtableht, VoidFunction ∗ f)

calls the function ‘f(key,value)’ for each item in the hashtable.

Parameters:
ht the hashtable in which the function ’f’ has to be called.

f the function that has to be called for every object in the hashtable ht.

Definition at line 417 of file hashtable.c.

Referenced by strFinalize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

32 BLAH Module Documentation

5.4.2.5 void hashForEachFree (Hashtableht, VoidFunction ∗ f)

calls the function ‘f(key, value)’ for each item in the Hashtable.

deletes the hashtable and hashtable becomes inaccessible

Parameters:
ht the hashtable in which the function ’f’ has to be called.

f the function that has to be called for every object in the hashtable ht.

Definition at line 455 of file hashtable.c.

Referenced by strFinalize().

5.4.2.6 void hashForEachFreeValue (Hashtableht, VoidFunction ∗ f)

List hashForEachFree(), but frees only the embedded value.

F is applied to the value only and must be a unariy void function. Definition at line 475 of file hashtable.c.

5.4.2.7 void hashForEachWithData (Hashtableht, VoidFunction ∗ f, Pointer clientData)

calls the function ‘f(element,data)’ for each object in the hashtable.

Parameters:
ht the hashtable in which the function ’f’ has to be called.

f the function that has to be called in the hashtable ht.

clientData the data in the function ’f(element,data)’that is called in the hashtable ht.

Definition at line 435 of file hashtable.c.

5.4.2.8 Pointer hashGet (Hashtableht, Pointer key)

retrieves value associated with the key.

Parameters:
ht the hashtable from which the value at the specified key has to be retrieved.

key the key at which the value of the hashtable has to be retrieved.

Returns:
the object that(orNULL) that is stored under the key in the hashtable.

Definition at line 222 of file hashtable.c.

Referenced by _strLookup().

5.4.2.9 Pointer∗ hashGetPointerToValue (Hashtableht, Pointer key)

retrieves value associated with the key

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.4 Hashtables 33

Parameters:
ht the hashtable from which the value at the specified key has to be retrieved.

key the key at which the value of the hashtable has to be retrieved.

Returns:
the object that(orNULL) that is stored under the key in the hashtable.

Definition at line 250 of file hashtable.c.

5.4.2.10 Boolean hashIsEmpty (Hashtableht)

checks if the hashtable is empty.

Parameters:
ht the hash table whose emptiness is checked.

Returns:
TRUEif the hashtable is empty andFalseotherwise.

Definition at line 329 of file hashtable.c.

5.4.2.11 void hashIteratorDelete (HashIteratorhi)

deletes and frees hash iterator object

Parameters:
hi the hash iterator object that has to be deleted.

Definition at line 603 of file hashtable.c.

5.4.2.12 HashIterator hashIteratorNew (Hashtableht)

returns a new hash iterator object.

Iterators allow to loop through all the elements of a container. However the behaviour is undefined if the
container changes while the iterator is still looping.

hi = hashIteratorNew(ht);
while (NULL != (key = hashIteratorNextKey(hi))) {

do something with key;
}
hashIteratorDelete(hi);

Parameters:
ht the hashtable for which the new iterator object has to be returned.

Returns:
the new hash iterator object for the hashtable ht.

Definition at line 528 of file hashtable.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

34 BLAH Module Documentation

5.4.2.13 Pointer hashIteratorNextKey (HashIteratorhi)

returns the next key of a hash-iterator.

Hash iterator points to the following entry afterwards

Parameters:
hi the hash iterator whose next key has to be returned.

Returns:
the next key of the hash iterator hi

Definition at line 552 of file hashtable.c.

5.4.2.14 Pointer hashIteratorNextValue (HashIteratorhi)

returns the next value of a hash-iterator.

Hash iterator points to the following entry afterwards.

Parameters:
hi the hash iterator whose next value has to be returned.

Returns:
the next value of a hash-iterator hi.

Definition at line 577 of file hashtable.c.

5.4.2.15 List hashListOfKeys (Hashtableht)

retrieves a list of keys of all objects in the hashtable.

Parameters:
ht the hashtable from which the list of keys have to be retrieved.

Returns:
the list of the keys of all objects in the hashtable.

Definition at line 498 of file hashtable.c.

References listPrependElement().

Referenced by strFinalize().

5.4.2.16 Hashtable hashNew (intcapacity, double loadFactor, IntFunction ∗ hashFunction,
IntFunction ∗ keyEqualFunction)

creates a new hashtable with an initial capacity of c.

whenever the number of stored objects exceedsloadFactor times the current capacity, the hashtable is
automatically resized.

Parameters:
capacity specifies the capacity of the new hashtable to be created.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.4 Hashtables 35

loadFactor it is a number that should be chosen between 0.5 and 0.9.

hashFunction it is that function which is called with a key as the only parameter and returns the hash
value of∗ that key.

keyEqualFunction It is that function which is called with two keys as parameters.It returns 1 if the
keys are to be considered equal and 0 otherwise.

Returns:
the new hashtable with a capacity of c.

Definition at line 136 of file hashtable.c.

References primeNext().

Referenced by strInitialize().

5.4.2.17 Pointer hashRemove (Hashtableht, Pointer key)

removes key/value pair from hashtable

Parameters:
ht the hashtable from which the key/value pair is to be removed.

key this shows the value that has to be deleted in the hashtable ht.

Returns:
the object (orNULL) that is stored under the key in the hashtable ht.

Definition at line 277 of file hashtable.c.

Referenced by strDelete().

5.4.2.18 Pointer hashSet (Hashtableht, Pointer key, Pointer value)

adds the object value with the keykeyin the hashtable.

rehashes the hashtable if necessary.

Parameters:
ht the hashtable in which the object value has to be added with the key.

key the key value that has to be added with thevalue

value the object whose value has to be added to the key.

Returns:
the old object that was stored at that key orNULL

Definition at line 172 of file hashtable.c.

References rehashHashtable().

Referenced by strRegister().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

36 BLAH Module Documentation

5.4.2.19 int hashSize (Hashtableht)

retrieves the size of the hashtable

Parameters:
ht the hashtable whose size has to be retrieved.

Returns:
the number of objects that are currently stored in the hashtable.

Definition at line 313 of file hashtable.c.

Referenced by strFinalize(), and strStoreSize().

5.4.2.20 int hashStringEqualFunction (char∗ s, char ∗ t)

is an example equality function for C strings that can be used in hashNew.

Parameters:
s the first string that is used in the string comparison function.

t the second string that is used in the string comparison function.

Returns:
0 if they are equal and 1 if not.

Definition at line 649 of file hashtable.c.

Referenced by strInitialize().

5.4.2.21 int hashStringHashFunction (char∗ s)

is an example has function for C strings that can be used in hashNew.

A bit rotating function by Knuth is used here. TODO:

• try different hash functions

• strlen should go out - supply length of key.

Parameters:
s the string on which the hashStringHashFunction is performed.

Returns:
the integer representation of the string.

Definition at line 620 of file hashtable.c.

Referenced by strInitialize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.4 Hashtables 37

5.4.2.22 void rehashHashtable (Hashtableht)

rehashes the hashtable.

doubles the capacity and this enlarges the space.

Parameters:
ht the hash table that is to be resized

Returns:
the new resized hashtable.

Definition at line 86 of file hashtable.c.

References primeNext().

Referenced by hashSet().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

38 BLAH Module Documentation

5.5 Lists

5.5.1 Detailed Description

A list container.

A list is a sequence of data objects where the data items are usually access from the beginning of list. The
head of a list is the first data item and the tail is a list containing the remaining objects.

Data Structures

• structListStruct

a list node.

Defines

• #definenewListCell(List)memMalloc(sizeof(ListStruct))

this is used to debug the cell allocation for Lists.

• #definefreeListCellmemFree

this is used to debug the cell deallocation for Lists.

Functions

• List listNew()

get a new list.

• PointerlistElement(List l)

returns first item in list.

• List listNext (List l)

returns the tail of the list.

• PointerlistSetElement(List l, Pointer value)

set the item of the current list cell.

• PointerlistSetNext(List l, List m)

set the next of the current list cell.

• List listClone(List l)

clones a list.

• List listDeepClone(List l, PointerFunction∗p)

Clones a list, performing a deep copy of all items via P.

• List listCopy(List dst, List src)

set list-items of dst to those of src by reusing old buckets.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.5 Lists 39

• List listAppendList(List front, List rear)

appends a list to another list.

• List listAppendElement(List l, Pointer item)

appends an item to the end of a list.

• List listPrependElement(List l, Pointer item)

prepends an item to a list.

• List listAppendElements(List oldList,...)

appends a couple of items to the end of a list.

• List listPrependElements(List oldList,...)

prepends a couple of items to the end of a list.

• List listInsertSorted(List list, Pointer item, BooleanFunction∗f)
inserts an item keeping an order defined by f.

• List listInsertSortedWithData(List list, Pointer item, BooleanFunction∗f, Pointer clientData)

inserts an item keeping an order defined by f and some extra data.

• List listAddUniqueElement(List l, Pointer item)

adds an item to the list if and only if it is not already present.

• int listSize(List l)

retrieves number of items in the list.

• PointerlistNthElement(List l, int n)

returns nth item in list.

• PointerlistLastElement(List l)

returns last item in list.

• BooleanlistContains(List l, Pointer p)

checks if the list contains a particular item.

• void listForEach(List l, VoidFunction∗f)
calls function ‘f ’ for each list element.

• void listForEachDelete(List l, VoidFunction∗f)
like listForEach, but frees list, list becomes inaccessible.

• List listFilter (List l, BooleanFunction∗f)
filters list, returns new (sub-)list.

• void listDelete(List l)

frees list, does NOT free elements.

• List listDeleteElement(List l, Pointer p)

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

40 BLAH Module Documentation

deletes all occurences of item from list.

• List listDeleteLastElement(List l)

deletes the last item from the list.

• VectorlistToVector(List l)

converts a list into a vector.

• int listIndex(List l, Pointer item)

find a particular item in a list .

• BooleanlistIsEqual(List list1, List list2)

compare two lists item per item.

• List listSort(List l, BooleanFunction∗f)
sorts a list, using a user-specified compare function.

• List listSortWithData(List l, BooleanFunction∗f, void ∗data)

sorts a list, using a user-specified compare function and some data.

• List listReverse(List l)

return a new reverse list.

5.5.2 Define Documentation

5.5.2.1 #define freeListCell memFree

this is used to debug the cell deallocation for Lists.

It expands to _freeCell when BLAH is compiled with -DLIST_DEBUG or to the normal memFree function.

See also:
newCell

Definition at line 86 of file list.c.

Referenced by listDelete(), listDeleteElement(), listDeleteLastElement(), and listForEachDelete().

5.5.2.2 #define newListCell (List)memMalloc(sizeof(ListStruct))

this is used to debug the cell allocation for Lists.

It expands to _newCell when BLAH is compiled with -DLIST_DEBUG or to the normal memMalloc
function.

See also:
_newCell,freeListCell

Definition at line 66 of file list.c.

Referenced by listAppendElement(), listClone(), listDeepClone(), listInsertSorted(), listInsertSortedWith-
Data(), and listPrependElement().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.5 Lists 41

5.5.3 Function Documentation

5.5.3.1 List listAddUniqueElement (List l, Pointer item)

adds an item to the list if and only if it is not already present.

Parameters:
l the list to which the specified item has to be added.

item the item that has to be added to the list l.

Returns:
the new list after the addition of the item if its unique.

Definition at line 420 of file list.c.

References listAppendElement(), and listContains().

5.5.3.2 List listAppendElement (Listl, Pointer item)

appends an item to the end of a list.

Parameters:
l the list to which an item has to be appended.

item the item that has to be appended to the end of the list l.

Returns:
the new list after appending.

Definition at line 269 of file list.c.

References newListCell.

Referenced by laInsert(), listAddUniqueElement(), listAppendElements(), listFilter(), and strAppend().

5.5.3.3 List listAppendElements (ListoldList, ...)

appends a couple of items to the end of a list.

Parameters:
oldList the list to which a couple of items are to be appended.

... the list of items are to be appended to the end of the list.

Definition at line 314 of file list.c.

References listAppendElement().

5.5.3.4 List listAppendList (List front, List rear)

appends a list to another list.

Parameters:
front a list to whose end another list rear is appended.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

42 BLAH Module Documentation

rear a list which is appended to the tail of the front list

Returns:
the new list after appending.

Definition at line 247 of file list.c.

5.5.3.5 List listClone (List l)

clones a list.

This doesn’t clone the items.

Parameters:
l the list that has to be cloned.

Returns:
a newly allocated list after cloning.

Definition at line 158 of file list.c.

References newListCell.

Referenced by listCopy().

5.5.3.6 Boolean listContains (Listl, Pointer p)

checks if the list contains a particular item.

Parameters:
l the list in which the existance of the specified item has to be checked.

p specifies the item that has to be checked for in the list l.

Returns:
TRUEif the list contains the item orFALSEotherwise.

Definition at line 490 of file list.c.

Referenced by listAddUniqueElement().

5.5.3.7 List listCopy (List dst, List src)

set list-items of dst to those of src by reusing old buckets.

It works as follows:

• if dst has more buckets than src then these are freed

• if dst has less buckets than src then new once are allocated

• if dst is NULL then listCopy is equivalent to listClone

• if src is NULL then listCopy is equivalent to listDelete

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.5 Lists 43

Parameters:
dst the resulting list

src the originating list

Returns:
the dst List

Definition at line 204 of file list.c.

References listClone(), and listDelete().

5.5.3.8 List listDeepClone (Listl, PointerFunction ∗ p)

Clones a list, performing a deep copy of all items via P.

Definition at line 176 of file list.c.

References newListCell.

5.5.3.9 void listDelete (Listl)

frees list, does NOT free elements.

Parameters:
l the list that needs to be freed.

Returns:
nothing.

Definition at line 558 of file list.c.

References freeListCell.

Referenced by laInsert(), listCopy(), and strAppend().

5.5.3.10 List listDeleteElement (Listl, Pointer p)

deletes all occurences of item from list.

Parameters:
l the list from which all the occurances of a specified item has to be deleted.

p the particular item whose occurances in the list l has to be deleted.

Returns:
the new list after deleting the item from the list.

Definition at line 576 of file list.c.

References freeListCell.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

44 BLAH Module Documentation

5.5.3.11 List listDeleteLastElement (Listl)

deletes the last item from the list.

Parameters:
l the list from which the last item has to be deleted.

Returns:
the new list after deleting the last item form the list l.

Definition at line 612 of file list.c.

References freeListCell.

5.5.3.12 Pointer listElement (Listl)

returns first item in list.

Parameters:
l the list whose first item has to be returned.

Returns:
the first item in the list l.

Definition at line 109 of file list.c.

Referenced by laBest(), laDelete(), laInsert(), laIteratorNew(), laIteratorNextElement(), laRemoveBest(),
listReverse(), strFinalize(), and strFromList().

5.5.3.13 List listFilter (List l, BooleanFunction∗ f)

filters list, returns new (sub-)list.

Parameters:
l the list on which the function is evaluated.

f the function that is evaluated in the list l to generate a (sub-) list

Returns:
an independent list consisting of all the elements of the given list l that make function ’f’ evaluate to
TRUE

Definition at line 539 of file list.c.

References listAppendElement().

5.5.3.14 void listForEach (Listl, VoidFunction ∗ f)

calls function ‘f’ for each list element.

Parameters:
l the list in which the function ’f’ is called.

f the function which is called for each element in the list l.

Definition at line 504 of file list.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.5 Lists 45

5.5.3.15 void listForEachDelete (Listl, VoidFunction ∗ f)

like listForEach, but frees list, list becomes inaccessible.

Parameters:
l the list in which the function ’f’ has to be called.

f the function that is called for each element in the list l.

Definition at line 518 of file list.c.

References freeListCell.

5.5.3.16 int listIndex (List l, Pointer item)

find a particular item in a list .

Parameters:
l the list from which the specified item has to be found.

item the item that has to be found from the list l.

Returns:
the index of the item if found else zero.

Definition at line 666 of file list.c.

5.5.3.17 List listInsertSorted (List list, Pointer item, BooleanFunction∗ f)

inserts an item keeping an order defined by f.

Parameters:
list the list into which a specified item has to be inserted.

item the item that has to be inserted into the list l.

f the function that defines the ordering of the during insertion.

Returns:
the new list after insertion operation.

Definition at line 359 of file list.c.

References newListCell.

5.5.3.18 List listInsertSortedWithData (List list, Pointer item, BooleanFunction∗ f, Pointer
clientData)

inserts an item keeping an order defined by f and some extra data.

Parameters:
list the list into which a specified item has to be inserted.

item the item that has to be inserted into the list l.

’f’ the function that defines the ordering of the during insertion.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

46 BLAH Module Documentation

clientData the data that determines the ordering along with the function ’f’

Returns:
the new list after insertion operation.

Definition at line 390 of file list.c.

References newListCell.

5.5.3.19 Boolean listIsEqual (Listlist1, List list2)

compare two lists item per item.

Parameters:
list1 the first list whose items are to be compared.

list2 the second list whose items are compared with the list 1.

Returns:
TRUEif the items are all equal andFALSEotherwise.

Definition at line 689 of file list.c.

References listSize().

5.5.3.20 Pointer listLastElement (Listl)

returns last item in list.

Parameters:
l the list from which the last item has to be retrieved.

Returns:
the last item of the list l.

Definition at line 471 of file list.c.

5.5.3.21 List listNew ()

get a new list.

A new List is represented by NULL.

Returns:
NULL

Definition at line 98 of file list.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.5 Lists 47

5.5.3.22 List listNext (List l)

returns the tail of the list.

Parameters:
l the list whose tail has to be returned.

Returns:
the last item of the list.

Definition at line 120 of file list.c.

Referenced by laDelete(), laInsert(), laIteratorNextElement(), laRemoveBest(), listReverse(), strFinalize(),
and strFromList().

5.5.3.23 Pointer listNthElement (Listl, int n)

returns nth item in list.

Parameters:
l the list whose ’n’th item has to be retrieved.

n the number that idicates the item that has to be retrieved.

Returns:
the item in the ’n’th position of the list.

Definition at line 453 of file list.c.

5.5.3.24 List listPrependElement (Listl, Pointer item)

prepends an item to a list.

Parameters:
l the list to which an item has to be prepended.

item the item that has to be prepended to the list l.

Returns:
the new list after prepending.

Definition at line 296 of file list.c.

References newListCell.

Referenced by hashListOfKeys(), laInsert(), laIteratorNew(), listPrependElements(), listReverse(), and
vectorToList().

5.5.3.25 List listPrependElements (ListoldList, ...)

prepends a couple of items to the end of a list.

Parameters:
oldList the list to which the items are prepended.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

48 BLAH Module Documentation

... the list of items that are to be prepended to the list l.

Returns:
the new list after prepending.

Definition at line 336 of file list.c.

References listPrependElement().

5.5.3.26 List listReverse (Listl)

return a new reverse list.

Parameters:
l the list whose data items are to be reversed.

Returns:
a new list after reversing the list l.

Definition at line 753 of file list.c.

References listElement(), listNext(), and listPrependElement().

5.5.3.27 Pointer listSetElement (Listl, Pointer value)

set the item of the current list cell.

Parameters:
l the list from which the specified item has to be set.

value the value of the item in the list that has to be set.

Returns:
the list after setting the specified item.

Definition at line 132 of file list.c.

Referenced by laIteratorNextElement().

5.5.3.28 Pointer listSetNext (Listl, List m)

set the next of the current list cell.

Parameters:
l the list from which the specified item has to be set.

m next of the current list cell

Definition at line 144 of file list.c.

Referenced by laInsert(), and laIteratorNextElement().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.5 Lists 49

5.5.3.29 int listSize (Listl)

retrieves number of items in the list.

Parameters:
l the list whose size has to be retrieved.

Returns:
the total number of items in the list l.

Definition at line 435 of file list.c.

Referenced by listIsEqual(), listToVector(), strFinalize(), and strFromList().

5.5.3.30 List listSort (List l, BooleanFunction∗ f)

sorts a list, using a user-specified compare function.

Parameters:
l the list that has to be sorted using the function ’f’

f the compare function that is used for the sorting of the list l.

Returns:
the new list after sorting using the function ’f’

Definition at line 713 of file list.c.

References listToVector(), vectorDelete(), vectorSort(), and vectorToList().

5.5.3.31 List listSortWithData (List l, BooleanFunction∗ f, void ∗ data)

sorts a list, using a user-specified compare function and some data.

Parameters:
l the list that has to be sorted using the function ’f’

f the compare function that is used for the sorting of the list l.

data the data that defines the sorting along with the function ’f’

Returns:
the new list after sorting using the function ’f’ and the data.

Definition at line 734 of file list.c.

References listToVector(), vectorDelete(), vectorSortWithData(), and vectorToList().

5.5.3.32 Vector listToVector (Listl)

converts a list into a vector.

Parameters:
l the list that has to be converted into a vector v.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

50 BLAH Module Documentation

Returns:
the vector v corresponding to the list l.

Definition at line 642 of file list.c.

References listSize(), vectorNew(), and vectorSetElement().

Referenced by listSort(), and listSortWithData().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.6 ListAgenda 51

5.6 ListAgenda

5.6.1 Detailed Description

This module is an implementation of the agenda interface using a plain list as its the storage medium.

This is used by the module netsearch, but has been superseded by the more efficienct module treeagenda.

Data Structures

• structListAgendaEntryStruct

this type represents an entry of an agenda.

• structListAgendaStruct

quick, should be binary tree.

Functions

• ListAgendalaNew(int maxsize, VoidFunction f)

creates a new ListAgenda.

• BooleanlaSetVerbosity(ListAgenda a, Boolean b)

sets verbosity flag.

• BooleanlaVerbosity(ListAgenda a)

gets verbosity flag.

• int laSize(ListAgenda a)

retrieves size of the agenda.

• int laMaxSize(ListAgenda a)

retrieves the size limit of the agenda.

• int laMaxSizeSoFar(ListAgenda a)

retrieves the largest attained size of the agenda.

• BooleanlaIsEmpty(ListAgenda a)

checks if the specified ListAgenda is empty.

• BooleanlaIsTruncated(ListAgenda a)

checks for the truncation of the ListAgendaa.

• BooleanlaResetTruncated(ListAgenda a)

reset the agenda truncation warning.

• BooleanlaInsert(ListAgenda a, double score, Pointer state)

inserts a new entry into the agenda.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

52 BLAH Module Documentation

• PointerlaBest(ListAgenda a)

returns the best entry (= first) from the agenda.

• PointerlaRemoveBest(ListAgenda a)

removes and returns best entry (= first) from the agenda.

• void laDelete(ListAgenda a)

deletes the specified agenda.

• ListAgendaIteratorlaIteratorNew(ListAgenda a)

creates a new iterator object.

• PointerlaIteratorNextElement(ListAgendaIterator ai)

returns the next item in iterator object.

• void laIteratorDelete(ListAgendaIterator ai)

deletes the iterator object.

5.6.2 Function Documentation

5.6.2.1 Pointer laBest (ListAgendaa)

returns the best entry (= first) from the agenda.

Parameters:
a the ListAgenda from which the best item has to be retrieved.

Returns:
the best item ina (or NULL if a is empty).The item remains in the agenda.

Definition at line 313 of file listagenda.c.

References listElement().

5.6.2.2 void laDelete (ListAgendaa)

deletes the specified agenda.

The function deallocates all the items ina using∗freeState(). Then it deallocates all the entries and the
agenda itself.

Parameters:
a the ListAgenda that has to be deleted.

Definition at line 357 of file listagenda.c.

References listElement(), and listNext().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.6 ListAgenda 53

5.6.2.3 Boolean laInsert (ListAgendaa, doublescore, Pointer state)

inserts a new entry into the agenda.

Parameters:
a the ListAgenda into which a new element has to be inserted.

score thestateis sorted into the list according to thescore.

state the item that is inserted into the ListAgendaa.

Returns:
FALSE if the agenda has been truncated andTRUE if we were able to insert the item without any
unpleasant side effects. This is going to be reported only once.

If the insertion leads to an overflow, then the worst item from the list is removed. Note that the item to be
removed may be thestateitself. Definition at line 233 of file listagenda.c.

References listAppendElement(), listDelete(), listElement(), listNext(), listPrependElement(), and listSet-
Next().

5.6.2.4 Boolean laIsEmpty (ListAgendaa)

checks if the specified ListAgenda is empty.

Parameters:
a the ListAgenda for which emptiness has to be checked.

Returns:
TRUEif agendaa is empty andFALSEotherwise.

Definition at line 191 of file listagenda.c.

5.6.2.5 Boolean laIsTruncated (ListAgendaa)

checks for the truncation of the ListAgendaa.

Parameters:
a the ListAgenda on which the functionlaIsTruncatedis performed.

Returns:
TRUEif the agenda is already truncated andFALSEotherwise.

Definition at line 202 of file listagenda.c.

5.6.2.6 void laIteratorDelete (ListAgendaIteratorai)

deletes the iterator object.

The function deallocates the list cell that was used by the iterator.

Parameters:
ai the iterator object that has to be deleted.

Definition at line 422 of file listagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

54 BLAH Module Documentation

5.6.2.7 ListAgendaIterator laIteratorNew (ListAgenda a)

creates a new iterator object.

This is actually just a single new list cell that points to the first entry.

Parameters:
a the ListAgenda for which a new iterator has to be created.

Returns:
a new ListAgendaIterator that will return all items ofa sorted by score.

Definition at line 380 of file listagenda.c.

References listElement(), and listPrependElement().

5.6.2.8 Pointer laIteratorNextElement (ListAgendaIterator ai)

returns the next item in iterator object.

Parameters:
ai the iterator of the ListAgendaa.

Returns:
the best item in the underlying agenda that was not already returned by the iterator.

Definition at line 399 of file listagenda.c.

References listElement(), listNext(), listSetElement(), and listSetNext().

5.6.2.9 int laMaxSize (ListAgendaa)

retrieves the size limit of the agenda.

Parameters:
a the ListAgenda for which the maximum size has to be determined.

Returns:
the max number of entries that can be held by the ListAgenda a.

Definition at line 169 of file listagenda.c.

5.6.2.10 int laMaxSizeSoFar (ListAgendaa)

retrieves the largest attained size of the agenda.

Parameters:
a the ListAgenda for which the largest size has to be retrieved.

Returns:
the maximum size occupied by the agendaa so far.

Definition at line 180 of file listagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.6 ListAgenda 55

5.6.2.11 ListAgenda laNew (intmaxsize, VoidFunction f)

creates a new ListAgenda.

Parameters:
maxsize the maximum capacity of the new ListAgenda that has to be created.

f the function that used for deallocating an element.

Returns:
a pointer to a new ListAgenda that can hold uptomaxsizeentries.

Definition at line 114 of file listagenda.c.

5.6.2.12 Pointer laRemoveBest (ListAgendaa)

removes and returns best entry (= first) from the agenda.

Parameters:
a the ListAgenda from which the best item has to be retrieved.

Returns:
the best item ina.Thecorresponding entry is removed and deallocated.
It must not be called on an empty agenda.

Definition at line 331 of file listagenda.c.

References listElement(), and listNext().

5.6.2.13 Boolean laResetTruncated (ListAgendaa)

reset the agenda truncation warning.

Parameters:
a the ListAgenda whose truncationWarning will be set to FALSE.

Returns:
the old value of the truncationWarning

Definition at line 213 of file listagenda.c.

5.6.2.14 Boolean laSetVerbosity (ListAgendaa, Booleanb)

sets verbosity flag.

Parameters:
a the ListAgenda whose verbosity property is set

b a Boolean which we set the verbosity to

Returns:
the old verbosity state

Definition at line 134 of file listagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

56 BLAH Module Documentation

5.6.2.15 int laSize (ListAgendaa)

retrieves size of the agenda.

Parameters:
a the ListAgenda for which the size has to be retrieved.

Returns:
the current number of entries in the ListAgendaa.

Definition at line 158 of file listagenda.c.

5.6.2.16 Boolean laVerbosity (ListAgendaa)

gets verbosity flag.

Parameters:
a the ListAgenda whose verbosity property is set

Returns:
the verbosity state

Definition at line 147 of file listagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.7 Memory 57

5.7 Memory

5.7.1 Detailed Description

Some basic Operations with the memory are done in this module.

Functions

• void ∗ memMallocCheck(void ∗ptr, char∗file, int line)

used for checking the memory allocation for pointers.

• void memFreeFunction(void ∗pointer)

sometimes memFree must be a function

5.7.2 Function Documentation

5.7.2.1 void memFreeFunction (void∗ pointer)

sometimes memFree must be a function

Parameters:
pointer the pointer that determines the memory free function.

Definition at line 62 of file memory.c.

5.7.2.2 void∗ memMallocCheck (void∗ ptr, char ∗ file, int line)

used for checking the memory allocation for pointers.

a function that checks whether pointer is NULL, used by a version of memMalloc (c. f. memMalloc.h)

Parameters:
ptr the ptr whose value has to be checked for NULL.

file the file that contains the pointer.

line the line in which the pointer exists.

Returns:
error message if pointer equals null else returns the pointer.

Definition at line 47 of file memory.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

58 BLAH Module Documentation

5.8 Primes

5.8.1 Detailed Description

Primes is a module that makes use of Rabin’s Probablistic Primetest-Algorithm for generating the prime
numbers equal to the Hash table entries.

Defines

• #definedrand48() ((double) rand() / (double) RAND_MAX)

• #definesrand48(x) (srand((x)))

Functions

• unsigned longaddMod(unsigned long x, unsigned long y, unsigned long m)

addition in a modulo.

• unsigned longmultMod (unsigned long x, unsigned long y, unsigned long m)

multiplication in a modulo.

• unsigned longpowMod(unsigned long x, unsigned long y, unsigned long m)

exponent in a modulo.

• int primeRabin(unsigned long number, unsigned long times)

Rabin’s probablistic primetest-algorithm.

• unsigned longprimeNext(unsigned long number, unsigned long times)

returns the next prime after a given number.

5.8.2 Function Documentation

5.8.2.1 unsigned long addMod (unsigned longx, unsigned longy, unsigned longm) [static]

addition in a modulo.

Parameters:
x the first element used in addition.

y the second element used in addition

m the modulud function

Returns:
the added result.

Definition at line 51 of file primes.c.

Referenced by multMod().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.8 Primes 59

5.8.2.2 unsigned long multMod (unsigned longx, unsigned longy, unsigned longm) [static]

multiplication in a modulo.

Parameters:
x the first element used in multiplication.

y the second element used in multiplication.

m the modulo function.

Returns:
the multiplied result.

Definition at line 64 of file primes.c.

References addMod().

Referenced by powMod().

5.8.2.3 unsigned long powMod (unsigned longx, unsigned longy, unsigned longm) [static]

exponent in a modulo.

Parameters:
x the base function.

y the exponent function.

m the modulo function.

Returns:
the result - x raised to the exponential y.

Definition at line 87 of file primes.c.

References multMod().

Referenced by primeRabin().

5.8.2.4 unsigned long primeNext (unsigned longnumber, unsigned longtimes)

returns the next prime after a given number.

Definition at line 123 of file primes.c.

References primeRabin().

Referenced by hashNew(), and rehashHashtable().

5.8.2.5 int primeRabin (unsigned longnumber, unsigned longtimes)

Rabin’s probablistic primetest-algorithm.

Parameters:
number ...

times ...

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

60 BLAH Module Documentation

Returns:
true if number is a prime by testing it a few times

Definition at line 106 of file primes.c.

References powMod().

Referenced by primeNext().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.9 Ringbuffers 61

5.9 Ringbuffers

5.9.1 Detailed Description

Implementation of ring buffers.

It is similar to the vector that stores a series of objects,though the head and the tail are attached inorder to
enhance cyclic operations.

Data Structures

• structRingBufferStruct

internal representation of the ring buffer.

Functions

• RingBufferrbNew(int capacity)

creates a new ringbuffer.

• void rbDelete(RingBuffer rb)

deletes a ringbuffer.

• BooleanrbIsEmpty(RingBuffer rb)

checks if the given ringbuffer is empty.

• BooleanrbIsFull (RingBuffer rb)

checks if a given ring buffer is full.

• int rbAddTopElement(RingBuffer rb, Pointer element)

adds a new element to the top of a ring buffer.

• int rbAddBottomElement(RingBuffer rb, Pointer element)

adds a new element to the bottom of a ring buffer.

• PointerrbTopPeek(RingBuffer rb)

returns the last inserted element without removing it.

• PointerrbBottomPeek(RingBuffer rb)

returns the first inserted element without removing it.

• int rbSize(RingBuffer rb)

finds the current size of the buffer.

• int rbCapacity(RingBuffer rb)

finds the maximum capacity of the specified buffer.

• PointerrbRemoveTopElement(RingBuffer rb)

removes the element from the top of the buffer.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

62 BLAH Module Documentation

• PointerrbRemoveBottomElement(RingBuffer rb)

removes the element from the bottom of the buffer.

• BooleanrbContains(RingBuffer rb, Pointer element)

checks if the ringbuffer contains a specified element.

• RingBufferrbCopy(RingBuffer dst, RingBuffer src)

makes a copy of the container fromsrcto dst.

• RingBufferrbClone(RingBuffer src)

makes a new copy of the ring buffer.

• void rbForEachWithData(RingBuffer rb, VoidFunction∗f, Pointer data)

iterate over all items in the ring buffer and apply a function

• void rbClear(RingBuffer rb)

empties the buffer.

5.9.2 Function Documentation

5.9.2.1 int rbAddBottomElement (RingBuffer rb, Pointer element)

adds a new element to the bottom of a ring buffer.

Parameters:
rb ringbuffer to which addition has to be done.

element element that has to be added to the ring buffer.

Returns:
the number of elements in the buffer.

Definition at line 138 of file ringbuffer.c.

References rbIsFull().

5.9.2.2 int rbAddTopElement (RingBuffer rb, Pointer element)

adds a new element to the top of a ring buffer.

Parameters:
rb ringbuffer to which addition has to be done.

element element that has to be added to the ring buffer.

Returns:
the number of elements in the buffer

Definition at line 115 of file ringbuffer.c.

References rbIsFull().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.9 Ringbuffers 63

5.9.2.3 Pointer rbBottomPeek (RingBufferrb)

returns the first inserted element without removing it.

Parameters:
rb ringbuffer from which the bottom element is returned.

Returns:
the first inserted element from the ringbuffer rb.

Definition at line 180 of file ringbuffer.c.

References rbIsEmpty().

5.9.2.4 int rbCapacity (RingBuffer rb)

finds the maximum capacity of the specified buffer.

Parameters:
rb ringbuffer whose maximum capacity is returned.

Returns:
the maximum number of elements the buffer rb can hold.

Definition at line 207 of file ringbuffer.c.

5.9.2.5 void rbClear (RingBuffer rb)

empties the buffer.

Parameters:
rb refers to the buffer that is to be emptied.

Definition at line 338 of file ringbuffer.c.

5.9.2.6 RingBuffer rbClone (RingBuffer src)

makes a new copy of the ring buffer.

Parameters:
src source of the ringbuffer to be cloned.

Returns:
a new copy of a ring buffer after cloning.

Definition at line 306 of file ringbuffer.c.

References rbCopy(), and rbNew().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

64 BLAH Module Documentation

5.9.2.7 Boolean rbContains (RingBufferrb, Pointer element)

checks if the ringbuffer contains a specified element.

Parameters:
rb ringbuffer in which the search has to be made.

element the element to be seached in the ringbuffer rb.

Returns:
TRUEif the buffer contains element,FALSEotherwise.

Definition at line 261 of file ringbuffer.c.

5.9.2.8 RingBuffer rbCopy (RingBuffer dst, RingBuffer src)

makes a copy of the container fromsrc to dst.

Parameters:
src this refers to the source ring buffer that has to be copied to the destination buffer.

dst this refers to the destination buffer into which the copying has been done.

Returns:
the dst ringbuffer after copying.

Definition at line 283 of file ringbuffer.c.

Referenced by rbClone().

5.9.2.9 void rbDelete (RingBufferrb)

deletes a ringbuffer.

Parameters:
rb the ringbuffer that is to be deleted.

Definition at line 80 of file ringbuffer.c.

5.9.2.10 void rbForEachWithData (RingBuffer rb, VoidFunction ∗ f, Pointer data)

iterate over all items in the ring buffer and apply a function

Parameters:
rb this is the ring buffer in which the iteration is done.

f this is the function that is used for the iteration in the ring buffer rb.

data determines the data in the ringbuffer.

Definition at line 321 of file ringbuffer.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.9 Ringbuffers 65

5.9.2.11 Boolean rbIsEmpty (RingBufferrb)

checks if the given ringbuffer is empty.

Parameters:
rb ringbuffer that is to be checked.

Returns:
TRUEif the buffer is empty andFALSEotherwise.

Definition at line 92 of file ringbuffer.c.

Referenced by rbBottomPeek(), rbRemoveBottomElement(), rbRemoveTopElement(), and rbTopPeek().

5.9.2.12 Boolean rbIsFull (RingBufferrb)

checks if a given ring buffer is full.

Parameters:
rb ringbuffer that is to be checked

Returns:
TRUEif buffer is full andFALSEotherwise.

Definition at line 103 of file ringbuffer.c.

Referenced by rbAddBottomElement(), and rbAddTopElement().

5.9.2.13 RingBuffer rbNew (intcapacity)

creates a new ringbuffer.

Parameters:
capacity specifies the capacity with which the new ringbuffer has to be created.

Returns:
a new ringBuffer with the sizecapacity.

Definition at line 57 of file ringbuffer.c.

Referenced by rbClone().

5.9.2.14 Pointer rbRemoveBottomElement (RingBufferrb)

removes the element from the bottom of the buffer.

Parameters:
rb ringbuffer from which the removal is done.

Returns:
the first inserted element in the buffer rb.

Definition at line 240 of file ringbuffer.c.

References rbIsEmpty().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

66 BLAH Module Documentation

5.9.2.15 Pointer rbRemoveTopElement (RingBufferrb)

removes the element from the top of the buffer.

Parameters:
rb ringbuffer from which the removal is done.

Returns:
the last inserted element in the buffer rb.

Definition at line 218 of file ringbuffer.c.

References rbIsEmpty().

5.9.2.16 int rbSize (RingBufferrb)

finds the current size of the buffer.

Parameters:
rb ringbuffer whose size is returned.

Returns:
the current number of elements in the buffer.

Definition at line 196 of file ringbuffer.c.

5.9.2.17 Pointer rbTopPeek (RingBufferrb)

returns the last inserted element without removing it.

Parameters:
rb ringbuffer from which top element is returned.

Returns:
the last inserted element from the ring buffer rb.

Definition at line 161 of file ringbuffer.c.

References rbIsEmpty().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.10 Strings 67

5.10 Strings

5.10.1 Detailed Description

implementation of strings.

Strings in C are represented by arrays of characters.The end of the string is marked with a special character,
the null character, which is simply the character with the value 0. Whenever we write a string, enclosed in
double quotes, C automatically creates an array of characters for us, containing that string, terminated by
theNULL character.

FIXME: this comment is plain copy/pasted from cdg.c

The symbol table cdgSymbolTable)is used to share strings registered (cdgRegisterString()) to it. Sharing
strings speeds up string comparison alot as we dont need strcmp for this any more. A pointer comarison
suffices. So we store strings in a hash. But be warned: changing a registered string directly will break
things seriously. If you need to change a registered string, make a copy of it (strCopy), manipulate it for
your needs and then register it once again.

Data Structures

• structSharedStringStruct

strings with reference counters

Typedefs

• typedefSharedStringStruct∗ SharedString

Functions

• SharedString_strNewSharedString(const String str)

allocate a new SharedString.

• void _strDeleteSharedString(SharedString)

deallocated a SharedString.

• void _strDeleteStoreEntry(String,SharedString)

deallocate a key value pair.

• SharedString_strLookup(String)

lookup a string in the string store.

• String_strTryRegister(String)

try to register a new string.

• StringstrCopy(const String s)

this performs string copying function.

• StringstrVPrintf (const String fmt, va_list ap)

returns a formated string.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

68 BLAH Module Documentation

• StringstrPrintf(const String fmt,...)

returns a formated string.

• StringstrCat(const String a, const String b)

concatenates two strings.

• StringstrFromList(List list)

concatenates a list of strings.

• StringstrAppend(const String head,...)

concatenates many strings together.

• void strDelete(String str)

unregister a string This function tries deallocate thestr string when its reference counter licenses it.

• StringstrRegister(const String str)

register a string in symbol table.

• int strStoreSize(void)

return the number of shared strings.

• void strFinalize(void)

module finalization routine.

• StringstrDecode(String word)

Translate a string from unicode UTF-8 to ISO-8859-1.

• void strInitialize(void)

module initialization routine.

Variables

• Hashtable_strStore= NULL

container for shared strings.

• iconv_t_strConversionDescriptor= (iconv_t)-1

5.10.2 Function Documentation

5.10.2.1 void _strDeleteSharedString (SharedStringsstr) [static]

deallocated a SharedString.

This function deallocates a SharedString and its workload. Definition at line 335 of file string.c.

References SharedStringStruct::data.

Referenced by _strDeleteStoreEntry(), and strDelete().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.10 Strings 69

5.10.2.2 void _strDeleteStoreEntry (Stringkey, SharedStringvalue) [static]

deallocate a key value pair.

This is used to deallocate the key and the value of the_strStore . Definition at line 326 of file string.c.

References _strDeleteSharedString().

Referenced by strFinalize().

5.10.2.3 SharedString_strLookup (String str) [static]

lookup a string in the string store.

This function returns a pointer to a SharedString if the given string argument is already shared, or NULL
if this string isn’t shared yet. Definition at line 169 of file string.c.

References _strStore, and hashGet().

Referenced by _strTryRegister(), strDelete(), and strRegister().

5.10.2.4 SharedString_strNewSharedString (const Stringstr) [static]

allocate a new SharedString.

This function constructs a new SharedString. It contains no worload data yet. Definition at line 297 of file
string.c.

References SharedStringStruct::counter, and SharedStringStruct::data.

Referenced by strRegister().

5.10.2.5 String _strTryRegister (Stringstr) [static]

try to register a new string.

This function only registers new strings. It will not increase the reference counter of an already registered
string. In any case it will return a known string. Definition at line 183 of file string.c.

References _strLookup(), and strRegister().

Referenced by strCat().

5.10.2.6 String strAppend (const Stringhead, ...)

concatenates many strings together.

This function allocates the memory for the result string. The argument strings are not modified by the
function. The last string in the argument list must be NULL.

Parameters:
str the head of the string to be produced

... represents the strings to be appended to the head.

Returns:
the new appended string.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

70 BLAH Module Documentation

Definition at line 272 of file string.c.

References listAppendElement(), listDelete(), and strFromList().

5.10.2.7 String strCat (const Stringa, const Stringb)

concatenates two strings.

This is our version of the standard unix strcat() with the differences that both arguments areconst strings.
A concatenated shared string ofa andb is returned. Both arguments might be NULL.

Returns:
the target concatenated with the source.

Definition at line 202 of file string.c.

References _strTryRegister(), strPrintf(), and strRegister().

5.10.2.8 String strCopy (const Strings)

this performs string copying function.

This function constructs a copy of the given source string. The returned string is not shared any more as
its source might have been. So in order to manipulate a shared string, firststrCopy()it, then alter it and
strRegister()it finaly. While copying the string new memory is allocated for you. Take care of it.

Parameters:
s the string that has to be copied.

Returns:
the new copied string.

Definition at line 101 of file string.c.

Referenced by strFromList(), and strRegister().

5.10.2.9 String strDecode (Stringword)

Translate a string from unicode UTF-8 to ISO-8859-1.

The String will be left untouched if there is any problem while decoding. Definition at line 450 of file
string.c.

References strRegister().

5.10.2.10 void strDelete (Stringstr)

unregister a string This function tries deallocate thestr string when its reference counter licenses it.

Note, that the pointerstr might get invalid or not depending on the reference counter. Definition at line
353 of file string.c.

References _strDeleteSharedString(), _strLookup(), _strStore, SharedStringStruct::counter, and hash-
Remove().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.10 Strings 71

5.10.2.11 void strFinalize (void)

module finalization routine.

This function is only called byblahInitialize()and should not be used from outside It basically deallocates
the_strStore . It also closes the conversionHandler. Definition at line 418 of file string.c.

References _strDeleteStoreEntry(), _strStore, hashForEach(), hashForEachFree(), hashListOfKeys(), hash-
Size(), listElement(), listNext(), and listSize().

Referenced by blahFinalize().

5.10.2.12 String strFromList (List list)

concatenates a list of strings.

This function takes a list of strings and concatenates them together in a newly allocated string. Be sure that
all list elements are realy of type string. We can’t grant that here. If the list is NULL or empty NULL is
returned to you. The return value is a registered string.

Parameters:
list of strings

Returns:
the new appended string.

Definition at line 230 of file string.c.

References listElement(), listNext(), listSize(), strCopy(), and strRegister().

Referenced by strAppend().

5.10.2.13 void strInitialize (void)

module initialization routine.

This function is only called byblahInitialize()and should not be used from outside It basically allocates the
_strStore . It also sets the conversion handler for String decoding Definition at line 500 of file string.c.

References _strStore, hashNew(), hashStringEqualFunction(), and hashStringHashFunction().

Referenced by blahInitialize().

5.10.2.14 String strPrintf (const Stringfmt, ...)

returns a formated string.

This function basically has been taken from the sprintf() manual page. The differences between sprintf()
andstrPrintf() are that you don’t have to bother about memory allocation. We allocate enuf memory to
hold the formated result string. Further more then this string isstrRegister()ed for you, so you might get an
already shared string returned to you. UsestrDelete()to indicate your lake of interest on the result string.
Definition at line 152 of file string.c.

References strVPrintf().

Referenced by strCat().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

72 BLAH Module Documentation

5.10.2.15 String strRegister (const Stringstr)

register a string in symbol table.

This function registers a string to be shared. This is done by copying it into the_strStore (leaving
the argument string pointer untouched). If the string already exists in symbol table the _stored_ string is
returned. If the string doesn’t exist then the string is _copied_ and entered in the symbol table; the new
string is returned. In no case the memory of string s is referenced by the symbol table. But the returned
string is owned by the symbol table and will be shared by other references later on. So be careful and never
change a registered string in place. UsestrCopy()first to check out a copy of a shared string. Ifstr is
NULL then a registered empty string is returned, that is strRegister(NULL) == strRegister(""). Definition
at line 380 of file string.c.

References _strLookup(), _strNewSharedString(), _strStore, SharedStringStruct::counter, SharedString-
Struct::data, hashSet(), and strCopy().

Referenced by _strTryRegister(), strCat(), strDecode(), strFromList(), and strVPrintf().

5.10.2.16 int strStoreSize (void)

return the number of shared strings.

Definition at line 406 of file string.c.

References _strStore, and hashSize().

5.10.2.17 String strVPrintf (const String fmt, va_list ap)

returns a formated string.

This function is our version of vsprintf(). SeestrPrintf()for more information. Definition at line 117 of file
string.c.

References strRegister().

Referenced by strPrintf().

5.10.3 Variable Documentation

5.10.3.1 Hashtable_strStore= NULL [static]

container for shared strings.

This global variable stores all registered strings Definition at line 61 of file string.c.

Referenced by _strLookup(), strDelete(), strFinalize(), strInitialize(), strRegister(), and strStoreSize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.11 TreeAgenda 73

5.11 TreeAgenda

5.11.1 Detailed Description

implemention of an agenda interface using an unbalanced binary search tree.

This module exports an agenda as used in the CDG netsearch module. The agenda manages a set of
elements annoted with the ratings. Elements can be inserted according to their rating, and the first element
can be retrieved.The agenda is not responsible for determining the rating of an element;it can only deal
with pairs(subsequently called items) of elements and scores.

Todo
Actually the b-tree used here can be implemented in a more general way to be more usefull. An agenda
is just one way to use a b-treeish storage organization.

Data Structures

• structTANodeStruct

this type represents an entry of an agenda.

• structTreeAgendaStruct

quick, should be binary tree.

• structTreeAgendaIteratorStruct

this structure instantiates the generic agenda iterator.

Defines

• #defineTA_DEBUG 0

Functions

• void taPrintNode(TreeAgenda a, int index)

prints a node.

• int taCheckNode(TreeAgenda a, int index, Boolean recursive, Boolean better)

performs internal consistency checks on a TreeAgenda.

• int taDeleteNode(TreeAgenda a, int index, Boolean delete)

deletes a node.

• TreeAgendataNew(int maxsize, VoidFunction∗f)
creates a new agenda.

• BooleantaVerbosity(TreeAgenda a)

gets verbosity flag.

• BooleantaSetVerbosity(TreeAgenda a, Boolean b)

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

74 BLAH Module Documentation

sets verbosity flag.

• int taSize(TreeAgenda a)

retrieves size of the agenda.

• int taMaxSize(TreeAgenda a)

retrieves the size limit of the agenda.

• int taMaxSizeSoFar(TreeAgenda a)

retrieves the largest attained size of the agenda.

• BooleantaIsEmpty(TreeAgenda a)

checks if the specified TreeAgenda is empty.

• BooleantaIsTruncated(TreeAgenda a)

checks for the truncation of the TreeAgendaa.

• BooleantaResetTruncated(TreeAgenda a)

reset the agenda truncation warning.

• BooleantaInsert(TreeAgenda a, double score, Pointer state)

inserts a new entry into the agenda.

• PointertaBest(TreeAgenda a)

returns the best entry (= first) from the agenda.

• PointertaRemoveBest(TreeAgenda a)

removes and returns best entry (= first) from the agenda.

• void taDelete(TreeAgenda a)

deletes the specified agenda.

• TreeAgendaIteratortaIteratorNew(TreeAgenda a)

creates a new iterator object.

• PointertaIteratorNextElement(TreeAgendaIterator ai)

returns the next item in iterator object.

• void taIteratorDelete(TreeAgendaIterator ai)

deletes the iterator object.

5.11.2 Function Documentation

5.11.2.1 Pointer taBest (TreeAgendaa)

returns the best entry (= first) from the agenda.

Parameters:
a the TreeAgenda from which the best item has to be retrieved.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.11 TreeAgenda 75

Returns:
the best item ina (or NULL if a is empty).The item remains in the agenda.

Definition at line 533 of file treeagenda.c.

5.11.2.2 int taCheckNode (TreeAgendaa, int index, Booleanrecursive, Booleanbetter)

performs internal consistency checks on a TreeAgenda.

This is only for debugging purposes.

Parameters:
a the TreeAgenda that has to be checked.

index the index of the node in the treeagenda.

recursive is TRUEif repetition occurs andFALSEotherwise.

better is TRUEif better consistency andFALSEotherwise.

Returns:
the number of nodes that are checked.

Definition at line 145 of file treeagenda.c.

References taPrintNode().

Referenced by taInsert().

5.11.2.3 void taDelete (TreeAgendaa)

deletes the specified agenda.

The function deallocates all the items ina using∗freeState(). Then it deallocates all the entries and the
agenda itself.

Parameters:
a the ListAgenda that has to be deleted.

Definition at line 625 of file treeagenda.c.

References taDeleteNode().

5.11.2.4 int taDeleteNode (TreeAgendaa, int index, Booleandelete)

deletes a node.

Parameters:
a the TreeAgenda in which a node has to be deleted.

index the index of the node that has to be deleted in TreeAgenda.

delete TRUEif the item itself is also deallocated andFALSEotherwise.

Definition at line 199 of file treeagenda.c.

Referenced by taDelete().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

76 BLAH Module Documentation

5.11.2.5 Boolean taInsert (TreeAgendaa, doublescore, Pointer state)

inserts a new entry into the agenda.

Parameters:
a the TreeAgenda into which a new element has to be inserted.

state the item that is inserted into the TreeAgendaa.

score thestateis sorted into the list according to thescore.

Returns:
FALSE if the agenda has been truncated andTRUE if we were able to insert the item without any
unpleasant side effects. This is going to be reported only once.

If the insertion leads to an overflow,then one of the elements from the tree is deallocated.Note that the
element to be removed may be thestateitself. Definition at line 379 of file treeagenda.c.

References taCheckNode(), and taPrintNode().

5.11.2.6 Boolean taIsEmpty (TreeAgendaa)

checks if the specified TreeAgenda is empty.

Parameters:
a the TreeAgenda for which emptiness has to be checked.

Returns:
TRUEif agendaa is empty andFALSEotherwise.

Definition at line 337 of file treeagenda.c.

5.11.2.7 Boolean taIsTruncated (TreeAgendaa)

checks for the truncation of the TreeAgendaa.

Parameters:
a the TreeAgenda on which the functiontaIsTruncatedis performed.

Returns:
TRUEif the agenda is already truncated andFALSEotherwise.

Definition at line 348 of file treeagenda.c.

5.11.2.8 void taIteratorDelete (TreeAgendaIteratorai)

deletes the iterator object.

The function deallocates the tree element that was used by the iterator.

Parameters:
ai the iterator object that has to be deleted.

Definition at line 702 of file treeagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.11 TreeAgenda 77

5.11.2.9 TreeAgendaIterator taIteratorNew (TreeAgendaa)

creates a new iterator object.

This function creates a new iterator for TreeAgendaa.

Parameters:
a the TreeAgenda for which a new iterator has to be created.

Returns:
a new TreeAgendaIterator that will return all items ofa sorted by score.

Definition at line 649 of file treeagenda.c.

5.11.2.10 Pointer taIteratorNextElement (TreeAgendaIteratorai)

returns the next item in iterator object.

Parameters:
ai the iterator of the TreeAgendaa.

Returns:
the best item in the underlying agenda that was not already returned by the iterator.

Definition at line 666 of file treeagenda.c.

5.11.2.11 int taMaxSize (TreeAgendaa)

retrieves the size limit of the agenda.

Parameters:
a the TreeAgenda for which the maximum size has to be determined.

Returns:
the max number of entries that can be held by the TreeAgenda a.

Definition at line 315 of file treeagenda.c.

5.11.2.12 int taMaxSizeSoFar (TreeAgendaa)

retrieves the largest attained size of the agenda.

Parameters:
a the TreeAgenda for which the largest size has to be retrieved.

Returns:
the maximum size occupied by the agendaa so far.

Definition at line 326 of file treeagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

78 BLAH Module Documentation

5.11.2.13 TreeAgenda taNew (intmaxsize, VoidFunction ∗ f)

creates a new agenda.

Parameters:
maxsizedetermines the desired maximal size of an agenda.

f the function for deallocating the element.

Returns:
a pointer to the new structure that can hold uptomaxsizeentries.

The agenda cannot determine whether it is safe to call this function on an element or not.Passing the wrong
function to ataNew()results undefined behaviour. Definition at line 239 of file treeagenda.c.

5.11.2.14 void taPrintNode (TreeAgendaa, int index)

prints a node.

It is used by thetaCheckNode().

Parameters:
a the TreeAgenda whose node has to be printed.

index the index of the node that has to be printed.

Definition at line 104 of file treeagenda.c.

Referenced by taCheckNode(), taInsert(), and taRemoveBest().

5.11.2.15 Pointer taRemoveBest (TreeAgendaa)

removes and returns best entry (= first) from the agenda.

Parameters:
a the TreeAgenda from which the best item has to be retrieved.

Returns:
the best item ina.Thecorresponding entry is removed and deallocated.
It must not be called on an empty agenda.

Definition at line 549 of file treeagenda.c.

References taPrintNode().

5.11.2.16 Boolean taResetTruncated (TreeAgendaa)

reset the agenda truncation warning.

Parameters:
a the TreeAgenda whose truncationWarning will be set to FALSE.

Returns:
the old value of the truncationWarning

Definition at line 359 of file treeagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.11 TreeAgenda 79

5.11.2.17 Boolean taSetVerbosity (TreeAgendaa, Booleanb)

sets verbosity flag.

Parameters:
a the TreeAgenda whose verbosity property is set

b a Boolean which we set the verbosity to

Returns:
the old verbosity state

Definition at line 289 of file treeagenda.c.

5.11.2.18 int taSize (TreeAgendaa)

retrieves size of the agenda.

Parameters:
a the TreeAgenda for which the size has to be retrieved.

Returns:
the current number of entries in the TreeAgendaa.

Definition at line 304 of file treeagenda.c.

5.11.2.19 Boolean taVerbosity (TreeAgendaa)

gets verbosity flag.

Parameters:
a the TreeAgenda whose verbosity property is set

Returns:
the verbosity state

Definition at line 278 of file treeagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

80 BLAH Module Documentation

5.12 Vectors

5.12.1 Detailed Description

implementation of vectors.

A Vector is a one-dimensional array but allows for automatic resizing.i.e,the size need not be known in
advance.

Data Structures

• structVectorStruct

internal representation of a vector

Defines

• #defineRESIZEFACTOR 2
• #definecheckVector(v, s)

Functions

• void resizeVector(Vector v)

resize vector, double capacity.

• VectorvectorNew(int capacity)

creates a new vector with an initial capacity.

• void vectorDelete(Vector v)

deletes vector, but can’t free memory for the content.

• int vectorAddElement(Vector v, void∗element)

adds a new element to the end of the vector.

• PointervectorElement(Vector v, int index)

sets the element at a specific index to a new element.

• PointervectorRemoveElementAt(Vector v, int index)

removes element at the index.

• int vectorRemoveElement(Vector v, void∗element)

removes the specified element from the vector.

• PointervectorInsertElement(Vector v, void∗element, int index)

inserts a new element at the specified index.

• PointervectorSetElement(Vector v, void∗element, int index)

sets the element at the given index.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.12 Vectors 81

• void vectorSetElements(Vector v, void∗element, int from, int to)

sets all elements betweenFROM andTO(excluding to)to a new value.

• void vectorSetAllElements(Vector v, void∗element)

sets all the elements to a new value.

• int vectorIndexOf(Vector v, void∗element, int index)

finds the index of an entry in the vector.

• int vectorCapacity(Vector v)

returns the current capacity of vector.

• int vectorSize(Vector v)

returns the current number of entries in the vector.

• BooleanvectorIsEmpty(Vector v)

checks if the vector is empty or not.

• BooleanvectorContains(Vector v, void∗element)

checks if a vector contains a given element.

• VectorvectorClone(Vector v)

clones a vector.

• VectorvectorCopy(Vector dst, Vector src)

copies all the entries of one vectorsrcto another vectordst.

• void doSorting(Vector v, BooleanFunction∗f, void ∗data, char use)

internal helper function for sorting.

• VectorvectorSort(Vector v, BooleanFunction∗f)
sorts a vector using a user-specified compare function.

• VectorvectorSortWithData(Vector v, BooleanFunction∗f, void ∗clientData)

sorts a vector, using a user-specified compare function and some extra data.

• List vectorToList(Vector v)

converts a vector into a list.

5.12.2 Function Documentation

5.12.2.1 void doSorting (Vectorv, BooleanFunction∗ f, void ∗ data, char use) [static]

internal helper function for sorting.

Parameters:
v the vector in which the sorting operation has to be done.

f the function that is used for the sorting of the vector f.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

82 BLAH Module Documentation

data some additional data that is handed over to the comparison function.

use determines the usage in the program

Definition at line 500 of file vector.c.

References vectorElement(), vectorSetElement(), and vectorSize().

Referenced by vectorSort(), and vectorSortWithData().

5.12.2.2 void resizeVector (Vectorv) [static]

resize vector, double capacity.

Parameters:
v the vector that has to be resized.

Returns:
the new vector after resizing.

Definition at line 85 of file vector.c.

Referenced by vectorAddElement(), vectorInsertElement(), vectorSetElement(), and vectorSetElements().

5.12.2.3 int vectorAddElement (Vectorv, void ∗ element)

adds a new element to the end of the vector.

if necessary the vector automatically increases its capacity.

Parameters:
v the vector to which the new element has to be added.

element the element that has to be added to the vector v.

Returns:
the index of the vector after addition.

Definition at line 147 of file vector.c.

References resizeVector().

Referenced by arrayNew().

5.12.2.4 int vectorCapacity (Vectorv)

returns the current capacity of vector.

Parameters:
v the vector whose capacity has to be retrieved.

Returns:
the capacity of the vector v.

Definition at line 396 of file vector.c.

Referenced by vectorClone().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.12 Vectors 83

5.12.2.5 Vector vectorClone (Vectorv)

clones a vector.

Parameters:
v the vector that has to be cloned.

Returns:
a new vector after cloning is done.

Definition at line 455 of file vector.c.

References vectorCapacity(), vectorCopy(), and vectorNew().

Referenced by arrayClone().

5.12.2.6 Boolean vectorContains (Vectorv, void ∗ element)

checks if a vector contains a given element.

Parameters:
v the vector in which a particular number has to be searched.

element the element which has to be checked in the vector v.

Returns:
TRUEif vector contains the element andFALSEotherwise.

Definition at line 436 of file vector.c.

5.12.2.7 Vector vectorCopy (Vectordst, Vector src)

copies all the entries of one vectorsrc to another vectordst.

Parameters:
src source vector from which the copying is done.

dst destination vector to which copying is done.

Returns:
the dst vector with the entries copied.

Definition at line 473 of file vector.c.

Referenced by vectorClone().

5.12.2.8 void vectorDelete (Vectorv)

deletes vector, but can’t free memory for the content.

Parameters:
v the vector that has to be deleted.

Definition at line 130 of file vector.c.

Referenced by arrayDelete(), listSort(), and listSortWithData().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

84 BLAH Module Documentation

5.12.2.9 Pointer vectorElement (Vectorv, int index)

sets the element at a specific index to a new element.

if necessary the vector automatically increases its capacity.

Parameters:
v the vector in which the element has to be set.

index the index at which the element that has to be set is located.

Returns:
the old element (orNULL) at that index.

Definition at line 168 of file vector.c.

Referenced by arrayDimension(), arrayElement(), arraySetElement(), doSorting(), and vectorToList().

5.12.2.10 int vectorIndexOf (Vectorv, void ∗ element, int index)

finds the index of an entry in the vector.

Parameters:
v the vector in which the index of the element has to be retrieved.

element the element whose index has to be retrieved in the vector v.

index determines the index of all the elements in the vector.

Returns:
index of a given element in the vector or ’-1’ if the element does not belong to that specified vector.

Definition at line 377 of file vector.c.

Referenced by vectorRemoveElement().

5.12.2.11 Pointer vectorInsertElement (Vectorv, void ∗ element, int index)

inserts a new element at the specified index.

Size increases automatically if necessary. Inefficient method,Not recommended.

Parameters:
v the vector into which the new element has to be added.

element the element that has to be added in the vector v.

index the specified index at which the insertion has to be done.

Returns:
the old element at that index (orNULL).

Definition at line 249 of file vector.c.

References resizeVector().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.12 Vectors 85

5.12.2.12 Boolean vectorIsEmpty (Vectorv)

checks if the vector is empty or not.

Parameters:
v the vector for which the emptiness is checked.

Returns:
TRUEif the vector is empty andFALSEotherwise.

Definition at line 422 of file vector.c.

5.12.2.13 Vector vectorNew (intcapacity)

creates a new vector with an initial capacity.

specifying a correct or nearly correct capacity may slightly improve the efficiency.

Parameters:
capacity the capacity with which the new vector has to be created.

Returns:
the new vector created with size capacity.

Definition at line 104 of file vector.c.

Referenced by arrayNew(), listToVector(), and vectorClone().

5.12.2.14 int vectorRemoveElement (Vectorv, void ∗ element)

removes the specified element from the vector.

If the element occurs multiple times, the first item will be removed. If the element does not belong to the
vector the program is aborted. Not efficient,not recommended.

Parameters:
v the vector from which the element to be removed is present.

element the element that has to be removed from the vector v.

Returns:
the associated index of the vector after removal.

Definition at line 221 of file vector.c.

References vectorIndexOf(), and vectorRemoveElementAt().

5.12.2.15 Pointer vectorRemoveElementAt (Vectorv, int index)

removes element at the index.

all later elements move one position in front and size decreases. inefficient, not recommended.

Parameters:
v the vector from which the element has to be removed.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

86 BLAH Module Documentation

index the index at which the element that has to be removed is located.

Returns:
the old element at the specified index.

Definition at line 189 of file vector.c.

Referenced by vectorRemoveElement().

5.12.2.16 void vectorSetAllElements (Vectorv, void ∗ element)

sets all the elements to a new value.

Size increases to the current capacity of the vector.

Parameters:
v the vector in which all the elements have to be set to the new value.

element determines the element that is being set in vector v.

Definition at line 361 of file vector.c.

References vectorSetElements().

5.12.2.17 Pointer vectorSetElement (Vectorv, void ∗ element, int index)

sets the element at the given index.

size may increase automatically if necessary.

Parameters:
v the vector in which the specified element has to be set.

element the element that has to be set in the vector v.

index the index at which the element has to be set.

Returns:
the old element at that index.

Definition at line 285 of file vector.c.

References resizeVector().

Referenced by doSorting(), and listToVector().

5.12.2.18 void vectorSetElements (Vectorv, void ∗ element, int from, int to)

sets all elements betweenFROMandTO(excluding to)to a new value.

size may increase automatically if necessary.

Parameters:
v the vector in which the elements have to be set.

element determines the element that is being set.

from this is the source index from which the elements are set.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.12 Vectors 87

to this is the destination index until which the elements are set.

Returns:
the new vector after setting the elements.

Definition at line 316 of file vector.c.

References resizeVector().

Referenced by vectorSetAllElements().

5.12.2.19 int vectorSize (Vectorv)

returns the current number of entries in the vector.

Parameters:
v the vector whose current number of entries has to be determined.

Returns:
the total number of entries in the vector v.

Definition at line 409 of file vector.c.

Referenced by arrayDimension(), arrayElement(), arraySetElement(), doSorting(), and vectorToList().

5.12.2.20 Vector vectorSort (Vectorv, BooleanFunction∗ f)

sorts a vector using a user-specified compare function.

The function f is called as f(a,b)

Parameters:
v the vector that has to be sorted.

f the function that is used for sorting.

Returns:
should returnTRUEif the elementa should be before elementb.

Definition at line 536 of file vector.c.

References doSorting().

Referenced by listSort().

5.12.2.21 Vector vectorSortWithData (Vectorv, BooleanFunction∗ f, void ∗ clientData)

sorts a vector, using a user-specified compare function and some extra data.

The function f is called as f(a,b,)and some data.

Parameters:
v the vector that has to be sorted.

f the function that is used for sorting.

clientData the additional data that is handed over to the comparison function.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

88 BLAH Module Documentation

Returns:
should returnTRUEif the elementa should be before elementb

Definition at line 554 of file vector.c.

References doSorting().

Referenced by listSortWithData().

5.12.2.22 List vectorToList (Vectorv)

converts a vector into a list.

Parameters:
v the vector that has to be converted into a list l.

Returns:
the list l corresponding to the vector v.

Definition at line 568 of file vector.c.

References listPrependElement(), vectorElement(), and vectorSize().

Referenced by listSort(), and listSortWithData().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

5.13 Main module 89

5.13 Main module

5.13.1 Detailed Description

This is the main module for the BLAH library.

By now it provides the initialization and finalization of the library. So callblahInitialize()before using any
functions of this library. You might want to callblahFinalize()before exiting your application.

Functions

• void blahInitialize(void)

initialize the blah library.

• void blahFinalize(void)

finalize the blah library.

5.13.2 Function Documentation

5.13.2.1 void blahFinalize (void)

finalize the blah library.

This will call the finalization routines of those modules that might need a finalization. Definition at line 53
of file blah.c.

References strFinalize().

5.13.2.2 void blahInitialize (void)

initialize the blah library.

This will call the initlialization routines of those modules that need to be initialized at application start.
Definition at line 43 of file blah.c.

References strInitialize().

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

90 BLAH Module Documentation

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

Chapter 6

BLAH Data Structure Documentation

6.1 ArrayStruct Struct Reference

Collaboration diagram for ArrayStruct:

ArrayStruct

Vector

dims

Pointer *

entries

int

totalNoOfEntries

6.1.1 Detailed Description

internal structure of an array.

Definition at line 53 of file array.c.

Data Fields

• Vectordims

vector of dimensions

• int totalNoOfEntries

product of dimensions

• Pointer∗ entries

table of entries

6.1.2 Field Documentation

6.1.2.1 VectorArrayStruct::dims

vector of dimensions

Definition at line 54 of file array.c.

92 BLAH Data Structure Documentation

6.1.2.2 Pointer∗ ArrayStruct::entries

table of entries

Definition at line 56 of file array.c.

6.1.2.3 intArrayStruct::totalNoOfEntries

product of dimensions

Definition at line 55 of file array.c.

The documentation for this struct was generated from the following file:

• array.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.2 BitStringStruct Struct Reference 93

6.2 BitStringStruct Struct Reference

Collaboration diagram for BitStringStruct:

BitStringStruct

unsigned long

mask

unsigned long *

bits

int

size
length

6.2.1 Detailed Description

internal structure of a string of bits.

Definition at line 71 of file bitstring.c.

Data Fields

• int size

size of bitstring in bits

• int length

length of array; length=capacity/BITS_PER_LONG

• unsigned longmask

mask for the last unsigned long

• unsigned long∗ bits

array of longs

6.2.2 Field Documentation

6.2.2.1 unsigned long∗ BitStringStruct::bits

array of longs

Definition at line 80 of file bitstring.c.

6.2.2.2 intBitStringStruct::length

length of array; length=capacity/BITS_PER_LONG

Definition at line 77 of file bitstring.c.

6.2.2.3 unsigned longBitStringStruct::mask

mask for the last unsigned long

Definition at line 79 of file bitstring.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

94 BLAH Data Structure Documentation

6.2.2.4 intBitStringStruct::size

size of bitstring in bits

Definition at line 76 of file bitstring.c.

The documentation for this struct was generated from the following file:

• bitstring.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.3 ByteVectorStruct Struct Reference 95

6.3 ByteVectorStruct Struct Reference

Collaboration diagram for ByteVectorStruct:

ByteVectorStruct

int

count
capacity

char *

entries

6.3.1 Detailed Description

internal representation of a bit vector

Definition at line 47 of file bitvector-old.c.

Data Fields

• int count

number of entries

• int capacity

capacity of table

• char∗ entries

table of entries

• char∗ entries

table of entries

6.3.2 Field Documentation

6.3.2.1 intByteVectorStruct::capacity

capacity of table

Definition at line 53 of file bytevector.c.

6.3.2.2 intByteVectorStruct::count

number of entries

Definition at line 52 of file bytevector.c.

6.3.2.3 char∗ ByteVectorStruct::entries

table of entries

Definition at line 54 of file bytevector.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

96 BLAH Data Structure Documentation

6.3.2.4 char∗ ByteVectorStruct::entries

table of entries

Definition at line 54 of file bitvector-old.c.

The documentation for this struct was generated from the following files:

• bitvector-old.c
• bytevector.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.4 HashIteratorStruct Struct Reference 97

6.4 HashIteratorStruct Struct Reference

Collaboration diagram for HashIteratorStruct:

HashIteratorStruct

HashtableEntry

entry

Hashtable

hashtable

int

index

6.4.1 Detailed Description

internal representation of the hash iterator.

Definition at line 72 of file hashtable.c.

Data Fields

• Hashtablehashtable

Where do we belong to?

• int index

index of entry

• HashtableEntryentry

determines _next_ HashtableEntry

6.4.2 Field Documentation

6.4.2.1 HashtableEntryHashIteratorStruct::entry

determines _next_ HashtableEntry

Definition at line 75 of file hashtable.c.

6.4.2.2 HashtableHashIteratorStruct::hashtable

Where do we belong to?

Definition at line 73 of file hashtable.c.

6.4.2.3 intHashIteratorStruct::index

index of entry

Definition at line 74 of file hashtable.c.

The documentation for this struct was generated from the following file:

• hashtable.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

98 BLAH Data Structure Documentation

6.5 HashtableEntryStruct Struct Reference

Collaboration diagram for HashtableEntryStruct:

HashtableEntryStruct next

Pointer

key
value

6.5.1 Detailed Description

internal representation of the hash table entry.

Definition at line 50 of file hashtable.c.

Data Fields

• Pointerkey

hash key

• Pointervalue

value

• HashtableEntryStruct∗ next

pointer to next entry

6.5.2 Field Documentation

6.5.2.1 PointerHashtableEntryStruct::key

hash key

Definition at line 51 of file hashtable.c.

6.5.2.2 structHashtableEntryStruct∗ HashtableEntryStruct::next

pointer to next entry

Definition at line 53 of file hashtable.c.

6.5.2.3 PointerHashtableEntryStruct::value

value

Definition at line 52 of file hashtable.c.

The documentation for this struct was generated from the following file:

• hashtable.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.6 HashtableStruct Struct Reference 99

6.6 HashtableStruct Struct Reference

Collaboration diagram for HashtableStruct:

HashtableStruct

double

loadFactor

int

threshold
count

capacity

HashtableEntry *

entries

IntFunction *

keyEqualFunction
hashFunction

6.6.1 Detailed Description

internal representation of the hash table.

Definition at line 59 of file hashtable.c.

Data Fields

• int count

number of entries in hashtable

• int threshold

limit when table is rehashed

• int capacity

capacity of table

• doubleloadFactor

ratio when to rehash

• IntFunction∗ keyEqualFunction

equality function for key

• IntFunction∗ hashFunction

hash function

• HashtableEntry∗ entries

table of entries

6.6.2 Field Documentation

6.6.2.1 intHashtableStruct::capacity

capacity of table

Definition at line 62 of file hashtable.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

100 BLAH Data Structure Documentation

6.6.2.2 intHashtableStruct::count

number of entries in hashtable

Definition at line 60 of file hashtable.c.

6.6.2.3 HashtableEntry∗ HashtableStruct::entries

table of entries

Definition at line 66 of file hashtable.c.

6.6.2.4 IntFunction∗ HashtableStruct::hashFunction

hash function

Definition at line 65 of file hashtable.c.

6.6.2.5 IntFunction∗ HashtableStruct::keyEqualFunction

equality function for key

Definition at line 64 of file hashtable.c.

6.6.2.6 doubleHashtableStruct::loadFactor

ratio when to rehash

Definition at line 63 of file hashtable.c.

6.6.2.7 intHashtableStruct::threshold

limit when table is rehashed

Definition at line 61 of file hashtable.c.

The documentation for this struct was generated from the following file:

• hashtable.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.7 ListAgendaEntryStruct Struct Reference 101

6.7 ListAgendaEntryStruct Struct Reference

Collaboration diagram for ListAgendaEntryStruct:

ListAgendaEntryStruct

double

score

Pointer

state

6.7.1 Detailed Description

this type represents an entry of an agenda.

Only elements of the same type should be inserted into the same agenda, since there can be only one
function (freestate())for deallocating the elements.

Definition at line 55 of file listagenda.c.

Data Fields

• doublescore

contains the rating of an agenda element

• Pointerstate

holds a pointer to the actual element

6.7.2 Field Documentation

6.7.2.1 doubleListAgendaEntryStruct::score

contains the rating of an agenda element

Large scores are sorted to appear before small scores.Definition at line 56 of file listagenda.c.

6.7.2.2 PointerListAgendaEntryStruct::state

holds a pointer to the actual element

Since its type is unknown, the agenda never uses this value except to return it.Definition at line 60 of file
listagenda.c.

The documentation for this struct was generated from the following file:

• listagenda.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

102 BLAH Data Structure Documentation

6.8 ListAgendaStruct Struct Reference

Collaboration diagram for ListAgendaStruct:

ListAgendaStruct

double

worstScore

VoidFunction *

freeState

int

maxSizeSoFar
size

maxsize

Boolean

verbose
truncationWarning

List

entries

6.8.1 Detailed Description

quick, should be binary tree.

Definition at line 69 of file listagenda.c.

Data Fields

• int maxsize

Gives the maximal allowed size of the agenda.

• Booleanverbose

If set to true then truncation warnings take effect.

• BooleantruncationWarning

This is set after an overflow messsage is printed.

• int size

gives the current size of the agenda

• int maxSizeSoFar

gives the maximal value that the size has reached so far

• doubleworstScore

holds the score of the last item of the agenda

• VoidFunction∗ freeState

used on an element when when it is lost through overflow or when the entire agenda is freed

• List entries

holds an item in an agenda

6.8.2 Field Documentation

6.8.2.1 ListListAgendaStruct::entries

holds an item in an agenda

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.8 ListAgendaStruct Struct Reference 103

The agenda will allocate and deallocate its own items.The elements,however, will only be deallocated in
special cases.Definition at line 90 of file listagenda.c.

6.8.2.2 VoidFunction∗ ListAgendaStruct::freeState

used on an element when when it is lost through overflow or when the entire agenda is freed

Definition at line 87 of file listagenda.c.

6.8.2.3 intListAgendaStruct::maxsize

Gives the maximal allowed size of the agenda.

If more elements are inserted to it,the agenda will overflow,and the elements with the worst scores will be
lost.Definition at line 70 of file listagenda.c.

6.8.2.4 intListAgendaStruct::maxSizeSoFar

gives the maximal value that the size has reached so far

Definition at line 80 of file listagenda.c.

6.8.2.5 intListAgendaStruct::size

gives the current size of the agenda

Definition at line 79 of file listagenda.c.

6.8.2.6 BooleanListAgendaStruct::truncationWarning

This is set after an overflow messsage is printed.

It inhibits any further warning messages.Definition at line 76 of file listagenda.c.

6.8.2.7 BooleanListAgendaStruct::verbose

If set to true then truncation warnings take effect.

Definition at line 75 of file listagenda.c.

6.8.2.8 doubleListAgendaStruct::worstScore

holds the score of the last item of the agenda

This field helps us to quickly determine whether an insert operation will make the agenda over-
flow.Definition at line 83 of file listagenda.c.

The documentation for this struct was generated from the following file:

• listagenda.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

104 BLAH Data Structure Documentation

6.9 ListStruct Struct Reference

Collaboration diagram for ListStruct:

ListStruct next

Pointer

item

6.9.1 Detailed Description

a list node.

Definition at line 42 of file list.c.

Data Fields

• Pointeritem

void element link to member of list

• ListStruct∗ next

link to the next element in the list

6.9.2 Field Documentation

6.9.2.1 PointerListStruct::item

void element link to member of list

Definition at line 43 of file list.c.

6.9.2.2 structListStruct ∗ ListStruct::next

link to the next element in the list

Definition at line 44 of file list.c.

The documentation for this struct was generated from the following file:

• list.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.10 RingBufferStruct Struct Reference 105

6.10 RingBufferStruct Struct Reference

Collaboration diagram for RingBufferStruct:

RingBufferStruct

Pointer *

entries

int

last
count
first

capacity

6.10.1 Detailed Description

internal representation of the ring buffer.

Definition at line 43 of file ringbuffer.c.

Data Fields

• int first

index of first item

• int last

index of the item after the last item

• int count

number of entries

• int capacity

capacity of table

• Pointer∗ entries

table of entries

6.10.2 Field Documentation

6.10.2.1 intRingBufferStruct::capacity

capacity of table

Definition at line 47 of file ringbuffer.c.

6.10.2.2 intRingBufferStruct::count

number of entries

Definition at line 46 of file ringbuffer.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

106 BLAH Data Structure Documentation

6.10.2.3 Pointer∗ RingBufferStruct::entries

table of entries

Definition at line 48 of file ringbuffer.c.

6.10.2.4 intRingBufferStruct::first

index of first item

Definition at line 44 of file ringbuffer.c.

6.10.2.5 intRingBufferStruct::last

index of the item after the last item

Definition at line 45 of file ringbuffer.c.

The documentation for this struct was generated from the following file:

• ringbuffer.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.11 SharedStringStruct Struct Reference 107

6.11 SharedStringStruct Struct Reference

Collaboration diagram for SharedStringStruct:

SharedStringStruct

String

data

int

counter

6.11.1 Detailed Description

strings with reference counters

Definition at line 66 of file string.c.

Data Fields

• Stringdata

the workload

• int counter

a reference counter

6.11.2 Field Documentation

6.11.2.1 intSharedStringStruct::counter

a reference counter

Definition at line 68 of file string.c.

Referenced by _strNewSharedString(), strDelete(), and strRegister().

6.11.2.2 StringSharedStringStruct::data

the workload

Definition at line 67 of file string.c.

Referenced by _strDeleteSharedString(), _strNewSharedString(), and strRegister().

The documentation for this struct was generated from the following file:

• string.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

108 BLAH Data Structure Documentation

6.12 TANodeStruct Struct Reference

Collaboration diagram for TANodeStruct:

TANodeStruct

double

score

int

worse
parent
better

Pointer

state

6.12.1 Detailed Description

this type represents an entry of an agenda.

Definition at line 59 of file treeagenda.c.

Data Fields

• int parent

index of parent node or -1 if root

• int better

index of left child or -1 if non-existent

• int worse

index of right child or -1 if non-existent

• doublescore

score for this state

• Pointerstate

pointer to state

6.12.2 Field Documentation

6.12.2.1 intTANodeStruct::better

index of left child or -1 if non-existent

Definition at line 61 of file treeagenda.c.

6.12.2.2 intTANodeStruct::parent

index of parent node or -1 if root

Definition at line 60 of file treeagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.12 TANodeStruct Struct Reference 109

6.12.2.3 doubleTANodeStruct::score

score for this state

Definition at line 63 of file treeagenda.c.

6.12.2.4 PointerTANodeStruct::state

pointer to state

Definition at line 64 of file treeagenda.c.

6.12.2.5 intTANodeStruct::worse

index of right child or -1 if non-existent

Definition at line 62 of file treeagenda.c.

The documentation for this struct was generated from the following file:

• treeagenda.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

110 BLAH Data Structure Documentation

6.13 TreeAgendaIteratorStruct Struct Reference

Collaboration diagram for TreeAgendaIteratorStruct:

TreeAgendaIteratorStruct

TreeAgenda

treeagenda

int

nextNode

6.13.1 Detailed Description

this structure instantiates the generic agenda iterator.

Definition at line 88 of file treeagenda.c.

Data Fields

• TreeAgendatreeagenda

points to the underlying TreeAgenda.

• int nextNode

an index to the next node to be returned.

6.13.2 Field Documentation

6.13.2.1 intTreeAgendaIteratorStruct::nextNode

an index to the next node to be returned.

Definition at line 90 of file treeagenda.c.

6.13.2.2 TreeAgendaTreeAgendaIteratorStruct::treeagenda

points to the underlying TreeAgenda.

Definition at line 89 of file treeagenda.c.

The documentation for this struct was generated from the following file:

• treeagenda.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.14 TreeAgendaStruct Struct Reference 111

6.14 TreeAgendaStruct Struct Reference

Collaboration diagram for TreeAgendaStruct:

TreeAgendaStruct

VoidFunction *

freeState

int

root
maxSizeSoFar

size
worst
best
free

maxsize

TANodeStruct

worse
parent
better

Boolean

verbose
truncationWarningnodes

double

score

Pointer

state

6.14.1 Detailed Description

quick, should be binary tree.

Definition at line 70 of file treeagenda.c.

Data Fields

• int size

total number of used nodes

• int maxsize

number of allocated nodes

• int maxSizeSoFar

maximum number of used nodes so far

• Booleanverbose

If set to true then truncation warnings take effect.

• BooleantruncationWarning

flag whether warning has been emitted

• int free

index of first free node or -1 if non-existent

• int root

index of root node or -1 if non-existent

• int best

index of best node or -1 if non-existent

• int worst

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

112 BLAH Data Structure Documentation

index of worst node or -1 if non-existent

• VoidFunction∗ freeState

free function

• TANodeStruct∗ nodes

array of maxsize nodes

6.14.2 Field Documentation

6.14.2.1 intTreeAgendaStruct::best

index of best node or -1 if non-existent

Definition at line 78 of file treeagenda.c.

6.14.2.2 intTreeAgendaStruct::free

index of first free node or -1 if non-existent

Definition at line 76 of file treeagenda.c.

6.14.2.3 VoidFunction∗ TreeAgendaStruct::freeState

free function

Definition at line 80 of file treeagenda.c.

6.14.2.4 intTreeAgendaStruct::maxsize

number of allocated nodes

Definition at line 72 of file treeagenda.c.

6.14.2.5 intTreeAgendaStruct::maxSizeSoFar

maximum number of used nodes so far

Definition at line 73 of file treeagenda.c.

6.14.2.6 TANodeStruct∗ TreeAgendaStruct::nodes

array of maxsize nodes

Definition at line 81 of file treeagenda.c.

6.14.2.7 intTreeAgendaStruct::root

index of root node or -1 if non-existent

Definition at line 77 of file treeagenda.c.

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

6.14 TreeAgendaStruct Struct Reference 113

6.14.2.8 intTreeAgendaStruct::size

total number of used nodes

Definition at line 71 of file treeagenda.c.

6.14.2.9 BooleanTreeAgendaStruct::truncationWarning

flag whether warning has been emitted

Definition at line 75 of file treeagenda.c.

6.14.2.10 BooleanTreeAgendaStruct::verbose

If set to true then truncation warnings take effect.

Definition at line 74 of file treeagenda.c.

6.14.2.11 intTreeAgendaStruct::worst

index of worst node or -1 if non-existent

Definition at line 79 of file treeagenda.c.

The documentation for this struct was generated from the following file:

• treeagenda.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

114 BLAH Data Structure Documentation

6.15 VectorStruct Struct Reference

Collaboration diagram for VectorStruct:

VectorStruct

void **

entries

int

count
capacity

6.15.1 Detailed Description

internal representation of a vector

Definition at line 49 of file vector.c.

Data Fields

• int count

number of entries

• int capacity

capacity of table

• void ∗∗ entries

table of entries

6.15.2 Field Documentation

6.15.2.1 intVectorStruct::capacity

capacity of table

Definition at line 54 of file vector.c.

6.15.2.2 intVectorStruct::count

number of entries

Definition at line 53 of file vector.c.

6.15.2.3 void∗∗ VectorStruct::entries

table of entries

Definition at line 55 of file vector.c.

The documentation for this struct was generated from the following file:

• vector.c

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

Chapter 7

BLAH Page Documentation

7.1 Todo List

Group TreeAgenda Actually the b-tree used here can be implemented in a more general way to be more
usefull. An agenda is just one way to use a b-treeish storage organization.

Index

_strDeleteSharedString
String,68

_strDeleteStoreEntry
String,68

_strLookup
String,69

_strNewSharedString
String,69

_strStore
String,72

_strTryRegister
String,69

addMod
Prime,58

Array
arrayClone,10
arrayDelete,10
arrayDimension,10
arrayElement,11
arrayNew,11
arraySetAllElements,11
arraySetElement,11

arrayClone
Array, 10

arrayDelete
Array, 10

arrayDimension
Array, 10

arrayElement
Array, 11

arrayNew
Array, 11

Arrays,9
arraySetAllElements

Array, 11
arraySetElement

Array, 11
ArrayStruct,91
ArrayStruct

dims,91
entries,91
totalNoOfEntries,92

best

TreeAgendaStruct,112
better

TANodeStruct,108
bitAnd

BitString,15
bitCheck

BitString,15
bitClear

BitString,16
bitClearAll

BitString,16
bitClone

BitString,16
bitCopy

BitString,16
bitDelete

BitString,17
bitGet

BitString,17
bitIsAllCleared

BitString,17
bitIsAllSet

BitString,18
bitNew

BitString,18
bitOr

BitString,18
bitPrint

BitString,18
bits

BitStringStruct,93
BITS_PER_BYTE

BitString,14
BITS_PER_LONG

BitString,14
bitSet

BitString,19
bitSetAll

BitString,19
bitSize

BitString,19
BitString

bitAnd, 15
bitCheck,15
bitClear,16

INDEX 117

bitClearAll, 16
bitClone,16
bitCopy,16
bitDelete,17
bitGet,17
bitIsAllCleared,17
bitIsAllSet,18
bitNew,18
bitOr, 18
bitPrint,18
BITS_PER_BYTE,14
BITS_PER_LONG,14
bitSet,19
bitSetAll, 19
bitSize,19
BYTES_PER_LONG,14
check_magic,15
E_SIZEMISMATCH,15
resize,19

BitStrings,13
BitStringStruct,93
BitStringStruct

bits,93
length,93
mask,93
size,93

Blah
blahFinalize,89
blahInitialize,89

blahFinalize
Blah,89

blahInitialize
Blah,89

bvAddElement
ByteVector,22

bvAndElement
ByteVector,22

bvCapacity
ByteVector,23

bvClone
ByteVector,23

bvCopy
ByteVector,23

bvDelete
ByteVector,24

bvElement
ByteVector,24

bvInsertElement
ByteVector,24

bvIsEmpty
ByteVector,25

bvNew
ByteVector,25

bvNotElement

ByteVector,25
bvOrElement

ByteVector,25
bvRemoveElement

ByteVector,26
bvSetAllElements

ByteVector,26
bvSetElement

ByteVector,26
bvSetElements

ByteVector,27
bvSize

ByteVector,27
BYTES_PER_LONG

BitString,14
ByteVector

bvAddElement,22
bvAndElement,22
bvCapacity,23
bvClone,23
bvCopy,23
bvDelete,24
bvElement,24
bvInsertElement,24
bvIsEmpty,25
bvNew,25
bvNotElement,25
bvOrElement,25
bvRemoveElement,26
bvSetAllElements,26
bvSetElement,26
bvSetElements,27
bvSize,27
resize,27

ByteVectors,21
ByteVectorStruct,95
ByteVectorStruct

capacity,95
count,95
entries,95

capacity
ByteVectorStruct,95
HashtableStruct,99
RingBufferStruct,105
VectorStruct,114

check_magic
BitString,15

count
ByteVectorStruct,95
HashtableStruct,99
RingBufferStruct,105
VectorStruct,114

counter

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

118 INDEX

SharedStringStruct,107

data
SharedStringStruct,107

dims
ArrayStruct,91

doSorting
Vector,81

E_SIZEMISMATCH
BitString,15

entries
ArrayStruct,91
ByteVectorStruct,95
HashtableStruct,100
ListAgendaStruct,102
RingBufferStruct,105
VectorStruct,114

entry
HashIteratorStruct,97

first
RingBufferStruct,106

free
TreeAgendaStruct,112

freeListCell
List, 40

freeState
ListAgendaStruct,103
TreeAgendaStruct,112

hashContainsKey
Hashtable,31

hashContainsValue
Hashtable,31

hashDelete
Hashtable,31

hashForEach
Hashtable,31

hashForEachFree
Hashtable,31

hashForEachFreeValue
Hashtable,32

hashForEachWithData
Hashtable,32

hashFunction
HashtableStruct,100

hashGet
Hashtable,32

hashGetPointerToValue
Hashtable,32

hashIsEmpty
Hashtable,33

hashIteratorDelete

Hashtable,33
hashIteratorNew

Hashtable,33
hashIteratorNextKey

Hashtable,33
hashIteratorNextValue

Hashtable,34
HashIteratorStruct,97
HashIteratorStruct

entry,97
hashtable,97
index,97

hashListOfKeys
Hashtable,34

hashNew
Hashtable,34

hashRemove
Hashtable,35

hashSet
Hashtable,35

hashSize
Hashtable,35

hashStringEqualFunction
Hashtable,36

hashStringHashFunction
Hashtable,36

Hashtable
hashContainsKey,31
hashContainsValue,31
hashDelete,31
hashForEach,31
hashForEachFree,31
hashForEachFreeValue,32
hashForEachWithData,32
hashGet,32
hashGetPointerToValue,32
hashIsEmpty,33
hashIteratorDelete,33
hashIteratorNew,33
hashIteratorNextKey,33
hashIteratorNextValue,34
hashListOfKeys,34
hashNew,34
hashRemove,35
hashSet,35
hashSize,35
hashStringEqualFunction,36
hashStringHashFunction,36
rehashHashtable,36

hashtable
HashIteratorStruct,97

HashtableEntryStruct,98
HashtableEntryStruct

key,98

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

INDEX 119

next,98
value,98

Hashtables,29
HashtableStruct,99
HashtableStruct

capacity,99
count,99
entries,100
hashFunction,100
keyEqualFunction,100
loadFactor,100
threshold,100

index
HashIteratorStruct,97

item
ListStruct,104

key
HashtableEntryStruct,98

keyEqualFunction
HashtableStruct,100

laBest
ListAgenda,52

laDelete
ListAgenda,52

laInsert
ListAgenda,52

laIsEmpty
ListAgenda,53

laIsTruncated
ListAgenda,53

laIteratorDelete
ListAgenda,53

laIteratorNew
ListAgenda,53

laIteratorNextElement
ListAgenda,54

laMaxSize
ListAgenda,54

laMaxSizeSoFar
ListAgenda,54

laNew
ListAgenda,54

laRemoveBest
ListAgenda,55

laResetTruncated
ListAgenda,55

laSetVerbosity
ListAgenda,55

laSize
ListAgenda,55

last

RingBufferStruct,106
laVerbosity

ListAgenda,56
length

BitStringStruct,93
List

freeListCell,40
listAddUniqueElement,41
listAppendElement,41
listAppendElements,41
listAppendList,41
listClone,42
listContains,42
listCopy,42
listDeepClone,43
listDelete,43
listDeleteElement,43
listDeleteLastElement,43
listElement,44
listFilter, 44
listForEach,44
listForEachDelete,44
listIndex,45
listInsertSorted,45
listInsertSortedWithData,45
listIsEqual,46
listLastElement,46
listNew,46
listNext,46
listNthElement,47
listPrependElement,47
listPrependElements,47
listReverse,48
listSetElement,48
listSetNext,48
listSize,48
listSort,49
listSortWithData,49
listToVector,49
newListCell,40

listAddUniqueElement
List, 41

ListAgenda,51
ListAgenda

laBest,52
laDelete,52
laInsert,52
laIsEmpty,53
laIsTruncated,53
laIteratorDelete,53
laIteratorNew,53
laIteratorNextElement,54
laMaxSize,54
laMaxSizeSoFar,54

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

120 INDEX

laNew,54
laRemoveBest,55
laResetTruncated,55
laSetVerbosity,55
laSize,55
laVerbosity,56

ListAgendaEntryStruct,101
ListAgendaEntryStruct

score,101
state,101

ListAgendaStruct,102
ListAgendaStruct

entries,102
freeState,103
maxsize,103
maxSizeSoFar,103
size,103
truncationWarning,103
verbose,103
worstScore,103

listAppendElement
List, 41

listAppendElements
List, 41

listAppendList
List, 41

listClone
List, 42

listContains
List, 42

listCopy
List, 42

listDeepClone
List, 43

listDelete
List, 43

listDeleteElement
List, 43

listDeleteLastElement
List, 43

listElement
List, 44

listFilter
List, 44

listForEach
List, 44

listForEachDelete
List, 44

listIndex
List, 45

listInsertSorted
List, 45

listInsertSortedWithData
List, 45

listIsEqual
List, 46

listLastElement
List, 46

listNew
List, 46

listNext
List, 46

listNthElement
List, 47

listPrependElement
List, 47

listPrependElements
List, 47

listReverse
List, 48

Lists,38
listSetElement

List, 48
listSetNext

List, 48
listSize

List, 48
listSort

List, 49
listSortWithData

List, 49
ListStruct,104
ListStruct

item,104
next,104

listToVector
List, 49

loadFactor
HashtableStruct,100

Main module,89
mask

BitStringStruct,93
maxsize

ListAgendaStruct,103
TreeAgendaStruct,112

maxSizeSoFar
ListAgendaStruct,103
TreeAgendaStruct,112

memFreeFunction
Memory,57

memMallocCheck
Memory,57

Memory,57
memFreeFunction,57
memMallocCheck,57

multMod
Prime,58

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

INDEX 121

newListCell
List, 40

next
HashtableEntryStruct,98
ListStruct,104

nextNode
TreeAgendaIteratorStruct,110

nodes
TreeAgendaStruct,112

parent
TANodeStruct,108

powMod
Prime,59

Prime
addMod,58
multMod,58
powMod,59
primeNext,59
primeRabin,59

primeNext
Prime,59

primeRabin
Prime,59

Primes,58

rbAddBottomElement
Ringbuffer,62

rbAddTopElement
Ringbuffer,62

rbBottomPeek
Ringbuffer,62

rbCapacity
Ringbuffer,63

rbClear
Ringbuffer,63

rbClone
Ringbuffer,63

rbContains
Ringbuffer,63

rbCopy
Ringbuffer,64

rbDelete
Ringbuffer,64

rbForEachWithData
Ringbuffer,64

rbIsEmpty
Ringbuffer,64

rbIsFull
Ringbuffer,65

rbNew
Ringbuffer,65

rbRemoveBottomElement
Ringbuffer,65

rbRemoveTopElement
Ringbuffer,65

rbSize
Ringbuffer,66

rbTopPeek
Ringbuffer,66

rehashHashtable
Hashtable,36

resize
BitString,19
ByteVector,27

resizeVector
Vector,82

Ringbuffer
rbAddBottomElement,62
rbAddTopElement,62
rbBottomPeek,62
rbCapacity,63
rbClear,63
rbClone,63
rbContains,63
rbCopy,64
rbDelete,64
rbForEachWithData,64
rbIsEmpty,64
rbIsFull,65
rbNew,65
rbRemoveBottomElement,65
rbRemoveTopElement,65
rbSize,66
rbTopPeek,66

Ringbuffers,61
RingBufferStruct,105
RingBufferStruct

capacity,105
count,105
entries,105
first, 106
last,106

root
TreeAgendaStruct,112

score
ListAgendaEntryStruct,101
TANodeStruct,108

SharedStringStruct,107
SharedStringStruct

counter,107
data,107

size
BitStringStruct,93
ListAgendaStruct,103
TreeAgendaStruct,112

state

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

122 INDEX

ListAgendaEntryStruct,101
TANodeStruct,109

strAppend
String,69

strCat
String,70

strCopy
String,70

strDecode
String,70

strDelete
String,70

strFinalize
String,70

strFromList
String,71

String
_strDeleteSharedString,68
_strDeleteStoreEntry,68
_strLookup,69
_strNewSharedString,69
_strStore,72
_strTryRegister,69
strAppend,69
strCat,70
strCopy,70
strDecode,70
strDelete,70
strFinalize,70
strFromList,71
strInitialize,71
strPrintf,71
strRegister,71
strStoreSize,72
strVPrintf,72

Strings,67
strInitialize

String,71
strPrintf

String,71
strRegister

String,71
strStoreSize

String,72
strVPrintf

String,72

taBest
TreeAgenda,74

taCheckNode
TreeAgenda,75

taDelete
TreeAgenda,75

taDeleteNode

TreeAgenda,75
taInsert

TreeAgenda,75
taIsEmpty

TreeAgenda,76
taIsTruncated

TreeAgenda,76
taIteratorDelete

TreeAgenda,76
taIteratorNew

TreeAgenda,76
taIteratorNextElement

TreeAgenda,77
taMaxSize

TreeAgenda,77
taMaxSizeSoFar

TreeAgenda,77
taNew

TreeAgenda,77
TANodeStruct,108
TANodeStruct

better,108
parent,108
score,108
state,109
worse,109

taPrintNode
TreeAgenda,78

taRemoveBest
TreeAgenda,78

taResetTruncated
TreeAgenda,78

taSetVerbosity
TreeAgenda,78

taSize
TreeAgenda,79

taVerbosity
TreeAgenda,79

threshold
HashtableStruct,100

totalNoOfEntries
ArrayStruct,92

TreeAgenda,73
TreeAgenda

taBest,74
taCheckNode,75
taDelete,75
taDeleteNode,75
taInsert,75
taIsEmpty,76
taIsTruncated,76
taIteratorDelete,76
taIteratorNew,76
taIteratorNextElement,77

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

INDEX 123

taMaxSize,77
taMaxSizeSoFar,77
taNew,77
taPrintNode,78
taRemoveBest,78
taResetTruncated,78
taSetVerbosity,78
taSize,79
taVerbosity,79

treeagenda
TreeAgendaIteratorStruct,110

TreeAgendaIteratorStruct,110
TreeAgendaIteratorStruct

nextNode,110
treeagenda,110

TreeAgendaStruct,111
TreeAgendaStruct

best,112
free,112
freeState,112
maxsize,112
maxSizeSoFar,112
nodes,112
root,112
size,112
truncationWarning,113
verbose,113
worst,113

truncationWarning
ListAgendaStruct,103
TreeAgendaStruct,113

value
HashtableEntryStruct,98

Vector
doSorting,81
resizeVector,82
vectorAddElement,82
vectorCapacity,82
vectorClone,82
vectorContains,83
vectorCopy,83
vectorDelete,83
vectorElement,83
vectorIndexOf,84
vectorInsertElement,84
vectorIsEmpty,84
vectorNew,85
vectorRemoveElement,85
vectorRemoveElementAt,85
vectorSetAllElements,86
vectorSetElement,86
vectorSetElements,86
vectorSize,87

vectorSort,87
vectorSortWithData,87
vectorToList,88

vectorAddElement
Vector,82

vectorCapacity
Vector,82

vectorClone
Vector,82

vectorContains
Vector,83

vectorCopy
Vector,83

vectorDelete
Vector,83

vectorElement
Vector,83

vectorIndexOf
Vector,84

vectorInsertElement
Vector,84

vectorIsEmpty
Vector,84

vectorNew
Vector,85

vectorRemoveElement
Vector,85

vectorRemoveElementAt
Vector,85

Vectors,80
vectorSetAllElements

Vector,86
vectorSetElement

Vector,86
vectorSetElements

Vector,86
vectorSize

Vector,87
vectorSort

Vector,87
vectorSortWithData

Vector,87
VectorStruct,114
VectorStruct

capacity,114
count,114
entries,114

vectorToList
Vector,88

verbose
ListAgendaStruct,103
TreeAgendaStruct,113

worse

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

124 INDEX

TANodeStruct,109
worst

TreeAgendaStruct,113
worstScore

ListAgendaStruct,103

Generated on Thu Oct 28 17:36:41 2004 for BLAH by Doxygen

	The BLAH Reference Manual.
	Introduction
	Usage
	Overview

	BLAH Module Index
	BLAH Modules

	BLAH Data Structure Index
	BLAH Data Structures

	BLAH Page Index
	BLAH Related Pages

	BLAH Module Documentation
	Arrays
	BitStrings
	ByteVectors
	Hashtables
	Lists
	ListAgenda
	Memory
	Primes
	Ringbuffers
	Strings
	TreeAgenda
	Vectors
	Main module

	BLAH Data Structure Documentation
	ArrayStruct Struct Reference
	BitStringStruct Struct Reference
	ByteVectorStruct Struct Reference
	HashIteratorStruct Struct Reference
	HashtableEntryStruct Struct Reference
	HashtableStruct Struct Reference
	ListAgendaEntryStruct Struct Reference
	ListAgendaStruct Struct Reference
	ListStruct Struct Reference
	RingBufferStruct Struct Reference
	SharedStringStruct Struct Reference
	TANodeStruct Struct Reference
	TreeAgendaIteratorStruct Struct Reference
	TreeAgendaStruct Struct Reference
	VectorStruct Struct Reference

	BLAH Page Documentation
	Todo List

