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Abstract
In this paper we discuss options for pro-
ducing structural descriptions for an input
sentence which is not yet completely avail-
able. Two existing dependency parsers
have been modified to generate sequences
of output hypotheses in an incremental
manner. The parsing results can be char-
acterized with respect to different criteria
like the amount of predicted information,
its quality, monotonicity, delay, inclusive-
ness and connectedness. We propose an
evaluation scheme able to capture these
properties and apply it to the parsers in dif-
ferent configurations.

1 Motivation

Incremental language processing does not con-
sume its input at once but in a word-by-word man-
ner. A sequence of incomplete, but successively
more complete interpretations is generated for an
utterance. Such a processing mode is particu-
larly interesting in scenarios where language in-
put evolves over time, like in human-computer or
human-robot interaction. Since the input can be
processed while it is still incomplete, production
time is available as processing time. Moreover it
also becomes possible to immediately respond to
partial input, either by providing non-verbal feed-
back to the speaker, taking a turn, or starting an ac-
tion while a command is still being spoken. Such
a behavior requires a system which is able to pro-
duce an analysis for partial input. These interme-
diate results are provided for internal and external
use. Internally they can guide the processing of the
next input increment. External use includes feed-
back to previous processing modules and incre-
mental input to subsequent processing modules.

To our knowledge no dependency parser is
available so far which is able to generate fully con-
nected intermediate results. Existing incremental
dependency parsers wait at least until both words
to be connected are available. This renders inter-
mediate structures unconnected in most cases. The
integration of new words is often delayed further
due to lookahead.

The initial question to be answered in this pa-
per is, therefore, how partial dependency analyses
should look like and what information they should
contain. This question is addressed in Section 2.
In Section 3, possible metrics for the evaluation of
partial dependency analyses are discussed. Sec-
tion 4 shows how partial dependency analyses can
be produced with a constraint dependency parser
or a shift-reduce parser. In Section 5 the parser
output is evaluated, before conclusions are drawn
in Section 6.

2 Definitions

A dependency analysis is an directed acyclic graph
where the words correspond to nodes and depen-
dencies to edges. Exactly one head, also called
regent, and one dependency type, also called la-
bel, is assigned to every word in a sentence. Can-
didates for a regent are the other words from the
sentence or a special root node.

The dependency analysis for an incomplete sen-
tence prefix will be called partial dependency
analysis (PDA) throughout this paper. If only a
prefix of the sentence is known, assigning a depen-
dency structure to it is not trivial. The first prob-
lem is temporary ambiguity, i.e. the decision about
the correct assignment for a word might depend
on how the sentence continues. In such cases we
cannot determine the correct analysis before the
continuation of the sentence becomes available.



This uncertainty aggravates the general problem
of global ambiguity, which is omnipresent even in
complete sentences.

A second problem is introduced, since the
words already known are usually not sufficient to
represent the correct analysis. This becomes obvi-
ous if the structure of a complete sentence is cut
off at an arbitrary position. Then we can distin-
guish four kinds of dependencies: those with both
nodes in the already known prefix, those with an
unknown dependent, those with an unknown re-
gent and those lying completely outside the prefix.
The most problematic class here is the one with
unknown regent, as the dependent is part of the
prefix but cannot be assigned correctly to one of
the possible regents as defined above, i.e. a known
word from the prefix or the root node. There are
two possibilities to deal with this problem: delay-
ing the assignment, i.e. not including the respec-
tive word into the PDA, or predicting hypothetical
nodes for the not yet seen input.

A PDA that assigns a regent to every word in
the prefix will be called inclusive. An analysis
that contains nodes in addition to the ones corre-
sponding to words in the prefix or the root node
will be called predictive. Correct PDAs have to
be predictive to be also inclusive: if the correct
regent is not available in the prefix, either a place-
holder for it has to be provided, e.g. by predic-
tion, or no regent can be assigned. The minimal
extension that is necessary to guarantee inclusion
will be called minimal prediction. It consists of
a single node added to the list of permissible re-
gents. This extra node is predictive in the sense
that it does not correspond to a known word from
the prefix and it is maximally unspecified, i.e., its
surface word form, lemma, part-of-speech and its
position beyond the fact that is to the right of the
other words are unknown. Even its identity is un-
specified, i.e., it could stand for an arbitrary num-
ber of words and two dependencies meeting at the
predicted node do not necessarily meet in the com-
plete dependency analysis.

Also the new node can only serve as regent, but
not as dependent of any other node. This kind of
predictive node was previously proposed by Daum
(2004) and is called nonspec due to its unspeci-
fied nature. Assigning nonspec as regent is more
informative compared to not including the respec-
tive dependent at all: Firstly, a dependency label
can be assigned to the attachment and secondly,

it can be taken for granted that nonspec is nei-
ther one of the known words nor the root node.
While delaying the attachment reflects the uncer-
tainty about the correct regent, attachment to non-
spec expresses the certainty that the word will not
be attached to one of the already known words.

Although minimal prediction facilitates inclu-
sion, it is not sufficient to guarantee the connected-
ness of a dependency structure, A (partial) depen-
dency analysis is called connected, if there is a
path of dependencies, ignoring direction, between
every two words of the sentence (prefix).

Since nonspec itself does not have a regent, the
words assigned to nonspec are not connected to
the other nodes of the dependency graph. Such
unconnected words cannot be easily related to the
rest of the prefix in a semantic interpretation. We
will therefore further extend the number of re-
gents to allow structural prediction. Now predic-
tive nodes themselves can be assigned to a regent.
These so called virtual nodes differ from nonspec
in that there can be more than one of them, that
they require a regent themselves and that each vir-
tual node represents exactly one word from the un-
known suffix of the sentence. Features of virtual
nodes like their part-of-speech or their order can
be specified. Edges between virtual nodes are also
possible.

3 Quality Metrics

In the previous section we presented two kinds of
prediction which can be used to augment partial
dependency analyses. To be able to compare them,
we need to quantify and measure their quality.

3.1 Attachment Score

For dependency analyses of complete sentences,
quality is usually measured by the attachment
score (AS). It is defined as the ratio of words in
the sentence that have been assigned to the same
regent as in a gold standard annotation of the same
sentence (UAS) and, optionally, with the same la-
bel (LAS).

There are several difficulties in applying these
measures to partial dependency analyses, espe-
cially to those including predictions: First of all,
there are no gold standard annotations available
for sentence prefixes, only for complete sentences.
This problem can be addressed in two different
ways: either by annotating a corpus of sentence
prefixes, or by generating prefix annotations from



existing full sentence annotations. As there are
multiple prefixes for every sentence, annotating
prefixes requires considerable effort compared to
annotating complete sentences. In addition, tem-
porary ambiguity might result in multiple plau-
sible annotations for the same prefix. The same
problem occurs if prefix annotations are extracted
from a corpus of complete annotations. Two sen-
tences might share a prefix but assign a different
syntactic structure to the words in the prefix.1 The
resulting corpus would then contain two ”correct”
analyses for the same sequence of words. Addi-
tionally, the interpretation for the complete sen-
tence might not be the most plausible interpre-
tation for each of its prefixes. However, a cor-
pus large enough might level out these implausible
prefix annotations by a greater number of plausi-
ble annotations for similar syntactic constructions.
A parser that always chooses the more common
structure for a prefix would then obtain a better
score. In this paper we will use existing depen-
dency annotations.

Complete dependency analyses can be rated
with only one score instead of two values like pre-
cision and recall because the number of nodes is
fixed for a given sentence in contrast to the number
of nodes in a phrase structure graph. For PDAs,
however, the number of words in the structures to
be compared might vary, depending on how many
of them have been included or predicted. There-
fore, the accuracy measure for PDAs has either to
be split into a precision and a recall part, or only
inclusive PDAs with no prediction beyond mini-
mal prediction can be considered.

Structurally predictive PDAs can be reduced to
minimal predictive ones by interpreting all attach-
ments to predicted regents as minimal predictive
attachments and ignoring all attachments of pre-
dicted dependents. For cases of non-inclusiveness,
where words only remain unattached as long their
heads are not yet available, the missing attach-
ments can be interpreted as nonspec attachments2.

1Among 15000 sentences from the Negra corpus more
than 5000 share a prefix with another one, which is anno-
tated differently. 81% of these shared prefixes are of length
one, 15% of length two and 4% longer than two.

2However, no dependency label can be assigned in such a
case. Also, incremental parsers can use lookahead to incorpo-
rate features of later words into the decision for a word. This
interferes with the re-interpretation of missing attachments as
attachments to nonspec, since it would be wrongly assumed
that all the words in the lookahead window should be attached
to nonspec. Therefore, such results are better dealt with by
specifying the fixed lookahead size or providing a separate

This way we can guarantee a fixed number of de-
pendents for a prefix.

Let A be an annotation consisting of depen-
dency arcs (dependent, label, regent). Then the
annotation AP for a prefix P is:
AP = {(d, l, r) ∈ A| d ∈ P ∧ r ∈

P ∪ {root}} ∪ {(d, l,nonspec)| d ∈ P ∧
∃x((d, l, x) ∈ A ∧ ¬x ∈ P ∪ {root})}

A general PDA B for a prefix P can be reduced
to a minimal predictive and inclusive PDA:

B̂ = {(d, l, r) ∈ B| d ∈ P ∧ r ∈ P ∪
{root}} ∪ {(d,nolabel,nonspec)| d ∈ P ∧
¬∃x.(d, , x) ∈ B} ∪ {(d, l,nonspec)| d ∈
P ∧ ∃v.(d, l, v) ∈ B ∧ virt(v)}

With this normalization we can assign an at-
tachment score to a PDA as usual. This measure-
ment does not reward prediction beyond the mini-
mal prediction, but provides a common ground for
all inclusive partial dependency analyses.

For the Prefix ”John” of the sen-
tence ”John buys a book” the annotation
{A = (John, SUBJ, buys), (buys, S, root)...}
and the predictive analysis B1 =
{(John, SUBJ, [virt]), ([virt], S, root), ...}
would both be normalized to
{(John, SUBJ, nonspec)}, resulting in an
AS of 100%. The non-inclusive and empty
analysis B2 = {} would be normalized to
{(John, nolabel, nonspec)}, resulting in a UAS
of 100%, but a LAS of 0%.

3.2 Accumulating prefix scores

Incremental parsing does not produce a single pre-
fix analysis, but sequences of them. Simply accu-
mulating the accuracies for all the words in all pre-
fixes would introduce a strong bias in favor of the
earlier tokens: a word appearing early in a sen-
tence will have a greater influence on the overall
score than a later one, giving it more weight in the
accumulated score.

Therefore, we apply a sliding window to the se-
quences of PDAs. For every word the attachment
status is determined not only for the prefix it first
appears in (and the final result), but also for a fixed
number of prefixes in the vicinity of the first ap-
pearance. This allows us to investigate the tempo-
ral evolution of a word’s attachment as well as to
give all words the same weight.3

recall value.
3modulo effects at the start and end of the sentence, de-

pending on the window size
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Figure 1: Sliding window for prefix n and n + 1
with relative word indices

Note, however, that for incremental systems us-
ing lookahead there might not be a single PDA
for every input increment. As the lookahead win-
dow must first be filled up before any output can
be generated, no explicit output will be produced
for the first n input increments. As the final input
increment fills the lookahead window of the last
n+1 words, there are n+1 output increments for
it. This can be compensated by adding n empty
output increments at the beginning and by keeping
only the final analysis for the last input increment.

We can determine three different attributes for
an attachment: its correctness (including the la-
bel or not), its status (i.e., whether it is included,
not included, a minimal or a structural prediction)
and its stability (i.e., whether it differs from a later
PDA). There might be a difference in the degree
to which the predictive attachments are specified.
Here, we distinguish between minimal prediction
without dependency label, with dependency label
and structural prediction.4

For every PDA the window is centered at the
rightmost input word, so that the previous words
are assigned to slots with ascending numbers, as
illustrated in Figure 1. The correctness CminP for
a given slot for a given prefix is determined as dis-
cussed above for the attachment score where non-
spec matches any non-included word. Precision
PminP and recall RminP can then be calculated by
dividing by the number of included words in the
PDAs or the total number of encountered words
respectively.5 Both can be averaged for the win-
dow (cf. Figure 2).

With respect to structural prediction two addi-

4Even a more comprehensive prediction including the lex-
ical features of a word or its surface form would be possible.
This has not been considered here as the choice of the correct
lexical reading is also not covered by the usual definition of
the attachment score.

5This number depends on the slot number: all words are
encountered by slot 0, but slot n will not encounter the last n
words of a sentence.

tional aspects have to be considered. First of all,
the predicted words have to be mapped to words
from the gold standard in a one-to-one correspon-
dence. While different mappings might be possi-
ble, the mapping bm with the best overall accuracy
is chosen. This optimum might depend on whether
accuracy is measured labeled or unlabeled, we use
unlabeled attachment. Given that a virtual node
can partake in more than one dependency edge, i.e.
it has one regent and an arbitrary number of depen-
dents, a virtual node can possibly be mapped even
if some of these attachments are incorrect. Map-
pings that share no edge with the gold standard
annotation are not considered. Therefore, some
virtual nodes might remain unmapped. As the op-
timal mapping might change as the prefix of a sen-
tence grows, the same virtual node can be mapped
to different words for consecutive PDAs. Per defi-
nition, all predictions still left in the final result are
incorrect.

Secondly, with structural predictions words can
be assigned to a regent before they become part
of the available prefix. This corresponds to a neg-
ative slot index in the window. The sliding win-
dow, however, is applied to the positions of the
words in the gold standard annotation, not in the
PDA, as virtual nodes are not located at a spe-
cific position. Thus, they only have the poten-
tial to be captured by the sliding window if be-
ing successfully mapped. If mapping fails, the
virtual node has no well-defined position. There-
fore, only the recall of structural RstrP prediction,
but not the precision PstrP , can be determined by
means of a sliding window alone. For words with
a negative slot number, we calculate the correct-
ness CstrP,V independently of slots for all pre-
dicted words and combine it with the correctness
of the non-negative slots to obtain an accumulated
precision, as defined in Figure 2

3.3 Stability

The stability score for a given slot is calculated
like precision, but the PDA is compared to the final
annotation found by the parser instead of the gold
standard annotation.

3.4 Connectedness

Early semantic interpretation requires to integrate
incoming words into a connected structure imme-
diately. We quantify the degree of connectedness
of a PDA by means of its average fragmentation,



RminP :=

∑
p∈Ps

∑
i∈W CminP (i, pdap, |p|)∑
i∈W (|s| − |i|)

PminP :=

∑
p∈Ps

∑
i∈W CminP (i, pdap, |p|)∑
p∈Ps
|pdap ∩W |

RstrP :=

∑
p∈Ps

∑
i∈W CstrP (i, pdap, |p|, bm(pdap))∑

i∈W (|s| − |i|)

PstrP :=

∑
p∈Ps

(
∑

i∈W+
CstrP (i, pdap, |p|, bm(pdap)) +

∑
v∈Vpdap

CstrP,V (v, pdap, bm(pdap)))∑
p∈Ps

(|pdap ∩W+|+ |Vpdap |)

CminP (sID, pda, n) :=


1 if regpda(n− sID) = reggold(n− sID)

1 if regpda(n− sID) = nonspec ∧ reggold(n− sID) > n

0 else

CstrP (sID, pda, n,map) :=

{
1 if map(regpda(n− sID)) = reggold(map(n− sID))

0 else

CstrP,V (vn, pda,map) :=

{
1 if map(regpda(vn)) = reggold(map(vn))

0 else

Figure 2: Definitions for precision and recall for a single sentence, where Ps is a the set of all prefixes
of a sentence s, W the slot-ids of the used window, W+ the non-negative ones, pdap the analysis for a
prefix p, Vpda the virtual words used in pda and |pda ∩W | the amount of arcs in an analysis covered by
the window, i.e. the number of included words. bm(pda) is the best mapping as defined in Section 3.2.

defined as the average number of tree fragments in
addition to the first one.

This is an indication of how many attachments
have to be changed at least, to produce a connected
tree. As minimal predictive attachments do not
predict whether they attach to the same word, each
such attachment has to be counted as a potential
root of an additional tree fragment. Punctuation
marks are never integrated into the dependency
graph, and therefore not be considered. The aver-
age fragmentation number can then be compared
to the fragmentation of the gold standard annota-
tion.

4 Implementation

In this section we will present two approaches for
incremental parsing which produce partial depen-
dency analyses that are both inclusive and predic-
tive. We modified two existing parsing systems
WCDG6 and MaltParser7 to generate incremental
output.

4.1 WCDG
Weighted Constraint Dependency Grammar
(WCDG) is a framework, which maps depen-

6https://nats-www.informatik.
uni-hamburg.de/view/CDG/

7http://maltparser.org

dency parsing to the problem of constraint
optimization (Schröder, 2002). Menzel (2009)
proposed an incremental parsing strategy for
WCDG based on the repair based algorithm
frobbing (Foth, 2006). It tries to improve an initial
structure through a sequence of conflict driven
transformation steps. To perform incremental
parsing this algorithm can be applied to the prefix
of a sentence, and the generated structure (plus an
arbitrary attachment for the new words) is used
as a starting point for the analysis of the extended
prefix. This approach is non-monotonic, as the
previous PDA provides only a starting point for
the next search step, but the resulting PDA does
not need to include all the arcs of its predeces-
sor. WCDG is able to profit from information
contributed by external modules (Foth, 2006).
We used only use the most essential ones: a PoS
tagger and a PP attacher, for our experiments.

Nonspec
As frobbing produces inclusive dependency anal-
yses where a regent is assigned to every word, the
system has to assign a regent even in the absence
of the intended one (c.f. Section 2). A suitable
attachment point has to be made available. A min-
imal prediction with a nonspec node serves exactly
this purpose.



With nonspec, the grammar has to be changed
in two regards. First, a constraint is added to
slightly penalize nonspec attachments. It guaran-
tees that a nonspec attachment is only chosen if no
suitable real regent is available.

A second change adds guards to the constraints
to prevent non-existing attributes of the regent
from being accessed. These guards are specified
in a way that they replace the non-specified fea-
ture with an optimistic estimation. For example
a query for a comma between the two ends of a
dependency edge would return true for constraints
demanding a comma, while the same query would
return false in a constraint that forbids a comma
(unless there is already a comma in the known part
of the prefix).

Virtual Nodes

While this implementation of incremental depen-
dency parsing accomplishes minimal prediction, it
does not exhaust the potential for syntactic pre-
diction of a given grammar. Constraints demand-
ing the existence of certain words or their lexical
features are either prevented from accessing those
features, or alternatively their violation, like an un-
satisfied verb valency, is simply accepted because
no less penalized alternative is available. In partic-
ular, no proof is required that and how a predicted
regent itself could be integrated into the rest of the
dependency structure without violating additional
constraints. To extend the range of prediction in
dependency analyses, the concept of virtual nodes
as defined in Section 2 is used.

Since the frobbing search algorithm is not able
to add or remove words to or from the constraint
problem, a maximal set of potentially useful pre-
dictive nodes has to be introduced prior to search.
As with nonspec, attachments to and from vir-
tual nodes are penalized slightly. Virtual nodes
which are not integrated into an analysis stay un-
connected and are considered unused. As a re-
sult, used virtual nodes are per definition always
attached to another node. Unused virtual nodes
are assigned to the root node with the empty label
as dependency type. They may not be assigned
as regents to other words. This is enforced by a
hard constraint in the grammar. They are not con-
sidered part of the sentence and can safely be re-
moved from an analysis without altering its mean-
ing.

Example for an unused virtual node:

This is a complete sentence [virtual]

SU
BJ

DET
ATTR

PRED

Example for a used virtual node:

This is an incomplete [virtual]

SU
BJ

DET
ATTR

PRED

Example for a partially used virtual node, a con-
stellation that is not allowed by the grammar:

This is an incomplete [virtual]

SU
BJ

DET
ATTR

Virtual nodes, once added to the constraint
problem technically behave like other words.
Their predictive nature is not visible to the search
algorithm, as the topology of the search space re-
mains the same. All restrictions mentioned above
are enforced via constraints in the grammar. To be
able to distinguish between virtual and non-virtual
nodes in a constraint, a new attribute virtual is de-
fined. A corresponding predicate can be invoked
by a constraint definition. With this approach, pre-
diction, i.e. the inclusion of virtual nodes into the
dependency structure, is purely constraint driven.

We can distinguish between two kinds of pre-
diction, bottom-up and top-down. In bottom-up
prediction, the inclusion of a predictive node is
driven by an unconnected word, for which every
other integration would result in constraint viola-
tions. Top-down prediction is conflict driven in
that a specific constraint violation indicates the
need for an additional dependent of an existing
word, as it is the case for verb valencies. By pro-
viding the search algorithm with a set of predic-
tive nodes for potential use, predictive partial re-
sults can be generated without further adaption of
the algorithm. All that is needed is adding candi-
dates for dependency arcs for the virtual nodes to
the search space and extend the grammar, as dis-
cussed above.

Replacement of virtual nodes
After a prediction has been included into an incre-
mental parsing step, it has to be replaced later on
with a word from the input, once a fitting word be-



comes available. This can in principle be achieved
by the search algorithm, but many transforma-
tion steps might be needed to properly integrate it
into the existing structure. An alternative consists
in checking for each new word prior to search,
whether it can fill one of the used virtual nodes,
instead of adding it as a separate word to the struc-
ture.

To determine whether a replacement is success-
ful, the ratio of penalties assigned by the gram-
mar before and after replacement is compared to
a threshold. If at least one successful replacement
has been found, the one with the highest score is
used as starting point for the next search step. Oth-
erwise the word is appended as usual.

4.2 MaltParser

MaltParser (Nivre et al., 2007) is a dependency
parser which provides an incremental algorithm
but no incremental output in the sense of interme-
diate analyses for prefixes. We, therefore, had to
modify the parser in a way that allows us to ex-
tract partial dependency analyses from its hypoth-
esis space. For that purpose the set of already sub-
mitted dependency arcs is recorded immediately
before the next word in the input buffer is read,
while yet unattached words are considered to be
attached to nonspec. This allows us to recover the
PDAs for every increment.

There are several algorithms available for Malt-
Parser. The best choice depends on coverage of
non-projectivity, eager arc attachment and explicit
root handling. As the evaluation is done for Ger-
man, a language with a comparably high degree
of non-projective constructions, it is mandatory
to use a version which is able to deal with non-
projectivity.

In general, the shift-reduce approach used by
MaltParser does not guarantee an arc to be built
as soon as both nodes are available. As the attach-
ment reduces the token from the stack rendering it
unavailable to further attachments, dependents to
the right of their head cannot be attached before all
their dependents have been included into the struc-
ture. Nivre (2003) proposed a so called arc-eager
approach, which splits the right-reduce action into
a right-arc and a reduce action. This modification
allows an immediate attachment, once head and
dependent are available.

There are two ways to deal with root attach-
ment, either as an explicit attachment via an arc

building action or by waiting until the sentence has
been completely parsed and attaching all words
still left unattached to the root. For our purpose we
need the explicit root attachment approach to be
able to distinguish temporarily unattached words
(interpreted as nonspec attachment) from root at-
tachments. The explicit root attachment imple-
mented by MaltParser has proven not to be ex-
haustive. Especially punctuation tokens are al-
ways left unattached. As those are always attached
to the root, it is easy to deal with them separately.
For other words that are left unattached despite
explicit root handling there is no way to detect
whether they will stay unattached until the end of
the sentence. The impact of this problem on accu-
racy, however, is minimal, as for these words the
root attachment would often be incorrect as well.

From the algorithms fulfilling these require-
ments we choose the 2-planar algorithm (Gómez-
Rodrı́guez and Nivre, 2010), as it provides the
best performance for German and does not require
post-processing to recover non-projective links. It
uses an approach with two stacks and an addi-
tional parsing action to switch between them. Al-
though this does not allow it to parse general non-
projective structures, all 2-planar non-projective
structures can be dealt with, which covers most
non-projectivities in most natural languages, e.g.,
more than 98% for German. For more details see
Gómez-Rodrı́guez and Nivre (2010).

4.3 Differences between WCDG and
MaltParser

The biggest difference is that MaltParser is trained
on a tree-bank while WCDG uses a manually gen-
erated dependency grammar together with trained
external components.

Both parsers apply an incremental algorithm in
the sense that information from a previous analy-
sis are used to calculate the analysis for the ex-
tended prefix, but apply different strategies to deal
with temporary ambiguity as defined in Beuck et
al. (2011). While WCDG applies reanalysis, re-
sulting in timely but non-monotonic output, Malt-
Parser applies lookahead, resulting in monotonic
but delayed output.

5 Evaluation

5.1 Setup and data

In this section we will compare different config-
urations of MaltParser and WCDG by evaluating



them with the metrics proposed in Section 3. Eval-
uation has been carried out on 500 German sen-
tences from the Negra corpus converted to a de-
pendency structure. MaltParser was trained on
15000 different sentences from the same corpus.

Also, the parsers are compatible with differ-
ent strategies of incremental PoS tagging. While
MaltParser is restricted to taggers with best guess
or lookahead strategies, WCDG is able to integrate
multi-tagging and non-monotonic tagger output.
Based on the evaluation of incremental PoS tag-
gers in Beuck et al. (2011), we chose the TnT tag-
ger8 with multi-tagging and retagging of each pre-
fix for WCDG, while MaltParser is combined with
SVMTool9 using a lookahead of one or zero, de-
pending on the configuration.10 As MaltParser ac-
curacy is often reported on gold tagged input, we
also provide these numbers for a comparison with
already published non-incremental results.

We evaluated MaltParser configurations with a
total lookahead between zero and four, as well as
incremental WCDG configurations with nonspec
(NS), virtual nodes (VN), and both mechanisms
activated (VN+NS). All these configurations are
evaluated with the scheme for minimal prediction
(PminP and RminP ). In addition, the WCDG-VN
configuration is evaluated in terms of structural
prediction (PstrP and RstrP ).

5.2 Discussion

Table 1 contains final accuracy, as well as preci-
sion and recall values integrated over a window of
size 9. Figure 3 shows the temporal evolution of
accuracy and stability within the window for dif-
ferent parser configurations. In these figures the
different behavior of MaltParser and WCDG be-
come apparent.

Due to the monotonic nature of MaltParser, the
only possible change in subsequent output incre-
ments is the replacement of minimally predictive
attachments by fully specified ones. Thus, the av-
erage accuracy of attachment decreases after the
initial appearance of a word. In contrast to this,
the accuracy can even rise over time if reanaly-
sis is allowed as in WCDG. Here, the stability of
initial attachments is only 70%, i.e., 30% of the

8http://www.coli.uni-saarland.de/ thorsten/tnt/
9http://www.lsi.upc.edu/ nlp/SVMTool/

10Another reason for not using SVMT for WCDG, be-
sides performance in different incremental tagging modes, is
that SVMT is not able to provide tag percentages, which are
needed as constraint weights in WCDG.

attachments have been changed later on.11

A noteworthy observation is that WCDG pro-
poses significantly more erroneous initial attach-
ments to available words, where a predictive at-
tachment would be a better choice. Obviously, it
is too eager to attach words to available regents,
but is able to recover in many cases by means of
reanalysis.

The delayed output of the configurations with
lookahead leads to a smaller number of slots12 in
the window having received any attachments. This
is reflected in a reduced recall.

Structural prediction with WCDG leads to an
increased recall score, 48.6% compared to the best
recall without structural prediction of 46.2% for
MaltParser) and 44.3% for WCDG. The preci-
sion, however, is reduced, but it should also be
noted that a structural predictive attachment con-
tains more information. If we ignore this addi-
tional information and interpret the virtual nodes
only in a minimal predictive sense, precision and
recall are higher than in the configuration with
nonspec. The real benefit of structural prediction
can be seen in the significantly reduced fragmenta-
tion, as indeed the PDAs are connected to a similar
degree as the gold standard annotations for the full
sentences (which has a fragmentation of 0.17%).

6 Related Work

To our knowledge, partial dependency analyses
have not been investigated previously in detail.
Work on incremental dependency parsing like
Nivre (2004) was focused on the incrementality
of the algorithm, not on providing an incremen-
tal interface. Therefore, the output of intermedi-
ate results was not a primary goal. In other cases,
like Menzel (2009), the evolution of partial analy-
ses has been studied, but no broad scale evaluation
has been carried out.

Regarding connected partial analyses in other
grammar formalisms, Demberg and Keller (2008)
presented a variant of the tree adjoining grammar
(TAG )formalism that is able to incrementally pro-
duce fully connected prefix analyses. In this ap-
proach prediction plays a strong role, too. Top-

11In fact there is also a kind of non-monotonicity in Malt-
Parser, if we interpret the unattached words as ”to be attached
to a not yet available word”. These are reinterpreted as being
attached to root in the final result, leading to stability reduc-
tion of 5%

12The few assignments in slots 0-3 in Figure 3d are due
to an end-of-sentence effect, where the lookahead window is
filled preliminarily.



parser configuration final AS Average Sliding Window Precision of
unlabeled labeled Fragment. Precision Recall struct. pred.

Minimal Prediction:
WCDG NS 87.02% 84.95% 1.00 78.22% 43.28% -

VNs 86.74% 84.57% 1.00 79.98% 44.25% -
VNs + NS 86.58% 84.43% 1.00 79.95% 44.23% -

Malt LA 0+0 82.28% 78.99% 1.45 83.57% 46.24% -
LA 1+0 84.27% 80.65% 1.36 85.27% 38.59% -
LA 2+0 84.62% 80.98% 1.26 86.00% 30.75% -
LA 2+1 85.04% 81.74% 1.10 86.81% 23.28% -
LA 3+1 85.06% 81.66% 0.98 87.11% 16.06% -

Structural Prediction:
WCDG VNs 86.74% 84.57% 0.16 77.05% 48.55% 63.46%
Gold Tagged:
Malt gold tags 88.76% 86.25% - - - -

Table 1: Evaluation of incremental WCDG with different configurations regarding prediction; Looka-
head numbers are given as ”parser LA + tagger LA”

a)

John buys a red [noun]

SUBJ

DET
ATTR

DIR-OBJ

b)

John buys a red

nonspec
SUBJ

DET

ATTR

Figure 4: A connected (a) and an unconnected (b)
PDA

down prediction is facilitated through substitution
nodes in lexical entries, e.g. verbal valencies. Bot-
tom up prediction is achieved by means of con-
nection paths, i.e. the need for additional nodes
to connect a subtree to the rest of the structure. A
comparison with our results by applying the pro-
posed metrics on derivation trees of TAGS is be-
yond the scope of this paper but a promising topic
for further research.

The metrics in this paper only capture syntac-
tic similarity, but not the utility of an analysis for
an application task. Eventually, a more semanti-
cally oriented measure would be desirable, which
reflect the amount of semantic information con-
veyed by a structure. The sentence prefix ”John
buys a red”, for example, contains the information
buys(John,X) and color(X, red). Since such an
information can be more easily extracted from a

predictive dependency analysis like the one in Fig-
ure 4 a) compared to the not connected analysis (4
b)), it would be desirable to assign a higher re-
call value to a). An application oriented measure
for prefix analyses is defined by Schlangen et al.
(2009) where several variants for incremental ref-
erence resolution are discussed. They are, how-
ever, only applicable for utterances with a single
reference.

7 Conclusions

In this work we presented a definition of par-
tial dependency analyses that allows us to de-
rive fully connected structures by introducing pre-
dicted nodes into the dependency graph. It was
discussed how the attachment score metric can be
extended to also cover such prefix analyses. In ad-
dition, a windowing approach was adopted to anal-
yse the temporal evolution of incremental output
sequences in more detail.

Using these measures, two existing dependency
parsers have been compared. Obviously, there is
still a large number of parameters left unexplored,
especially for the instantiation of virtual nodes.
Eventually, it will be interesting to study possi-
ble similarities between psycholinguistic findings
about garden path or reanalysis phenomena and
the behaviour of the presented architectures.

This work was funded by the Deutsche Forschungsge-
meinschaft (DFG) as part of the International Graduate Re-
search Group CINACS.
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(a) WCDG with nonspec
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(b) MaltParser without lookahead
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(c) WCDG with virtual nodes
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(d) MaltParser with a total lookahead of 4

Figure 3: Scores for a sliding window with 9 slots; slot 0 holds a words first appearance in the input; the
earlier slots to the left are only filled for the configuration with structural prediction; the leftmost bar is
the precision of the attachment of virtual nodes (pred-prec), the rightmost one is the AS for the complete
sentence; all scores are unlabeled
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S. Kübler, S. Marinov, and E. Marsi. 2007. Malt-
parser: A language-independent system for data-
driven dependency parsing. Natural Language En-
gineering, 13:95–135.

Joakim Nivre. 2003. An Efficient Algorithm for
Projective Dependency Parsing. In Proceedings of
IWPT 03.

Joakim Nivre. 2004. Incrementality in determin-
istic dependency parsing. In Incremental Pars-
ing: Bringing Engineering and Cognition Together,
Workshop at ACL 2004.

David Schlangen, Timo Baumann, and Michaela At-
terer. 2009. Incremental reference resolution: the
task, metrics for evaluation, and a bayesian filtering
model that is sensitive to disfluencies. In Proceed-
ings of SIGDIAL 2009.
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