String Similarity Measures for Template Extraction Natalia Elita

University of Hamburg

NATS Oberseminar, 07.06.07

Outline

- Motivation
- □ Similarity Matrix
 - String Similarity Measures
 - Indexing
- □ Template Extraction
- Conclusion
- □ Further work

Motivation -1-

- (En) 1. The prosecution had charged Priebke with multiple and particularly ferocious homicide.
- (De) 1. Die Staatsanwaltschaft hatte Priebke des mehrfachen, besonders grausamen Mordes beschuldigt
- (En) 2. In the course of the trial, lasting three months, Priebke had admitted to have shot to death two people himself.
- (De) 2. Priebke hatte in dem 3 Monate dauernden Prozess zugegeben, 2 Menschen eigenhaendig erschossen zu haben.

Motivation -2-

- (En) 1. The prosecution had charged Priebke with multiple and particularly ferocious homicide.
- (En) 2. In **the** course of the trial, lasting three months, **Priebke** had admitted to have shot to death two people himself.
- (De) 1. Die Staatsanwaltschaft *hatte Priebke* des mehrfachen , besonders grausamen Mordes beschuldigt
- (De) 2. *Priebke hatte* in dem 3 Monate dauernden Prozess zugegeben, 2 Menschen eigenhaendig erschossen zu haben.

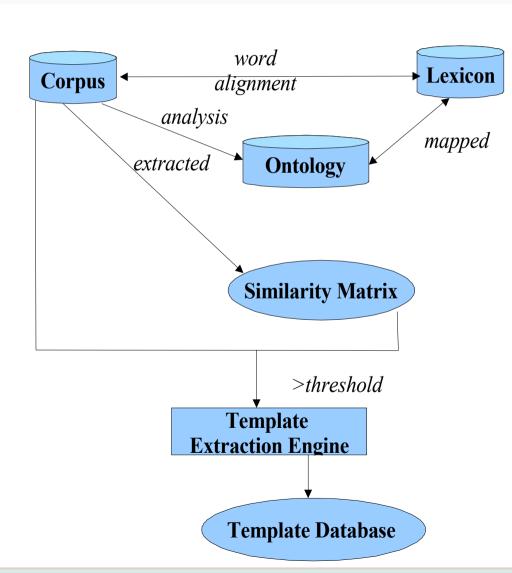
Motivation -3-

- (De) 1. Weitere Informationen finden Sie unter Sicherheitseinstellungen auf Seite NUM.
- (De) 2. Weitere Informationen hierzu finden Sie unter Sicherheitseinstellungen auf Seite NUM.
- (En) 1. For further information, see Security settings on page NUM
- (En) 2. For further information, see Security settings on page NUM.

Outline

- Motivation
- **□** Similarity Matrix
 - String Similarity Measures
 - Indexing
- □ Template Extraction
- Conclusion
- □ Further work

Similarity Matrix


- □ Similarity Matrix:
 - □ For a monolingual corpus with *N* sentences, the Similarity Matrix *s* is formally defined:

$$s(i,j)=0$$
, for j

$$s(i,i)=1$$
, for $1 <= i=N$;

- s(i,j)=BSM(sentence_i, sentence_j), for j > i, 1 <= i, j <= N, where BSM = Best Similarity Measure
- to reduce the search space
- to find candidates for templates
- to observe the need of semantics
- Indexing
 - to reduce the search space

Similarity Matrix

	s1	s2	s3		sn
s1	1	0.85	0.02		0.15
s2	0	1	0.12		0.96
s3	0	0	1		0.48
	0	0	0	1	0.50
sn	0	0	0	0	1

Template

- generalization of sentences that are translations of each other, where sequences of one or more words are replaced by variables, with alignments between the resulting word sequences and/or variables made explicit
 - \blacksquare E.g (SL)**Tfa** V_i **Tfb** V_{i+1} **Tfc** <---> (TL) V_i **Tfd** V_{i+1} **Tfe**,

where $\mathbf{Tfx} - \mathbf{text}$ fragment \mathbf{x} $V_i - variable i$

Problem description

 Given a sentence aligned corpus, find sentences that are similar enough to become candidates for translation templates

- no syntactic annotation of the corpus
- no other linguistic resource
- similarity on the surface form only

Outline

- Motivation
- □ Similarity Matrix
 - String Similarity Measures
 - Indexing
- □ Template Extraction
- Conclusion
- □ Further work

String Similarity Measures

- String Similarity measures are used in applications:
 - Spell check
 - □ Text prediction
 - Translation Memories
 - □ EBMT (matching)

Types

- character-based
 - similarity at the character level
- □ token-based
 - similarity at the token level
- hybrid
 - □ token based similarity first applied, then character based on each similar token

String Similarity Measures under consideration

- 20 string similarity measures
 - □ 18 SymMetrics package*
 - □ 10 character based, 5 token based, 3 hybrid
- \square 2 new
 - token-based
 - Common Words (CW)
 - Adapted Levenshtein Distance (ALD)

*http://www.dcs.shef.ac.uk/sam/simmetrics.html.

New Token based Measures -1-

- □ Common Words (CW):
 - number of common tokens for two given strings *s1* and *s2*

e.g:

- (s1) Writing and sending a multimedia message
- (s2) Reading and replying to a multimedia message

CW = 4 [and a multimedia message]

New Token based Measures

- 2-

- □ Adapted Levenshtein Distance (ALD)
 - □ For the given two strings s1 and s2:
 - □ Token Levenshtein Distance (TLD) is the traditional Levenshtein Distance, but on token level;
 - □ The maximal number of tokens of s1 and s2 is determined;
 - ☐ The obtained value is normalized to get values between 0 and 1.

ALD (example)

$$ALD(s_1,s_2)=1-\frac{TLD}{2*\max(Length(s_1),Length(s_2))}$$

- (s1) Writing and sending a multimedia message
- (s2) Reading and replying to a multimedia message

$$TLD = 3$$

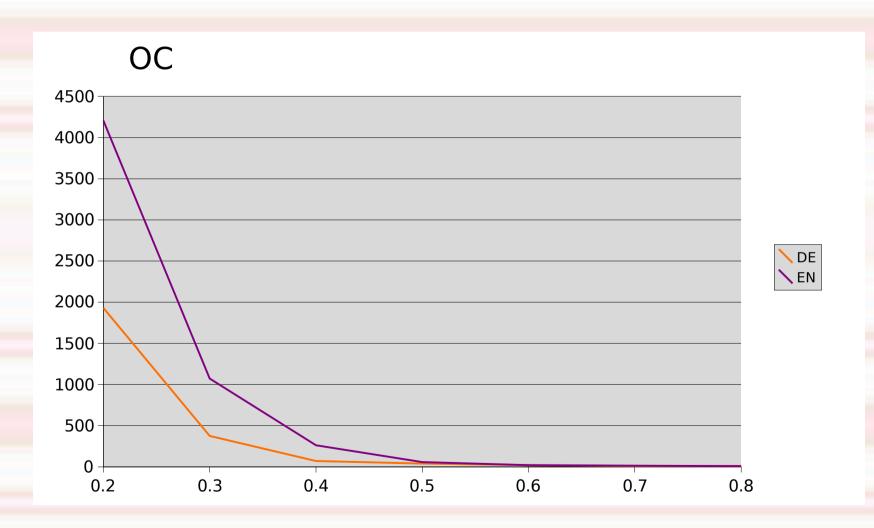
 $max(length(s1), length(s2)) = 7$
 $ALD = 1-(3/14) = 0.78$

Thresholds

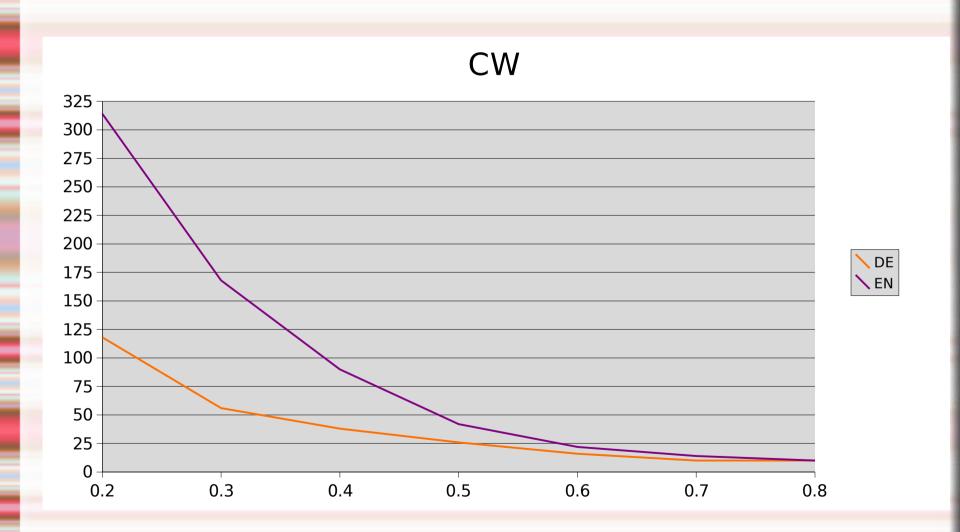
- experimentally established
 - □ identical strings (1)
 - completely different strings (0)
 - substrings
 - □ word order
 - length of strings

Thresholds: Character-based

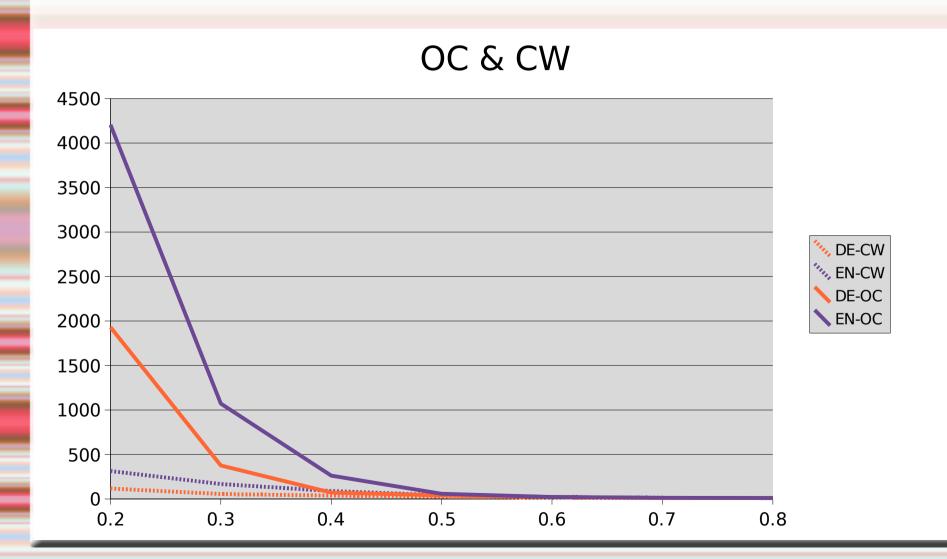
- \Box TagLink Token = 0.5
- □ Euclidean Distance = 0.5
- \square Smith-Waterman = 0.6
- \square Smith-Waterman-Gatoh = 0.6
- \Box Jaro = 0.7
- □ Jaro Winkler=0.7
- □ Needlemann-Wunch= 0.7
- \Box Levenshtein Distance = 0.75
- □ Dice Similarity=0.75
- □ Cosine Similarity= 0.75


Thresholds: Token-based

- \square Common Words (CW) = 5
- □ Adapted Levenshtein Distance = 0.7
- □ Matching Coefficient = 0.55
- \square Block Distance = 0.6
- □ Jaccard Similarity = 0.45
- \Box Overlap Coefficient (OC) = 0.66
- \Box Q-Grams Distance = 0.65


Thresholds: Hybrid

- \square Monge-Elkan = 0.9
- □ Chapman Ordered Name Compound Similarity = 0.75
- \Box TagLink = 0.7


Thresholds/Candidates for Templates (OC)

Thresholds/Candidates for Templates (CW)

Thresholds/Candidates for Templates

Experimental settings

- corpus: technical
- □ languages: De, En, Ro
- □ 100 sentences
 - to make observations, assumptions
 - manual evaluation

Experiments -1-

Token-based	Ge	En	Ro
CW	4	11	11
Matching coefficient	12	10	9
Block Distance	13	12	13
Jaccard Similarity	12	10	9
OC	24	19	25
Q-Grams Distance	9	9	6
Total	74	71	73
Unique pairs	26	30	31

Experiments -2-

Character-based	Ge	En	Ro
Levenshtein Distance	1	3	2
Dice Similarity	5	4	3
Cosine Similarity	5	4	3
Euclidean Distance	5	4	3
Jaro	35	32	56
Jaro-Winkler	86	72	109
Needleman-Wunch	24	40	22
SW	83	82	49
SW-Gotoh	107	103	73
Tag Link Token	70	67	62
Total	421	411	382

Experiments -3-

Hybrid	Ge	En	Ro
CONC	48	48	29
Tag Link	19	17	19
Total	67	65	48
Unique pairs	58	59	40

Observations

- Character-based measures too slow and depend very much on the length of the strings to be compared
 - □ e.g. 300 sentences (De,Ro) ~ 7 minutes
- ☐ Hybrid methods perform not so well in case of German compound nouns
- □ Token-based the most useful for the template extraction
 - Common Words and Overlap Coefficient

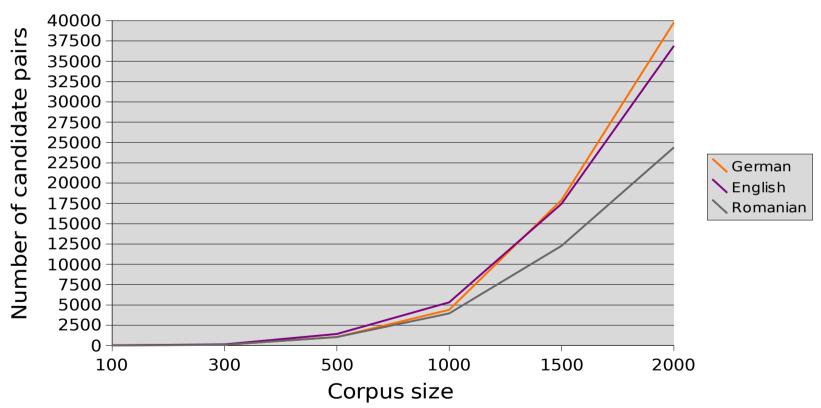
Observations -2-

- Common Words the number of common tokens two strings have
 - no word order is taken into account
- Overlap Coefficient (OC) the metric which determines to what degree is one string a substring of another:

 $OC(s_1,s_2) = \frac{(|s_1 \wedge s_2|)}{\min(|s_1|,|s_2|)}$

where: |s| - number of tokens in s, $|s_1 \wedge s_2|$ number of common tokens in s_1 and s_2

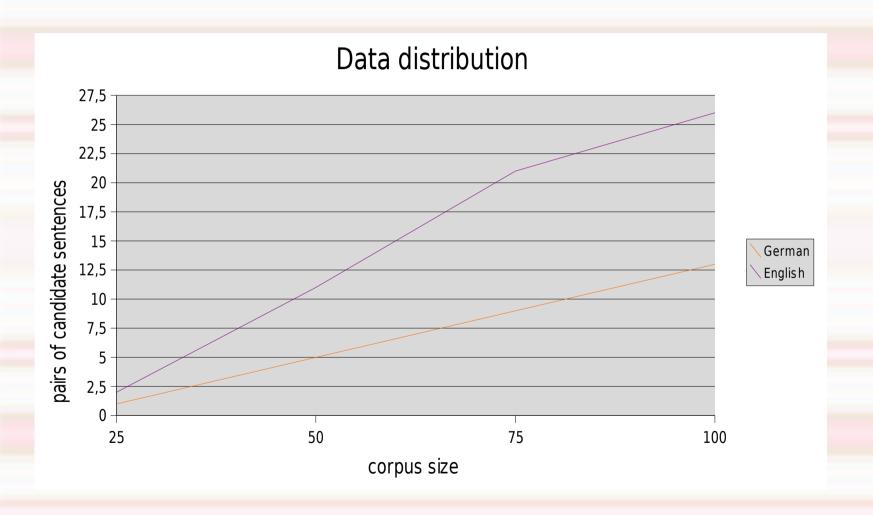
Observations

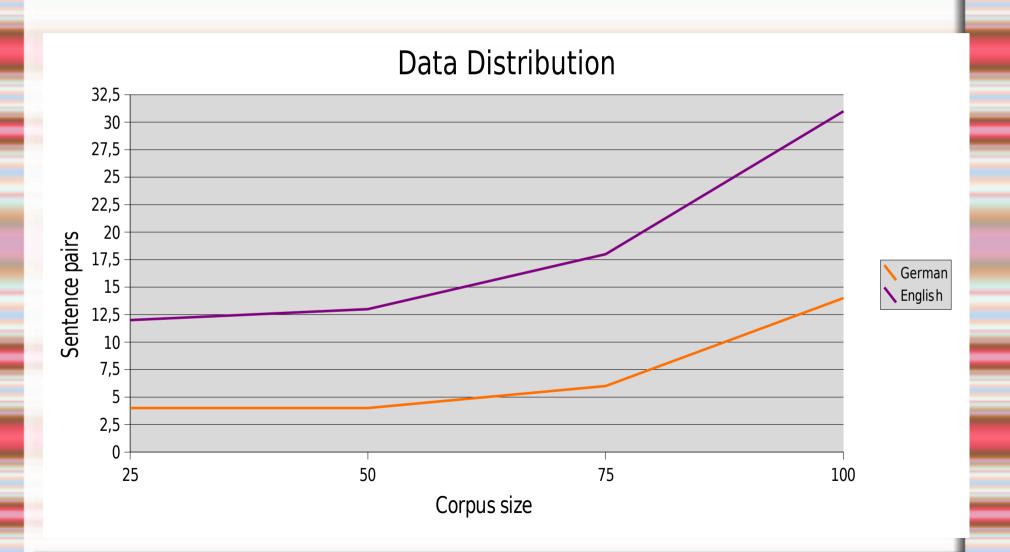

- □ CW + OC used to build the Similarity Matrix
 - \square Thresholds: CW =3; OC = 0.5;
 - Experiments made on sets
 - in different languages
 - of different size
 - of different corpus type

Experiments

- goal: for each language, see how the number of similar sentences changes with the size of the corpus
 - corpus type: technical
 - □ corpus size: up to 2000 sentences
 - □ languages: De, En, Ro

Experiment -1-




Experiment -2-

- corpus dependency
 - □ up to 100 sentences
 - news and technical corpora
 - □ languages: De, En

Experiment -2-(News)

Experiment -2- (Technical)

Outline

- Motivation
- □ Similarity Matrix
 - String Similarity Measures
 - Indexing
- □ Template Extraction
- Conclusion
- □ Further work

Index vs Similarity Matrix

- Search for similar sentences
 - n*(n-1)/2 comparisons have to be made, where n is the number of sentences in a corpus
 - -e.g: corpus of 100 sentences 4950 comparisons

Index

Corpus type	Language	Corpus size	Search space
News	En	100	2001
News	De	100	1390
Technical	En	100	479
Technical	De	100	456

Outline

- Motivation
- □ Similarity Matrix
 - String Similarity Measures
 - Indexing
- **□** Template Extraction
- Conclusion
- □ Further work

Baseline System

Language neutral recursive machine learning algorithm based on principle of similar distributions of strings:

Source Language and Target Language strings that cooccur in two (or more) sentence pairs of a bilingual corpus are likely to be translations of each other

Problems

Proved to have serious limitations:

- -the templates obtained are often not translations;
- -no template is learned if different lexical items are used semantics would be extremely useful in this case;
- -big memory problems for a small corpus of 400 sentences;
- -useful information is lost.

Example -1-

Given 2 sentences in English:

- 12: The discussion around the envisaged major tax reform continues.
- 16: **The** head of the FDP parliamentary group, Mr. Solms, however, has deviated from the FDP 's demand to enact **the tax reform** as early as 1998.

The sequence of common elements: [the the tax reform]

Example -1-

```
Generalized template fragments of these 2 sentences:
[The V1 the V2 tax reform V3] (12)
[The V4 the tax reform V5] (16)
Where:
V1 = "discussion around"
V2 = "envisaged major"
V3 = "continues"
V4 = \text{``head of the FDP parliamentary group , } Mr. Solms
  , however , has deviated from the FDP 's demand to
  enact"
```

V5 = "as early as 1998"

Example -1-

The translations into German:

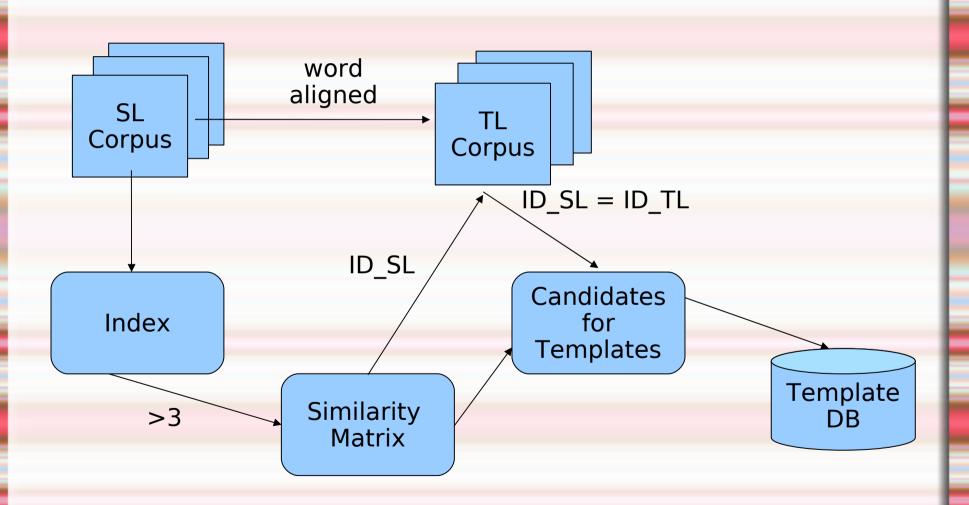
12: Die Diskussion um die vorgesehene grosse Steuerreform dauert an.

16: Der FDP - Fraktionsvorsitzende im Bundestag, Solms, ist von der Forderung der Liberalen abgerueckt, die Steuerreform schon 1998 in Kraft zu setzen.

The sequence of common elements: [die Steuerreform]
The sequence contains only 2 elements --> threshold
established at 3

Solution?

For a given SL corpus:


- 1. Index created for each sentence in the corpus.
- 2. Similarity matrix build for the corpus:

 pairs of "similar" sentences with the sequence of
 common elements greater or equal to three are
 extracted;
 - for each pair of similar sentences: their TL (by the sentence ID) counterparts are retrieved for each pair of sentences SL and TL with the same IDs are (word) aligned;

Corresponding TL counterparts of the sequence of common elements are found;

SL and TL parts combined into a template

Algorithm

Another example

For the given sentences in SL (English):

26: Wage conflict in retail business grows

27: The **conflict in** the wage negotiations in the *retail* industry has extended to North Rhine Westphalia.

and the translations into TL (Cerman):

26: Tarifkonflikt im Einzelhandel weitet sich aus

27: Der **Tarifkonflikt im** *Einzelhandel hat sich* auf Nordrhein - Westfalen *ausgeweitet* .

Variables - 1 -

8. [wage conflict in retail V1]--> [Tarifkonflikt im Einzelhandel V11 sich V21]

```
V1 = "business grows"
V11 = "weitet"
V21 = "aus"
```

Variables - 2 -

9. [V1 conflict in V2 wage V3 retail V4] -->[V11 Tarifkonflikt im Einzelhandel V21 sich V31]

```
V1 = "The"
```

V2 = "the"

V3 = "negotiations in the"

V4 = "industry has extended to North Rhine Westphalia"

V11 = "Der"

V21 = "hat"

V31 = "auf Nordrhein - Westfalen ausgeweitet"

Alignment

8. [wage conflict in retail *V1*]--> [Tarifkonflikt im Einzelhandel V11 sich *V21*]

```
V1 = "business grows"
```

Problems to solve

- tense/aspect:
 - grows vs has extended
- semantics:
 - retail business vs retail industry
 - grows vs extends

Solution to semantics: WordNet -1-

retail business vs retail industry WordNet:

Industry is a direct hyponym of **business** as seen from the WordNet:

- # S: (n) commercial enterprise, business enterprise, **business** (the activity of providing goods and services involving financial and commercial and industrial aspects) "computers are now widely used in business"
 - * direct hyponym / full hyponym
 - o S: (n) **industry**, manufacture (the organized action of making of goods and services for sale) "American industry is making increased use of computers to control production"

Solution to semantics: WordNet -2-

grow/extend - no direct connection found; indirectly - grow -->expand (direct troponym); extend -->expand (verb group);

Problem:

How do I know I chose the right sense of business?
Difficult even for a human to decide which synset is appropriate.

Solution to semantics: FrameNet

FrameNet:

Industry is the lexical unit (LE) belonging to the frame Fields, and LE Business belongs to the Business frame.

Grow/Extend:

LE	Frame
(1) grow.v	Expansion
(2) grow.v	Cause_expansion
(3) grow.v	Becoming
(4) grow.v	Change_position_on_a_scale

Solution to semantics: FrameNet

LE extend contained in the frame Change_event_duration.

Definition: In this frame, an Agent or Cause changes the duration of an Event. The Event will then take place for a New_duration, rather than the Initial_duration. This can be done with by certain Means, in a certain Manner or to a certain Degree.

In my opinion, in our context - the meaning of "extend" does not correspond to the definition of the frame, as certainly an idea of space is expressed by it.

Another example (need of semantics) -1-

Given the two pairs of sentences:

26: Wage conflict in retail business grows

97: Wage dispute in retail sector

26: Der **Tarifkonflikt** *im Einzelhandel* hat sich auf Nordrhein - Westfalen ausgeweitet .

97: Tarifkonflikt des Einzelhandels

Another example (need of semantics) -2-

- WordNet: conflict/dispute the same synset in WordNet:
- S: (n) dispute, difference, difference of opinion, conflict (a disagreement or argument about something important) "he had a dispute with his wife"; "there were irreconcilable differences"; "the familiar conflict between Republicans and Democrats"

business/business sector - the same synset in WordNet

Another example (need of semantics) - 3-

• FrameNet

LE dispute - in Quarrelling frame; LE conflict - in Hostile Encounter frame;

LE business - in Business frame LE sector - in Fields frame

Evaluation -1-

Experiments done with the news corpus (100 sentences)

A total of 53 template fragments were extracted, only 16 of them can be combined in a full template - by the sentence IDs the fragments were extracted from.

Semantics:

Noticed to be useful in 8 template fragments

Evaluation - 2 -

Errors:

- Extracted fragments not translations 4 cases
- □ No fragments learned because of:
 - □ Common Words Threshold (De) 15 cases
 - □ Overlap Coefficient Threshold (En) 5 cases
 - \square Spelling errors 1 case
 - □ Paraphrase 2 cases

Outline

- Motivation
- □ Similarity Matrix
 - String Similarity Measures
 - Indexing
- □ Template Extraction
- Conclusion
- □ Further work

Conclusion

- Similarity matrix used to find candidates for templates
 - Common Words and Overlap Coefficient as similarity criteria
 - ☐ Index used to reduce the search space
- Generalization of similar sentences into translation templates needs semantic information

Outline

- Motivation
- □ Similarity Matrix
 - String Similarity Measures
 - Indexing
- □ Template Extraction
- Conclusion
- **□** Further work

Further work

- Decisions on templates:
 - ☐ Generalize on at least two sentences?
 - ☐ If common tokens are in different order, on which sentence should the generalization be made?
 - □ Variables: one token per variable?
- Extract templates without semantics
 - Decide on the source of semantics
- Add semantic information
- Extract templates with semantics

Thank you!

Questions? Suggestions?