Multi-pattern wrappersfor relation extraction from the
Web

Benjamin Habegger ' and Mohamed Quafafou!

Abstract. Numerous sources of data are available on the web, for
instance, product catalogs, multiple directories, conference and event
sites, etc. The extraction of information from the content of these
sources is a challenging problem and a hard task since they are het-
erogeneous and dynamic. This paper presents a new method for ex-
tracting wrappers and relations from the web using both page encod-
ing and context generalization. Its starting point is a training set of
instances of the relation the user wishes to extract. Multiple patterns
are then extracted considering the occurrences of the input instances
in the data source. The generalization of these patterns allows us to
identify new instances of the relation in the same data source. The
main features of this method are its simplicity, genericity and robust-
ness faced to the diversity of sources. Its efficiency is shown by the
experimental results on different sources, i.e., search engines, shop-
ping, product catalogs, paper listings, etc.

1 INTRODUCTION

With the growth of the web, many data sources have been made
accessible through the web. These go from search engines, online
product catalogs, advertisements, to bibliographic listings. The po-
tential use of such information sources has lead to research on how
to encapsulate such sources to make them available to computer pro-
grams and lead to the introduction of programs called wrappers.
These programs allow to query and retrieve the results in a man-
ner computer programs can use them, ie. with well defined queries
and structured results. Faced to the constant evolution of the web
theses wrappers need to be maintained and renewed often. To face
this problem it became interesting to build wrappers automatically
or semi-automatically.

In this paper we present a new approach to wrapper construction.
Our method represents a wrapper as a set of patterns. We consider
that the user wants to extract a relation from a given document or set
of documents. Furthermore while other example-based approaches
usually use tagged pages as examples, we only require the user to
give a set of example instances of the relation he/she wants to extract.
The contexts of these examples are then extracted and generalized
in order to build the set of patterns allowing to extract the other in-
stances of the relation. Wrappers are easily generated, by only giving
a small set of example instances, and can be built for many different
types of web sites.

This paper is organized as follows. Section 2 presents the basic
concepts used and the work done by others in the domain of wrapper
generation for the web. Section 3 gives a formalization of the prob-
lem and introduces the notations we use. In section 4 we describe our

L IRIN : Institut de Recherche en Informatique de Nantes, University of
Nantes, France. {habegger,quafafou}@ irin.univ-nantes.fr

approach to the wrapper extraction problem and the system we have
built. An evaluation of the system is given in section 5. Finally we
conclude and present future work in section 6.

2 RELATED WORK

Many researchers have tackled problems related to wrappers or more
generally information extraction from the web. These go from toolk-
its to aid in building wrappers manually and wrapper induction to the
extraction of relational data from large collections of web documents
or extraction of the symbolic knowledge.

Most wrapper construction methods are automatic or semi-
automatic and based on inductive learning [10, 8, 12]. Structure dis-
covery or extraction can also be used to resolve the wrapper gen-
eration problem [1, 3]. In this case, PAT-trees can be used to find
maximal prefixes of the input HTML string [3]. When considering
the problem of relation extraction or mining, an approach is to con-
sider that their exists a duality between patterns and relations [2, 15].
Our point of view focuses on these three main directions to wrapper
construction.

Wrapper induction Wrapper induction was first introduced by N.
Kushmerick [10]. The input of his method is a set of fully tagged doc-
uments from a given web data source and the output is a wrapper for
that source. The general algorithm is to find a delimiter, extract un-
til another delimiter, find the next delimiter, etc. Different classes of
wrapper are presented and an evaluation on a per correctly wrapped
page basis are proposed.

Due to the general wrapper algorithm basis, this method does
not always lead to the generation of a wrapper. For example
Av1 BxCyCwv2 D is the general form of the text from which we want
to extract the instances (v1, v2) of a relation R(A;, A2) and where
A, B, C are constant text while =,y a arbitrary text. The method
will be incapable of constructing a valid left delimiter for the sec-
ond attribute of the relation (ie. all possible candidates are suffixes
of C and all suffixes of C are not proper suffixes of zCyC [9] for
details validity of delimiters). Moreover, even though corroboration
is introduced, it remains a tedious task to tag by hand all the in-
stances contained in every example document. Furthermore the pro-
posed evaluation gives poor results to wrappers favoring robustness
to perfectness.

Relation discovery This problem, to our knowledge, first ap-
peared in [2]. The method presented is used to extract relations from
a very large set of web pages. It relies on the hypothesis that there
exists a duality between a relation and the patterns allowing to ex-
tract the occurrences of its instances. The example problem in [2] is

to find instances of the (author,book) relation by giving a small set of
examples. With 5 example instances 199 occurrences were found in
a repository of about 5 million web pages. The generalization of the
contexts in which the occurences were found generated 2 patterns.
Once applied these patterns, 4047 total instances were found.

While sufficient when used on a very large number of documents,
the context generalization used can not be applied to wrapper con-
struction since it is very limited. Given two contexts, only the head
and tail parts are generalized, keeping the middle over-specific and
therefore making the method very limited to extract wrappers.

Structureextraction The method proposed by [3] to resolve this
problem is done by searching for a structure, or logical organization
of the data using an automatic and unsupervised method. After hav-
ing encoded the HTML input document by abstracting content text
and coding tags the algorithm presented uses PAT-trees and a maxi-
mal prefix search method to build patterns. The extracted structures
allow the construction of a pattern capable of extracting the occur-
rences at similar logical positions in the document. A document can
have multiple structures and therefore heuristics to reduce the num-
ber of patterns are applied.

A problems with this approach are that the encoding used does
not allow to consider structure found in content text. Typically,
in the example of figure 1, this method would not be able to
separate the prices in different currencies. Furthermore though
the structure discovery process is unsupervised, the user still has
to be consulted afterwards, leaving him the choice between pat-
terns which may not have much sense to him/her (for example
<DT>TEXT</ DT><DD>TEXT
TEXT</ BR></ DD>
).

Other approaches and problems Many other wrapper induction
methods also exist such as [8] based on finite state automata, and
[12] based on embedded catalog trees. Researchers have also tackled
problems related to wrappers, such as their description using XML
[11, 14], building knowledge-based wrappers [6, 14], or extracting
symbolic knowledge from the web [4].

The work presented in this paper handles the task of extracting a
wrapper as is done in [9] but by using patterns built by generalizing
contexts. In that, it overlaps with the method proposed by [2], but
the generalization we use enables us to have patterns covering more
occurrences on a single page, and therefore is more appropriate to
wrapper construction. It also uses encoding techniques inspired by
[3] but without encoding text to allow existing non-html structure to
be used.

3 PROBLEM FORMALIZATION

From a database point of view a wrapper is used to encapsulate a data
source to make it available to applications [13]. This means having a
shared query language and result format for all the data sources. In
the context of the web the term wrapper can have the same meaning
[7] but is also often used to designate the procedure of extracting and
returning formatted data ignoring the querying problem [10, 5]. In
this paper the term wrapper will refer to such a procedure. A wrapper
for the web can therefore be seen as a function allowing to extract
structured data contained in a set of a partly but similarly structured
web pages.

The problem we resolve in this paper is to build a wrapper for a
data source which can extract a relation it contains. The description
of the relation to extract is given in the form of a set of example

instances. To resolve this problems some terminology needs to be
introduced.

e An instance refers to the tuple of values of a relation.

e An occurrence of such an instance refers to its appearance within
its context in a web page. Formally the occurrence o of an instance
t can be represented by the positions of the values of ¢.

e The context of an occurrence is the text surrounding its values.
Given a document d, and an instance ¢t = (v1,...,vn) € R of the
target relation R the context of an occurrence of tindisann + 1
tuple ¢ = (c1,...,cnt1), Where is ¢q is all the text before the
occurrence, c,+1 all the text after the occurrence, and the ¢, k €
[2, n] are the text between the values vj,—1 and vy.

e A pattern is a general description of the contexts allowing to ex-
tract pieces of text which correspond to occurrences of instances
we want to extract. It is made up of a sequence of parts which rep-
resent text to be match in the order of the sequence. Each part of
a pattern is itself divided into tokens. A token can either be a the
code of a tag (see section 4), a string of text which should match
exactly in the document or a joker which matches any substring of
content text (ie. non-tag text).

Formally a wrapper W can be considered as a function having as
its input a document d belonging to or generated by a source S and
as output the subset of instances I of a relation R which appears in
d. For short, we will consider that the source is simply a set of docu-
ments D sharing the same structure, and that our relation is the set of
instances Ip appearing in the set of documents D to be extracted. A
document can be seen as a string of text constructed over an alphabet
.. The problem we want to solve is then to build a program capable
of extracting from D all the instances of Ip given a subset E of Ip.

The type of wrapper we want to build are multi-pattern wrappers.
A multi-pattern wrapper is a wrapper which can be represented as
a set of patterns P each allowing to extract subsets of I, from the
documents in D according to a set of instances of R. Each pattern
of P is said to cover a subset of instances of Ip. A multi-pattern
wrapper is complete when the generated instances do cover all the
instances of R. It is said consistent when no more than the instances
of R are covered. Respectively recall and precision allow to measure
the completeness and consistency of a multi-pattern wrapper.

4 WRAPPER DISCOVERY METHOD

The problem we consider can be seen as the wrapper construction
problem, but the approach we take is slightly different from the one
described in section 2. As in the general problem we consider a static
or dynamic web data source whose pages contain structured data.
However we do not consider that the wrapper should extract all the
structured data, but only the instances of a given relation R. This re-
lation is expressed by giving examples of its instances. The objective
is then to build a wrapper capable of extracting the given relation R
from the pages generated by the source S. Since we want to extract a
relation we consider that the data has a tabular form and that the val-
ues are in the same order as the examples. These two restrictions are
not real limitations since we can extract multiple relations. Complex
data structures can be obtained by the combination of relations and
each ordering can be represented by a different relation.

The html source given in figure 1 gives an example document con-
taining a relation “Prices(Food,PriceFF,PriceEUR)” given in table 4.

Our method is based on encoding and generalization. Encoding
is used to simplify the input document to make the inherent struc-
ture more apparent by cleaning up unnecessary pieces such as white

<htm >
<body>
<h1>Cof f ee Machi ne Prices</ hl>
<t abl e>
<t r ><t d>Cof f ee</ t d>
<t d>0.40 EUR (2.96 F)</td></tr>
<t r ><t d>Soda</t d>
<td>0.75 EUR (4.92 F)</td></tr>
<tr><td col span="2"><hr></td></tr>

<tr><td>Cake</ a></td>

<td>0.50 EUR (3.28 F)</td></tr>
</tabl e>
</ body>
</htm >

Figurel. Anexample web document source

Food Pricein EUR | Pricein FF
Coffee 0.40 2.96
Soda 0.75 4.92
Cake 0.50 3.28

Table1l. Example relation to be extracted

spaces, indenting, carriage-returns, low-level tags, and by removing
ambiguities caused by characters appearing both in content and tag
text. Pattern generalization is used on the encoded input to construct
a wrapper capable of extracting a relation based on the contexts of
given example instances. The general wrapper extraction algorithm
is presented below, and the details of the encoding method and pat-
tern generalization process are detailed afterwards.

4.1 Wrapper extraction algorithm

Algorithm 1 Wrapper extraction algorithm

Input: An HTML document D and an example set E of instances
of arelation R
Output: A multi-pattern wrapper for R
enc «— encode(D)
for alle € E do
C — C U extract_contexts(E, enc)
end for
Cr—0;C"—10
while C' # 0 do
¢ «— pop-any(C); cg — -’
whileC' # 0 do
¢ — pop_any(C); ¢ «— gerneralize(c,c’)
if ¢? £ ’-" then
C'—C'UCU{c?};C 10
else
C'—cC'ucd
end if
end while
if ¢7 #°-" then
Cf — Cf @] {C}
end if
C—CC 10
end while
return Cy

The extraction process has as its input a document d containing a
set I of instances of a relation R. Furthermore, an example subset
of the set of these instances F is also given. Its output is a multi-
pattern wrapper for the set of instances I. To generate this wrapper
the input document d is first encoded. The resulting encoded string is
then searched to extract the contexts of the occurrences of the exam-
ple instances of E. Once the different contexts have been extracted,
the contextes are generalized by pairs. When the generalization of a
pair succeeds, the pair is replaced by the new pattern which is kept
for furthur generalization with other contexts. This general wrapper
construction process is described in algorithm 1. This algorithm sup-
posed that the generalization function generalize is order indepen-
dant. Such a function will is given in subsection 4.3. The function
pop-any takes chooses and removes and element from its input set.
No hypothesis is made on the manner to choose such an element.

4.2 Encoding scheme

The first step of our approach is to encode the input HTML docu-
ment. Encoding is used to disambiguate the characters, consider tags
as only unique tokens where textual parts need to be considered as
independent characters, and also ease the context extraction and gen-
eralization. The result of encoding is a string of tokens where each
token is either a tag or a string of content text. In figure 2 is given the
coded form of the page source given in figure 1. The bold number
correspond to the encoded tags, for example, 1,8 and 10 are, respec-
tively, the <ht ml >, </t d>,and <t d col span="2">tags in the
original document. A simple heuristic on tags can be used. This is

1-2-3Coffee Machine Prices4-5-6-7Coffee8-70.40 EUR (2.96 F)8-
9-6-7S0da8-70.75 EUR (4.92 F)8-9-6-10-11-8-9-6-7Cake8-70.50
EUR (3.28 F)8-9-12-13-14

Figure2. Example encoded page

done by considering different levels of tags. It is specially useful in
eliminating text level tags which usually do not contain structural
information and can be a barrier in the discovery of patterns. The
different levels of tags can be separated as : (1) document or high
level tags : html, body, head, etc. (2) paragraph or middle level tags :
br, p, div, etc. (3) text or low level tags : b, i, em, a, etc.

During the encoding process low-level tags are removed. They are
rarely necessary in the pattern construction process, while often are
the source of exceptions. For example, in figure 1 the anchor tag a
allows the user to see the list of cakes, but also makes the context of
“Cake” different from that of “Coffee” or “Soda” even though in the
relation we want to extract they are values of the same attribute.

The other types of tags are encoded according to their full text
string and not only according to their type. This is due to the fact
that a same tag with different present attributes and attribute values
are structural clues. In the example of figure 1, the td tags are the
common context of the values the attributes of the relation to be ex-
tracted except in the case where it has an attribute colspan="2"" in
which case it is just used for presentation matters (ie. to add a sepa-
rating horizontal rule between drinks and food).

4.3 Pattern generalization

The generalization of a pattern is done by separately generalizing
each part of the pattern. Each part can itself be decomposed into a list

Algorithm 2 Pattern generalization algorithm

Input : Two m-part patterns T = (T1,...,T,) and T/ =
(T,...,Ty)
Output : A generalized pattern 79 = (T7,...,T3)
forall k € [1,...,n]do
Letsy; ... -85 =Tk
Letsy-...- s, ="Tj

Ty = G(Tw, Ty
foraliell,...,l]do
if s; = s then
g

S‘i — S;
elseif tag(s;) or tag(s}) then
sd
else
if i =1 then
cs «— commun_suf fiz(si, s;)
sy — length(cs) =0:"-"7"* . ¢cs

elseif ¢ = [then
cp «— commun_prefix(s;, s;)
s? — length(cp) =0:"-"2¢cp-"*’
else
s —
end if
end if
end for
end for
T{ — keep-nodash_suf fix(T})
T3 «— keep-nodash_prefiz(TF)
if has_dashes(T?) then
T9 -’

end if

1%

of tokens which are each either a tag or a string of text which can not
be subdivided. Two parts are generalized when all of their tag tokens
at the same position match exactly. This means that we keep tokens
as is and they can only be removed either in the cleaning process as
low-level tags or in the head and tail parts of the pattern as described
below. The text parts, either match and are kept as is to make up the
corresponding generalized token or abstracted into a new virtual tag
“text”. An exception to this rule is made when considering first and
last text tokens which we do not want to be generalized (the border
limit of the values would be lost).In the case of a first (resp. last) text
token we only allow a generalization when we can find a common
prefix (resp. suffix). As they are a bit different, the head and tail parts
are handled separately (¢ = 1 or ¢ = [in algorithm 2). For the
head (resp. tail) parts we only need to have a common generalized
suffix (resp. prefix). Therefore we only need last (resp. first) part to
be generalized. The preceding (resp. following) parts are kept when
they match (generalized text is not kept). The pattern generalization
method we used is given in algorithm 2.

It is important to note that not only the head and tail parts of a
pattern play a role in identifying an occurrence. The easiest way to
see this is that if the head and tail were sufficient to delimit an oc-
currence, it wouldn’t be possible to find an occurrence of the head
and tail delimiters in the middle parts. This is why searching for a
general pattern can not be divided into the search of local delimiters.
(The wrapper classes proposed by Kushmerick did not consider such
general properties see section 2). Another aspect of generalization,
is the fact that patterns can consist of tags, but may also contain free
textual parts. This can be asily seen in the example given in figure 1.
By considering only tags it is impossible to separate prices in French
Francs and in Euros. But by letting the textual parts “EUR (” and
“F)” be delimiters this is made possible. This is why text cannot be

Context of ('Cof fee’,’ 0.40"," 2.96")
1-2-3Coffee Machine Prices4-5-6-7
8-7

EUR (

F)8-9-6-7S0da8-70.75 EUR (4.92 F)...

Context of ('Soda’,’ 0.75"," 4.92")

...70.40 EUR (2.29 F)8-9-6-7

8-7

EUR (

F)8-9-6-10-11-8-9-6Cake8-70.50 EUR (3.28 F)...
Generalized pattern

6-7

8-7

EUR (

F)8-9-6

Figure 3. Pattern generalization (each line separated the parts of the

pattern)

totally encoded when looking for the structure of the document since
it can also contain such structural information (In IEPAD these types
of delimiters can not be detected since they were abstracted into a
single text token). Our pattern generalization scheme takes all these
aspects into account.

This is done by generalizing separately each part of the pattern. To
do the generalization of the two patterns, only one simultaneous pass
through the different parts of the pattern is needed. This means that
in the worst case (when a generalization exists) the generalization is
done in linear time.

5 EVALUATION AND EXPERIMENTAL
RESULTS

We have evaluated our method on three different types of data
sources : search-engines, product catalogs and bibliography listings.
The separate results for each of these parts are presented first and
we then discuss them from a general point of view. Since the basis
of our valuation is to count the number of instances retreived and
not the number of pages wrapped correctly, it is difficult to compare
our results to those of other methods. However the following results
show that while it is simple, it is robust and efficient. Our method has
a global pattern for the whole instances and thus does not consider
that the values have to be delimited independantly. Therefore we can
from a greater range of web sites than delimiter-based methods.

Search Engines Our method works quite well on the output of
search engines as it is shown by table below. With only few exam-
ples the built wrapper can extract most of the results. For all the tested
sites, except AltaVista, all extract instances are correct ones. In the
case of AltaVista, all the correct instances are effectively extracted,
but the generated wrapper has a pattern which is a too general. This
lead to the extraction of wrong instances. However, the wrong in-
stances generated are the same as the correct one except that there
extra text is found at the end of the url attribute.

Shopping and product catalogs The results for the shopping
sources are also very encouraging. All the built wrappers correctly
extract the full page with a couple of instances as can be seen the ta-
ble below. The missing instance in the “Alapage” result reveal recur-

[Source | Ex. [Inst. [Retr. [Recall | Accurracy

AltaVista 4 50 67 1.00 0.74
Excite 4 10 9 0.90 1.00
Galaxy 2 9 9 1.00 1.00
Infoseek 3 15 15 1.00 1.00
Metacrawler 4 30 28 0.93 1.00
Savvysearch 5 12 11 0.92 1.00
Webcrawler 4 20 19 0.95 1.00
Google 3 50 45 0.90 1.00

Table2. Search Engine extraction results (Ex.= number of examples, Inst.=
number of instances in the document, Retr.= number of extracted instances.)

ring problem, which is that the last (resp. first) occurrences of a page
are often missed. This due to the fact that hey do not share the same
following (resp. preceding) context and that the generalized patterns
for the other occurrences are to specific to handle that difference. As
shown it can easily be corrected by given as examples the first and
last occurrences of a page.

[Source | Ex. | Inst. | Retr. | Recall | Accurracy |
Alapage 3 12 13 0.92 1.00
Conforama 3 6 6 1.00 1.00
Amazon 7 25 19 0.76 1.00
Darty.fr 4 10 10 1.00 1.00
Fnac 5 13 13 1.00 1.00

Table 3. Shopping extraction results (Ex.= number of examples, Inst.=
number of instances in the document, Retr.= number of extracted instances.)

In the case of Amazon many examples are need to build a wrapper
which can correctly extract all the occurrences. This is because there
are many different data presentations on the same web page. In the
Amazon example we always have the Amazon price but sometimes
is also added the list price, or special rebates with/without a summary
price. Also, the relation we chose to extract did not include shipping
time, creating more varieties of formats which have to be generalized,
and therefore need to appear in the examples. In the worst case, when
all the examples need to be given, the wrapper generated can still
work on other generated pages.

Bibliography and article listings After having tested our ap-
proach on search-engines and catalogs we also wanted to try it to
extract bibliographic data from sites such as http://dblp.uni-trier.de/.
The results are presented in the table below. The data contained on
such sites is much less structured than for the previous examples. Fur-
thermore the poor structure still available is not contained in HTML
tags but is rather in punctuation symbols. Also two different relations
are present, article in proceedings entries, and book entries. It is the
presence of these two types which generated the extra occurrences
extracted in the DBLP example. The relation we wanted to extract
was the following :

article(authors, title, book, con ference, year, pages)

Unfortunately, the presence of book description on the pages lead to
the extraction of erroneous instances.

6 CONCLUSION AND FUTURE WORK

This paper presented a new approach to wrapper and relation ex-
traction form web data sources. The method proposed is based en

[Source [Ex. [Inst. | Retr. | Recall | Accurracy |
DBLP 3 21 27 1.00 0.78
liinwww 3 40 31 0.78 1.00

Table4. Other extraction results (Ex.= number of examples, Inst.= number
of instances in the document, Retr.= number of extracted instances.)

document encoding an pattern generalization. The relation to extract
is defined by the user of the wrapper generator by given example
instances of the relation. The proposed method can wrap up many
different types of site, is robust to irregularities in format and makes
use of structure contained in content text.

Many research direction can follow this work, such as trying to
automatically generate examples, use already available instances in-
stead of the examples or integrate the use of generic examples. Also
more research has to be done to see how our method works on
sources composed of similarly structured documents but containing
a unique instance.

REFERENCES

[1] Brad Adelberg, ‘NoDoSE-a tool for semi-automatically extracting
structured and semistructured data from text documents’, pp. 283-294,
(1998).

[2] Sergey Brin, ‘Extracting patterns and relations from the world wide
web’, in Lecture Notes in Computer Science, eds., Paolo Atzeni, Al-
berto O. Mendelzon, and Giansalvatore Mecca, volume 1590, pp. 172—
183, Valencia, Spain, (March 1998). Springer. ISBN 3-540-65890-4.

[3] Chia-Hui Chang and Shao-CHen Lui, ‘lepad : Information extraction
based on pattern discovery’, in Proceedings of the ACM WWW10 Con-
ference, pp. 681 — 688. ACM Press New York, NY, USA, (2001). ISBN
1-58113-348-0.

[4] Mark Craven, Dan DiPasquo, Dayne Freitag, Andrew K. McCallum,
Tom M. Mitchell, Kamal Nigam, and Seéan Slattery, ‘Learning to extract
symbolic knowledge from the World Wide Web’, in Proceedings of
AAAI-98, 15th Conference of the American Association for Artificial
Intelligence, pp. 509-516, Madison, US, (1998). AAAI Press, Menlo
Park, US.

[5] Valter Crescenzi, Giansalvatore Mecca, and Paolo Merialdo, ‘Roadrun-
ner: Towards automatic data extraction from large web sites’, in The
VLDB Journal, pp. 109-118, (2001).

[6] X. Gao and L. Sterling. Semi-structured data extraction from hetero-
generous sources, 1999.

[7] Jean-Robert Gruser, Louiga Raschid, M. E. Vidal, and Laura Bright,
‘Wrapper generation for web accessible data sources’, in Conference
on Cooperative Information Systems, pp. 14-23, (1998).

[8] Chun-Nan Hsu and Ming-Tzung Dung, ‘Generating finite-state trans-
ducers for semi-structured data extraction from the web’, Information
Systems, 23(8), 521-538, (1998).

[9] Nicolas Kushmeric, Wrapper Induction for Information Extraction,
Ph.D. dissertation, University of Washington, 1997.

[10] Nicholas Kushmerick, ‘Wrapper induction: Efficiency and expressive-
ness’, Artificial Intelligence, 118(1-2), 15-68, (2000).

[11] Ling Liu, Calton Pu, and Wei Han, ‘XWRAP: An XML-enabled wrap-
per construction system for web information sources’, in ICDE, pp.
611-621, (2000).

[12] 1. Muslea, S. Minton, and C. Knoblock, ‘Stalker: Learning extraction
rules for semistructured, web-based information sources’, in In Pro-
ceedings of AAAI-98 Workshop on Al and Information Integration.
AAAI Press, (1998).

[13] M. Roth and P. Schwarz, ‘Don’t scrap it, wrap it! a wrapper architecture
for legacy data sources’, in Proc. of the 23 VLDB Conference, (1997).

[14] Heekyoung Seo, Jaeyoung Yang, and Joongmin Choi, ‘Knowledge-
based wrapper generation by using xml’, in 1JCAI-2001 Workshop on
Adaptive Text Extraction and Mining, (2001).

[15] Neel Sundaresan and Jeonghee Yi, ‘Mining the web for relations’, in
Proceedings of the WWW9 Conference, pp. 699-711. Elsevier Science,
(2000).

