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Abstract 
Scientific discovery in data rich domains (e.g., biological sciences, atmospheric sciences) presents several challenges in information 
extraction and knowledge acquisition from heterogeneous, distributed, autonomously operated, dynamic data sources. This paper 
describes these problems and outlines the key elements of algorithmic and systems solutions for computer assisted scientific discovery in 
such domains. These include: ontology-assisted approaches to customizable data integration and information extraction from 
heterogeneous, distributed data sources; distributed data mining algorithms for knowledge acquisition from large, distributed data sets 
which obviate the need for transmitting large volumes of data across the network; ontology-driven approaches to exploratory data 
analysis from alternative ontological perspectives; and modular and extensible agent-based implementations of the algorithms within a 
platform-independent agent infrastructure. Prototype implementations of the proposed system are being used for discovery of 
macromolecular structure-function relationships in computational biology and distributed coordinated intrusion detection in computer 
networks. 

Challenges in Integration and Analysis of Heterogeneous Distributed Data  
Development of high throughput data acquisition technologies in biological sciences, together with advances in digital 

storage, computing, and communications technologies have resulted in unprecedented opportunities for large scale, computer 
assisted, data-driven scientific discovery [Baxevanis et al., 1999]. Data sets of interest to computational biologists are often 
heterogeneous in structure, content, and semantics.  Examples include sequence data (DNA, RNA, and protein sequences, 
expressed sequence tags) [Benson et al., 1997; Boguski et al., 1997]; numeric measurements (e.g., gene expression data); 
symbolic data describing relations among entities;  structured or semi-structured text (e.g., annotations associated with DNA 
sequences, protein structures, and gene expression data); temporal data  (e.g., gene expression time series); structures 
containing numeric as well as symbolic information  (e.g., 3-dimensional protein structures); and results of various types of 
analysis [Baxevanis, 2000; Discala et al., 2000]. They currently include data stored in flat files, relational databases, and 
object-oriented databases. The term biological database is used loosely to refer to a biological data collection in any of these 
forms. How best to organize genome data is still a matter of debate [Frenkel, 1991; Gelbart, 1998] although several object-
oriented databases and have been proposed in recent years [Gray, 1990; Goodman, 1995; Ghosh, 1999; Durbin, 1991]. 
Applications such as characterization of macromolecular structure function relationships and inference of genetic regulatory 
pathways require selection and extraction of relevant information from such data (e.g., features from sequences, counts and 
statistical summaries from measurements, structured representation of relevant information from textual annotations). They 
also call for data integration from multiple sources into a coherent form that lends itself to further analysis (e.g., data mining) 
by bridging syntactic and semantic gaps among them. Typical data analysis tasks that arise in computational biology are 
difficult to express using standard query languages and thus application programs have to be constructed using program 
libraries. While queries expressed in declarative languages like SQL are still useful in biological databases, the use of 
programming interfaces is unavoidable for many types of data analysis (e.g., data mining). This follows from the fact that the 
same set of data may have to be analyzed in different ways depending on the information extraction and knowledge 
acquisition objectives of the user. It is impossible to foresee all the potential uses of data when designing data repositories or 
data analysis services.  
The data sources of interest in computational molecular biology are large, diverse in structure and content, and typically 
autonomously maintained [Fasman, 1994]. Transforming these data into useful knowledge (e.g., inference of genetic 
networks from gene expression data, building predictive models of protein function from protein sequence) calls for 
algorithmic and systems solutions for computer assisted knowledge acquisition and data and knowledge visualization. 
Machine learning algorithms [Mitchell, 1997] currently offer one of the most cost effective approaches to data-driven 
knowledge acquisition (discovery of features, correlations, and other complex relationships and hypotheses that describe 
potentially interesting regularities from large data sets) in increasingly data rich domains such as computational biology 
[Baldi and Brunak, 1998]. However, application of machine learning algorithms to large scale knowledge discovery from 
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heterogeneous distributed data presents several challenges [Thrun et al., 1999]. Our work is aimed at addressing some of 
these challenges. Most currently available learning algorithms are batch algorithms in that they assume that the learner has 
access to the entire data set before data driven knowledge acquisition can proceed. Given the large size and distributed and 
dynamic nature of data sets encountered in computational molecular biology, it is neither feasible nor desirable to gather all 
of the data in a centralized database or exchange entire data sets among different sites. This goal is not always achievable  
(e.g.. when information required from two databases is the result of performing the relational join operation on the two 
databases). However, whenever feasible, it is desirable to develop information extraction and data integration techniques that 
can operate on multiple distributed data sets without collecting all the data in a centralized location, thereby obviating the 
need to transmit large amounts of data between different data repositories or between data sources and users. Thus it is 
necessary to develop distributed learning algorithms that can acquire knowledge from distributed data sets without collecting 
all of the data in a centralized location, or the need to transmit large amounts of data between different data repositories or 
between data sources and users   [Honavar et al., 1998; Honavar et al., 2001; Caragea et al., 2001a]. When both the data and 
computational resources needed are not available at the same location, it is necessary to establish processing centers e.g., 
computation servers, and data warehouses where data from multiple sources can be integrated and analyzed. Thus, it is highly 
desirable in a distributed environment, for users to be able to supply computational procedures that can be executed on data 
from remote sites. Since the data repositories reside on heterogeneous hardware and software platforms, this requires a 
platform-independent execution environment for user-developed programs. The distributed computing paradigm based on 
transportable procedures or mobile agents [White, 1997] supports such agent-based systems made of agents (software entities 
capable of flexible, autonomous action within the constraints imposed by their environment so as to achieve their design 
objectives) [Jennings et al., 2000]. Mobile agent infrastructures (e.g., the SMART system developed in our lab, or the 
commercially available Voyager (www.objectspace.com/) system), allow users to not only call procedures on remote 
computers, but to also dynamically supply the procedures (mobile agents) to be executed on remote computers in a platform 
independent execution environment.  

Many biological databases are dynamic: they constantly accumulate new data (and perhaps less frequently, undergo 
updates of existing data e.g., due to correction of previously supplied erroneous annotations). Thus it is necessary to develop 
incremental learning algorithms that discover interesting regularities and refine existing models as new data become 
available. Similarly, there is a need for data visualization techniques for dealing with large, distributed data sets. 

In many applications, the individual data sets are autonomously owned and maintained. Consequently, access to the raw 
data may be limited and only summaries of the data (e.g., number of instances that match some criteria of interest) maybe 
made available to users. In such cases, there is a need for distributed learning algorithms that can operate within the data 
access constraints imposed on them.  

Biological Ontologies 
Task or context-specific analysis of biological data requires exploiting the relations between terms used to specify the 

data, to extract the relevant information and integrate the results in a coherent form. For example, assignment of a biological 
function to a putative protein from a genomic sequence involves relations between terms  such as nucleotide, gene, amino 
acid, protein, motif, domain, tertiary structure). Ontologies, [Sowa, 1999; Uschold and Jasper, 1999] specify terms; 
relationships among terms (e.g., father and mother are both parents). Different ontologies can provide different perspectives 
on the same domain of discourse. A number of ontologies designed to support machine-readable annotations of biological 
data are currently under development [Ashburner et al., 2000; Karp, 2000]. (http://www.geneontology.org, http://smi-
web.stanford.edu/projects/bio-ontology/). Such ontologies also facilitate sharing of data and knowledge among computational 
biologists [Karp, 1996;  Schultz-Kremer, 1997]. Types of ontologies that are commonly encountered in biology include: 
�� Taxonomies which correspond to the familiar isa hierarchies used for knowledge representation in artificial intelligence; 

Examples include the genetic code which specifies the mapping between gene sequences that use a 4-letter alphabet of 
nucleotides and the corresponding protein sequences defined over a 20-letter  alphabet of amino acids; classification of 
proteins into functional families; classification of amino acids into classes based on specific properties of interest e.g., 
hydrophobicity or charge; phylogenetic trees which represent evolutionary relationships among organisms;. 

�� Part-whole relationships which correspond to the part-of hierarchies used for knowledge representation in artificial 
intelligence; Examples include specification of functionally significant motifs or sequence patterns that occur in a protein 
sequence; specification of recognizable domains of a 3-dimensional structure of a protein; specification of biologically 
relevant parts of the DNA sequence such as introns, exons, promoters, open reading frames, etc. 

Ontologies are typically encoded using a declarative form of knowledge representation (e.g., first order logic or its variants). 
In order for ontologies to be useful for generating alternative representations of the data from different ontological 
perspectives or for integrating data from multiple sources, the definition of terms and relationships among terms need to be 
augmented with functions for computing values of some subset of terms from the known values of related terms (e.g., 
prediction of membrane spanning domain of a protein based on hydrophobicity of amino acids).  This requires the use of 
domain, application, or even data source specific rules and transformations for integrating data and metadata. In what 
follows, we use the term ontologies in this broader sense.   
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Role of Ontologies in Data Driven Knowledge Acquisition 
The following simple example illustrates how different ontologies can drive the analysis of the available data by scientists in 
different contexts, under different sets of assumptions, to explore different scientific hypotheses. Consider an attempt to 
discover predictive relationships between sequence regularities and protein structure (and possibly function). There are 
multiple ways to represent protein sequences (depending on the investigator’s ontological perspective). For instance, 
sequences could be represented using the 20-letter alphabet of amino acids, or they could be represented using a 2-letter 
alphabet  {C, U} with C denoting a charged amino acid and U denoting  an uncharged (U)  amino acid. Sequence regularities 
that are not readily apparent in the former case often pop out dramatically in the latter case (Figure 1).  Note that in 
rhodopsin, the segregation of charged residues (denoted by small circles) towards the ends of the molecule, together with 
presence of uncharged residues in the center,  `explains’ the fact that it is a membrane spanning protein whereas myoglobin, 
which has a more even distribution of charged residues, is not.  

Our colleagues have demonstrated that apparent inconsistencies 
between evolutionary trees based sequence data and those based on 
morphology can be reconciled by representing sequences using a two 
letter alphabet {H, P} where H stands for a hydrophobic amino acid and 
P denotes a hydrophilic amino acid [Naylor and Brown, 1998].  

The preceding examples demonstrate how (implicit or explicit) 
ontologies of scientists facilitate scientific discovery by imposing 
different ontological perspectives on the data. Exploratory data analysis 
in science often involves search for regularities or potentially explanatory 

patterns in large data sets from different ontological perspectives. Thus, 
environments for computer-assisted knowledge acquisition need to 
support tools for generating alternative representations or views of 
biological data sets using different user-specified ontologies.  

Data sets of interest in computational biology are heterogeneous in 
structure and content and are often distributed across multiple, 
autonomously maintained databases that are accessible through the Internet. Computational biologists typically access the 
data sets of interest to them by querying the relevant database(s) and use their knowledge of the domain and specific 
application context to extract the relevant information manually or by executing a set of 
programs. Consider for example, data-driven construction of decision trees to classify 
protein sequences into functional families [Wang et al., 2001] shown schematically in 
Figure 2. First, we retrieve a set of protein sequences along with the corresponding 
sequence identifiers and function labels from the PROSITE database. We submit the 
sequence identifier to the Profilescan program to obtain a list of sequence motifs 
(relatively short potentially functionally significant sequence patterns) present in each 
sequence. The sequence identifiers and the list of motifs associated with each sequence 
are stored in a file. We collect the list of motifs to form a motif set W with |W| distinct 
motifs (Figure 3). Each sequence is then represented as a binary pattern of |W| 1s and 0s 

(with a 1 in a given position denoting 
the presence, and 0 denoting the 
absence, of the corresponding motif in 
the protein sequence in question). 
Each resulting binary pattern is 
labeled with the corresponding 
function (obtained from the 
annotation for the sequence). A subset of the resulting data set of binary 
patterns and associated function labels is provided as input to a decision 
tree learning algorithm to generate a decision tree for classifying proteins 
into functional families. The resulting decision tree represents in a compact 
form the presence and/or absence of specific motifs that are good predictors 

of protein function. The resulting decision tree is then evaluated on an independent test set. If it has satisfactory accuracy on 
the test set, it can be used to assign sequences with unknown function to one of the families. We then use additional programs 
to display the 3-dimensional structure of selected proteins. We visualize the motifs used by the decision tree to assign that 
protein to a functional class by overlaying the motifs at the corresponding positions on the sequence and 3-dimensional 
structure. The resulting visual representation helps biologists to explore the biological significance, if any, of the acquired 
knowledge. The preceding example illustrates how implicit ontologies of the scientists drive the information extraction and 
data integration procedures used in knowledge acquisition from data. For instance, the representation of protein sequences in 
terms of the motifs found in them is based on an (implicit) application of an ontology consisting of part-whole relationships 

Figure 2: Generating decision trees 
for assigning protein sequences to 
functional families

Figure 3: Generation of motif based fixed 
length binary representation of a protein 
sequence 

Figure 1: The dramatic differences in the  
distribution of charged amino acids (denoted by 
dark circles) on rhodopsin (left) and myoglobin 
(right) molecules offers insights into their 
respective functions  
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between protein sequences and sequence motifs (ignoring in effect, the order in which motifs appear along the sequence). 
This scenario is typical of data analysis tasks encountered in computational biology. Ontologies thus provide an important 
(but often underutilized) source of background knowledge or assumptions that set up the context for data-driven knowledge 
discovery (Figure 4). Ontologies that take the form of taxonomies over attribute values can facilitate discovery of regularities 
from data at multiple levels of abstraction [Dhar and Tuzhilin, 1993; Taylor, Stoffel, 
and Hendler, 1997]. For instance, a taxonomy of functional families can be used to 
guide data-driven discovery of classifiers that assign protein sequences to functional 
families at different levels of abstraction. This underscores the need for integrating 
domain-specific as well as user-supplied (e.g., application specific) ontologies with 
distributed learning algorithms. 

 It underscores the need for selectively extracting and integrating heterogeneous 
data using user-supplied ontologies into a form that is expected by the applications 
that will process the data (e.g., decision tree learning algorithm described in the 
example above). 

Integration of Distributed Heterogeneous Data 
Approaches to processing heterogeneous data sources can be broadly classified into two categories: multi-database 

systems [Sheth, 1990; Bright et al., 1992; Barsalou and Gangopadhyay, 1992] and mediator systems [Wiederhold, 1997]. The 
multidatabase systems approach typically focuses on data integration across relational databases using relational or object-
oriented views [Bertino, 1991; Yen et al., 1998; Miller et al., 1998] to provide integrated access to distributed databases. 
Database views provide a means of selectively presenting the relevant data from the users’ perspective. For instance, a view 
can be defined across two data sets stored in different relational databases so that the user is able to interact with the data as 
though the data reside in a single (virtual) database.  In this case, the relational view essentially executes a join operation on 
the two data sets, assuming that the terms in the two databases have the same syntax (names) and semantics (meaning). The 
basic multidatabase approaches to data integration have been developed to provide a data model and a common query 
language for information integration in the TSIMMIS project at Stanford University [Garcia-Molina et al., 1996; Chang and 
Garcia-Molina, 1999]. Similar techniques have been used for data integration from structured (but not necessarily relational) 
databases in the SIMS project [Arens et al., 1993] and data integration from unstructured web sources using wrappers in the 
Ariadne project [Knoblock et al., 2001] at the University of Southern California. Some important aspects of data integration 
have been formalized in the context integration of knowledge bases containing relational, spatial, and textual information in 
the Hermes project at the University of Maryland [Subrahmanian et al., 2000]. We have developed object-oriented data 
warehouses for information extraction and data integration from multiple relational or object-oriented databases [Honavar et 
al., 1998; Miller et al., 1998; Wu et al., 2000; Miller et al., 2000]. The resulting system allows users to interact with databases 
and generate, manipulate, and interact with views. Users can generate queries interactively using a Java interface. The 
resulting object-oriented views are represented as Java objects. The system supports adding and deleting methods associated 
with particular Java classes. Conversion between Java Classes and abstract data types defined by the database are automated 
by the system. The user is able to interact with the object-oriented view by executing the methods at run time.  

Ontology Assisted Distributed Information Extraction and Data Integration 
Data integration in computational biology requires a cascade of data transformations that bridge the syntactic and 

semantic gaps across data sources. Recently, we have developed a prototype system for integration of data from multiple 
biological data sources used in the protein function classification example described above. The resulting object-oriented data 
warehouse automates all of the information extraction and data transformations needed for constructing and using decision 
trees for protein function classification. The resulting system is able to extract the relevant data from Swissprot 
(www.expasy.ch/sprot/sprot-top.html) and Prosite (www.expasy.ch/prosite/) databases, transform the data into the desired 
form, and store it in local data warehouse for further analysis.  Object-oriented views are particularly well-suited for 
information extraction from biological databases because the description of genomic, structural, functional, and 
organizational information involves many object types and relationships. One limitation of the current design is that the 
ontologies are not explicitly specified, but are implicitly hardwired into the procedures that transform the data. Work in 
progress is aimed at replacing the  implicit ontologies with explicitly specified ontologies to design modular and 
customizable software that allows scientists to adapt and use ontologies of their choice to drive data transformation and data 
integration from heterogeneous distributed databases to enable rapid prototyping of systems solutions for scientific discovery 
through exploratory data analysis. 
The development of algorithms and software for generating alternative representations of the data from different user-
specified ontological perspectives is a key component of the proposed research. The preceding examples show that 
information extraction and data transformation operations involved in data-driven knowledge acquisition in computational 
biology can be decomposed into two components:  

Figure 4: Ontology assisted 
knowledge acquisition 
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�� Ontologies which specify the relevant relationships among entities in our universe of discourse (e.g., protein sequences, 
motifs, structures, functions). This component can be further partitioned into a database independent component (e.g., 
the ontology  that captures the relevant  part-whole relationships 
between protein sequences and motifs) and a database dependent 
component.  

�� The processes that use this ontology to extract relevant information 
and knowledge from the available data sets. These can be divided 
into database specific operations (e.g., querying a specific database 
using the interface provided), database independent (but ontology 
dependent) operations, and data structure dependent operations. An 
example of an ontology dependent operation is the transformation of 
a  protein sequence into a representation that captures the presence or 
absence of particular motifs in a sequence. The resulting 
representation is constrained by the allowed data structures (e.g., bit 
patterns, lists, etc.) and the associated methods (procedures available 
to manipulate the data).  

Such decomposition allows us to develop tools that facilitate rapid design 
and prototyping of domain and application specific views over 
heterogeneous distributed data sources (Figure 5). Scientists will be able 
to adapt existing ontologies or define new ontologies to generate 
alternative representations (views) of data, at different levels of 
abstraction, in different contexts. Note that our goal is not to develop 
ontologies that exhaustively capture all of the relevant relationships in our universe of discourse (i.e., computational biology) 
but to demonstrate a theoretically well-founded modular approach to using user-supplied ontologies for information 
extraction and data integration.  

Distributed and Incremental Data Mining Algorithms for Data Driven Knowledge Acquisition  
The problem of learning from distributed data sets can be summarized as follows: the data are distributed across multiple 
sites and the learner's task is to discover useful knowledge. For example, such knowledge might be expressed in the form of a 
decision tree or a set of rules for pattern classification. As noted in the previous section, there are at least two ways in which 
the data set may be fragmented in a distributed setting [Sharma, et al., 2000; Caragea et al., 2001b]: 
�� Horizontal fragmentation wherein subsets of the data set are distributed across multiple sites; and   
�� Vertical fragmentation, wherein values for different subsets of attributes of the data set (perhaps gathered by different 

laboratories) are distributed across different sites (e.g., in independently maintained databases). 

In relational databases, the data set is a set of tuples of attribute values. The 
preceding definitions of fragmentation of data sets can be extended in the case 
of other types of databases. 

Given the large size and distributed and dynamic nature of data sets 
encountered in computational molecular biology, it is neither feasible nor 
desirable to exchange entire data sets among different sites. Consequently, the 
learner has to rely on the information extracted from the sites. One approach to 
learning from distributed data sources is to have a learning agent visit the 
different sites to gather the information it needs to generate the desired model 
from data. Alternatively, different sites can transmit the information necessary 
for inferring the model to the learning agent situated at a given location.  

A distributed learning algorithm LD is said to be exact with respect to the 
hypothesis inferred by a learning algorithm L if the hypothesis produced by LD 
using distributed data sets D1 through Dn is the same as that obtained by L when 
it is given access to the complete data set D which can be constructed (in 
principle) by combining the individual data sets D1 through Dn. For example, 
an exact distributed decision tree learning algorithm for vertically fragmented 
data is guaranteed to generate exactly the same decision tree in the distributed 
setting as it would when it is given access to the entire data set. Similarly, we 
can define exact distributed learning with respect to other criteria of interest (e.g., expected accuracy of the learned 
hypothesis). More generally, it is useful to consider approximate  distributed learning in similar settings.  

The incremental learning problem can be formulated as follows: the learner incrementally refines a hypothesis or a set of 
hypotheses as new data become available. Because of the large volume of data involved, it may not be practical to store and 
access the entire data set during learning. Thus, the learner may not have access to previously analyzed data (with the 

Figure 6: Decomposition of learning into 
information extraction and hypothesis 
generation components in the centralized 
(left) and distributed (right) scenarios. 

Figure 5: Ontology-based view generation from 
distributed databases. OntologyI  is an explicit 
specification of the possibly implicit ontology 
associated with DatabaseI  with corresponding 
interface InterfaceI. Extracted information is 
presented in User view. 
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possible exception of a relatively small subset of critical examples stored by the learner). We assume that (sub) sets D1 
through Dn that correspond to horizontal or vertical fragments of a data set become available over discrete intervals in time. 
The learner starts with an initial hypothesis that constitutes prior knowledge of the domain. We assume that the learner has 
limited access to previously processed data in its raw form. Thus, the learner can maintain only the minimal information 
necessary for accurately updating its hypothesis as new data become available. Exactness of incremental learning can be 
defined in a manner analogous to that of distributed learning. More generally, it is useful to consider approximate incremental 
learning. 

One approach to distributed learning is based on a decomposition of the learning task into information extraction and 
hypothesis generation components (Figure 6). This involves identifying the information requirements of the learning 
algorithm and designing efficient means of providing the needed information to the hypothesis generation component while 
avoiding the need to transmit large amounts of data. This offers a general strategy for transforming a batch learning algorithm 
(e.g., a traditional decision tree induction algorithm) into an exact distributed learning algorithm [Caragea et al., 2000; 
Caragea et al., 2001a]. Thus, we decompose the distributed learning task into distributed information extraction and 
hypothesis generation components (Figure 6). In this approach to distributed learning, only the information extraction 
component has to effectively cope with the distributed nature of data in order to guarantee provably exact learning in the 
distributed setting in the sense discussed above. Suppose we decompose a batch learning algorithm L in terms of an 
information extraction operator I that extracts the necessary information from data set and a hypothesis generation operator H 
that uses the extracted information to produce the output of the learning algorithm L. That is, L(D) = H(I(D)).  We can define 
a distributed information extraction operator Id that generates from each data set Di, the corresponding information Id(Di), and 
an operator C that combines the information obtained from the data sets to produce I(D). That is, the information extracted 
from the distributed data sets is the same as that used by L to infer a hypothesis from the complete data set D. That is, 
C[Id(D1), Id(D2), .. Id(Dn)] = I(D). Thus, we can guarantee that Ld will be exact with respect to L. The feasibility of this 
approach to exact distributed learning depends on the information requirements of the batch algorithm L under consideration 
and the (time, memory, and communication) complexity of the corresponding distributed information extraction operations. 
We have used this approach of decomposing distributed learning into distributed information extraction and hypothesis 
generation to construct provably exact algorithms for decision tree learning from horizontally as well as vertically fragmented 
distributed data sets [Caragea et al., 2001b]. It turns out a large family of split criteria used to build decision trees, including  
information gain [Quinlan, 1986] and Gini index [Breiman et al., 1984] etc., can be expressed in terms of relative frequencies 
of instances that satisfy certain constraints on the values of their attributes. Indeed, in this case, these relative frequency 
estimates constitute sufficient statistics [Casella and Berger, 1990] for these split criteria [Caragea et al., 2001b]. (A sufficient 
statistic for a parameter � (e.g., mean of a distribution), in a certain sense, captures all of the information about � contained in 
the data set. For example, sample mean is a sufficient statistic for the mean of the distribution.).  

We have shown that the information necessary for decision tree construction can be efficiently obtained from 
horizontally or vertically fragmented distributed data sets, thereby yielding provably exact algorithms for decision tree 
induction from horizontally or vertically fragmented distributed data sets. This approach to learning decision trees from 
distributed data based on a decomposition of the learning task into a distributed information extraction component and a 
hypothesis generation components provides an effective way to deal with scenarios  in which the sites provide only statistical 
summaries of the data on demand and  prohibit access to raw data. Even when it is possible to access the raw data, the 
distributed algorithm compares favorably with the corresponding centralized algorithm which needs access to the entire data 
set whenever its communication cost is less than the cost of collecting all of the data in a central location.  Let |D| be the total 
number of examples in the distributed data set; |A|, the number of attributes; V the maximum number of possible values per 
attribute; n the number of sites across which the data set D is distributed; M the number of classes; and size(T) the number of 
nodes in the decision tree. Our analysis has shown that in the case of horizontally fragmented data, the distributed algorithm 
has an advantage when MVn size(T) � |D|. In the case of vertically fragmented data, the corresponding conditions are given 
by size(T) � |A|. The distributed decision tree learning algorithms have been implemented in our laboratory using mobile 
software agents [Sharma et al., 2000; Caragea et al., 2001b].  Our experiments have shown that these conditions are often met 
in the case of large, high-dimensional data sets that are encountered in computational biology (e.g., construction of decision 
trees for classification of protein sequences into functional families)  [Wang et al., 2001]. Work in progress focuses on 
techniques which trade off exactness of the algorithm (and hence possibly the accuracy of the learned model) for increased 
efficiency (in terms of computation and communication costs). 

Space does not permit a detailed discussion of our results on incremental learning. Hence, we simply note some of our 
results on incremental learning. We have designed and implemented a semi-incremental algorithm [Polikar et al., 2000] for 
training neural network classifiers based on recent computational learning theoretic results on accuracy boosting [Schapire, 
1999; Freund and Schapire, 1997]. The resulting algorithm has been successfully applied to train an electronic nose for odor 
recognition [Polikar et al., 2001].  

The results summarized above suggest steps toward the development of a framework for distributed and incremental 
learning. Work in progress is aimed at generalizing  the treatment of distributed learning outlined above by introducing a 
family of learning and information extraction and information composition operators and establishing sufficient conditions 
for provably exact (and in some cases, approximate) distributed or incremental learning in terms of general algebraic 
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properties of the operators [Caragea et al., 2001a]. This framework provides a means of unifying a diverse body of recent 
work related to: 
�� Distributed learning approaches based on combining multiple models learned from disjoint data sets [Davies et al., 2000; 

Prodromidis et al., 2000];  parallel formulations of decision tree learning algorithms [Srivastava et al., 1999];  techniques 
for  scaling up distributed learning algorithms [Provost et al., 1999]; collective data mining algorithms [Kargupta et al., 
2000]; and the computation of sufficient statistics [Casella and Berger, 1990; Moore and Lee, 1997]. 

�� Incremental learning including approaches based on online algorithms developed within the mistake bound  model 
[Littlestone, 1994], and lazy learning e.g., nearest neighbor techniques, and locally weighted regression [Atkeson et al., 
1997] and accuracy boosting [Freund and Schapire,1997]. 

This approach to distributed learning and incremental learning through a decomposition of distributed (or incremental) 
learning into distributed (or incremental) information extraction interleaved with hypothesis generation provides an attractive 
approach to developing data-driven knowledge acquisition learning algorithms in the distributed (or incremental) setting. It 
should be noted that a large body of theoretical results (e.g., sample complexity, error bounds, etc.) derived in the batch 
learning scenario carry over naturally to incremental and distributed learning scenarios if we can establish that the distributed 
(or incremental) information extraction  component provides the same information to the hypothesis generation component as 
that available in the batch setting. The boundary that defines the division of labor between information extraction and 
hypothesis generation components depends on the hypothesis class used for learning, and decomposition used.  At one 
extreme, if no information extraction is performed, the hypothesis generation component needs to access the raw data. An 
example of this scenario is provided by distributed instance based learning of nearest neighbor classifiers from a horizontally 
fragmented data set. Here, the data set fragments are simply stored at the different sites. Classification of a new instance  is 
performed by the hypothesis generation component which classifies a new instance according to the classification assigned to 
the nearest neighbor of the instance to be classified (based on some specified  metric which measures the similarity between 
any two instances). At the other extreme, if the information extraction component does most of the work, and the task of the 
hypothesis generation component becomes trivial.  This argues for a more systematic exploration of the design space of 
distributed learning algorithms. Hence, work in progess is aimed at building on these results to design and analyze distributed 
and incremental learning algorithms and software with emphasis on data-driven knowledge acquisition from large, dynamic, 
high-dimensional biological data sets (DNA sequence data, protein sequence data, protein structures, gene expression data).  

Summary  
The recent advances in high throughput data acquisition technologies, coupled with advances in computing, digital storage 
and communication technologies, presents unprecedented challenges as well as opportunities in large-scale data-driven 
knowledge acquisition in several domains. Examples of such domains include biological sciences, atmospheric sciences, 
medical sciences, and social sciences, among others.  In this paper, we have described some of the problems that need to be 
addressed in order to translate the tremendous advances in our ability to gather and store data in increasing volumes at rapidly 
increasing rates into fundamental scientific advances and economic and social benefits through data-driven discovery. We 
have presented some of the key elements of algorithmic and systems solutions for computer assisted knowledge acquisition. 
These include: ontology-assisted approaches to customizable data integration and information extraction from heterogeneous, 
distributed data sources; distributed data mining algorithms for knowledge acquisition from large, distributed data sets which 
obviate the need for transmitting large volumes of data across the network;  ontology-driven approaches to exploratory data 
analysis from alternative ontological perspectives; and modular and extensible agent-based implementations of the 
algorithms within a platform-independent agent infrastructure.  Prototype systems that incorporate the key components of 
proposed solution are being used for discovery of macromolecular structure function relationships in biological sciences and 
coordinated intrusion detection in distributed computing  and communication networks. We conclude with a brief mention of 
some important current and future research directions: 
�� Further development of the prototype systems and their application to Knowledge acquisition problems in computational 

biology including: Problems which involve the analysis of a single element (e.g., gene, protein) or a small set of 
elements that vary across different organisms and problems in which information to be analyzed reflects interactions 
among diverse elements within a single organism 

�� Development of  a small set of data source independent ontologies (including not only the terms and relations among 
terms, but also the associated functions for data transformation) to support information extraction and exploratory data 
analysis in the context of representative problems in computational biology that are identified in section B-III.  The 
resulting toolbox of ontologies will include generic data transformation procedures for handling common types of 
ontologies such as taxonomies, phylogenetic trees, part-whole relations, among others.  

�� Development of  a set of data source specific ontologies to support information extraction from a set of biological 
databases (e.g., the Swissprot protein database, some common motif databases, and sequence databases. This will build 
on a subset of the ontologies that are being developed as part of the gene ontology (GO) project 
(www.geneontology.org). 
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�� Specification, design, and implemention of  a software tool that allows biologists to create and edit ontologies (including 
the associated computational procedures for ontology-driven transformation of data) that would then be used to drive 
information extraction and data transformation operations in specific contexts.  

�� Specification, design, and implemention of  software tools that would enable biologists to interactively select  data 
sources, ontologies, and data analysis and visualization programs (e.g., decision tree learning algorithm) using a 
graphical user interface to instantiate specific data analysis procedures (e.g., building motif-based classifiers of protein 
function). The system will also include pre-specified views of the data to provide some of the most useful representations 
of the data. 

�� Development of an object-oriented data warehouse [Miller et al., 1998; Miller et al., 2000; Wu et al., 2001; Silvescu et 
al., 2001b] to support applications that require local storage of information extracted from remote data sources for further 
analysis. The data warehouse essentially maintains materialized (instantiated) views across multiple data sources to 
provide rapid access to pre-integrated data in a desired form. It also supports analysis of data from data sources that do 
not provide facilities for execution of user-supplied analysis programs. In such cases, setting up data servers that store 
the relevant data in an integrated form for specific communities of users and computation servers that are tightly coupled 
to such data servers would significantly increase the utility of such data sources.  

�� Development of approaches to perform ontology-driven information extraction from multiple databases [Honavar et al, 
1998; White, 1997] where the desired views are computed in a distributed fashion (as an integral part of information 
extraction data mining from distributed data sets) without gathering all of the data at a central location. 

�� Exploration of the design space of exact and approximate distributed learning algorithms based on decomposition of 
distributed learning into distributed information extraction and hypothesis generation components for variety of 
hypothesis classes for classification and function approximation. This will include an examination of alternative 
decompositions resulting in different ways of dividing the work between information extraction and hypothesis 
generation components and distributed learning algorithms. 

�� Implementation of a modular and extensible and platform independent agent-based system for distributed data mining 
for execution within a loosely coupled distributed environment. This builds on our ongoing work on distributed software 
environments for data integration and data mining from distributed data sets [Honavar et al., 1998; Sharma, 2000; 
Caragea et al., 1991b; Honavar et al., 2001]. 

�� Exploration of  the design space of exact and approximate incremental learning algorithms based on decomposition of 
incremental learning into incremental information extraction and hypothesis generation components for variety of 
hypothesis classes for classification and function approximation.  

�� Further elucidation of  the necessary and sufficient conditions that guarantee the existence of efficient exact, and 
approximate distributed and incremental learning algorithms in terms of properties of hypothesis and data representations 
and available learning operators (e.g., operators for generating hypotheses from data; operators for combining multiple 
hypotheses, etc.). 

�� Integration of distributed and incremental learning with visualization algorithms to facilitate interactive exploratory 
analysis of large, distributed, high-dimensional biological data sets, with emphasis on techniques for data integration 
from diverse data sets, dimensionality reduction, automated feature selection and construction, identification of outliers 
and departures from trends, and knowledge visualization.  

�� Development of techniques for incorporating ontologies (in particular, part-whole hierarchies and taxonomies) with data 
integration and data mining algorithms to support data-driven knowledge acquisition at multiple levels of abstraction 
from large, distributed, heterogeneous biological data sets. 
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