cmp-1g/9803003 27 Mar 1998

Nymble:
a High-Performance Learning Name-finder

Daniel M. Bikel
BBN Corporation
70 Fawcett Street
Cambridge, MA 02138
dbikel@bbn.com

Scott Miller
BBN Corporation
70 Fawcett Street
Cambridge, MA 02138
szmiller@bbn.com

Abstract

This paperpresents statistical,learned
approachto finding namesand other non-
recursiveentitiesin text (asperthe MUC-6
definition of the NE task), using variant of
the standardhidden Markov model. We
present oujustification for the problemand
our approach,a detailed discussionof the
model itself and finally thesuccessfutesults
of this new approach.

1. Introduction

In the past decade, tlspeechrecognitioncommu-
nity has had huge successesn applying hidden
Markov models, or HMM'’s taheir problems. More
recently,the naturallanguageprocessingcommunity
has effectively employed these models for part-of-
speech tagging, as in tlseminal(Church,1988) and
other, morerecentefforts (Weischedelet al., 1993).
We would now proposethat HMM’'s have success-
fully been applied to the problem of name-finding.

We have built a named-entity(NE) recognition
system using a slightly-modified version of an
HMM; we call our system “Nymble”. To our
knowledge Nymble out-performsthe best published
resultsof any other learning name-finder. Further-
more, it performs at or above tB8% accuracylevel,
often considered “near-human performance”.

The system arose from the NE taskspecifiedin
the last MessageUnderstandingConference(MUC),
where organizationnames, person names, location
names, timesgates,percentageand moneyamounts
were to be delimited in text using SGML-markup.
We will describethe various modelsemployed,the
methods for training thesmodelsandthe methodfor

Richard Schwartz
BBN Corporation
70 Fawcett Street

Cambridge, MA 02138
schwartz@bbn.com

Ralph Weischede
BBN Corporation
70 Fawcett Street

Cambridge, MA 02138
weisched@bbn.com

“decoding” on test daté&he term “decoding” borrowed
from the speechrecognitioncommunity, since one
goal of traversingan HMM is to recoverthe hidden
state sequence). To date, have successfullytrained
and used the model dyoth English and Spanish,the
latter for MET, the multi-lingual entity task.

2. Background

2.1 Name-finding as an Information-
theoretic Problem

The basicpremiseof the approachis to consider
the raw text encounteredvhen decodingas though it
had passed through a noisy channel, whenadtbeen
originally markedwith namedentities! The job of
the generative modé to modelthe original process
that generatethe name-class—annotateebrds, before
they went through the noisy channel.

More formally, we must find the most likely
sequenceof name-classe$NC) given a sequenceof
words W):

Pr(NC |W) (2.1)
In orderto treatthis asa generativemodel (where it
generatedhe original, name-class—annotatesords),

we use Bayes’ Rule:
Pr(NC | W) = L(W’ NC) (2.2)
Pr(W)
and since the a priori probability of the word
sequence—thedenominator—is constant for any
given sentencewe can maximize Equation 2.2 by
maximizing the numerator alone.

1 See (Cover and Thomas, 1991), ch. 2, for an excellent
overview of the principlesof information theory.

2.2 Previous
Approaches
finding

Previousapproacheshave
typically used manually
constructed finite state
patterns (Weischedel, 1995,
Appelt et al.,, 1995). For
every newlanguageand every
new classof new information
to spot, one has to write a
new set of rulesto cover the
new language and to covire
new classof information. A
finite-state pattern rule
attemptsto match againsta
sequence of tokens (word8g),
much the same way as a
general regular expression
matcher.

In additionto thesefinite-

to Name-

START-OF-SENTENCE

Figure 3.1 Pictorial representation of conceptual model.

END-OF-SENTENCE

state pattern approaches,a
variant of Brill rules has been appli¢al the problem,
as outlined in (Aberdeen et al., 1995).

2.3 Interest in Problem and Potential
Applications
The atomic elements of information

extraction—indeed, of language a whole—couldbe
considered the whayhere,whenandhow muchin a
sentence. A name-findemperformswhatis known as
surface-or lightweight-parsing,delimiting sequences
of tokensthat answertheseimportant questions. It
can be used as the first step in a chain of processors:
next level of processingcould relate two or more
named entities, or perhaps even give semantitisato
relationship using a verb. In this way, further
processingcould discoverthe “what” and“how” of a
sentence or body of text.

Furthermore,name-finding can be useful in its
own right: an Interneguery systemmight use name-
finding to construct more appropriately-formed
gueries: “When wa8ill Gatesborn?” could yield the
query“Bill Gates™+born . Also, name-finding
canbe directly employedfor link analysisand other
information retrieval problems.

3. Model

We will presentthe model twice, first in a
conceptualand informal overview, thenin a more-
detailed,formal descriptionof it asa type of HMM.
The modelbearsresemblancéo Scott Miller's novel
work in the Air Traffic Information System (ATIS)
task, as documented in (Miller et al., 1994).

3.1 Conceptual Model

Figure 3.1 is a pictorial overview of our model.

Informally, we havean ergodic HMM with only
eight internal states(the nameclasses,ncluding the
NoT-A-NAME class), with two special states, the
START - and ED -OF-SENTENCEStates. Within eachof
the name-classstates, we use a statistical bigram
languagemodel, with the usual one-word-per-state
emission. This meansthat the numberof statesin
each of the name-classstates is equal to the
vocabulary size|V|.

The generation of words and name-clagseseeds
in three steps:

1. Selecta name-classNC, conditioning on the
previous name-class and the previous word.

2. Generatethe first word inside that name-class,
conditioningon the currentand previous name-
classes.

3. Generatall subsequenivords inside the current
name-class,where each subsequentword is
conditioned on its immediate predecessor.

These three steps are repeated untikthire observed

word sequenceis generated. Using the Viterbi

algorithm, we efficiently search the entspaceof all
possible name-classassignments,maximizing the
numerator of Equation 2.2, RY(NC).

Informally, the constructionof the modelin this
manner indicates that we view each tgfé'name” to
be its own language, with separate bigram
probabilities for generatingits words. While the
number of word-states within each name-classjisl

Word Feature Example Text Intuition
twoDigitNum 90 Two-digit year
fourDigitNum 1990 Four digit year
containsDigitAndAlpha A8956-67 Product code
containsDigitAndDash 09-96 Date
containsDigitAndSlash 11/9/89 Date
containsDigitAndComma 23,000.00 Monetary amount
containsDigitAndPeriod 1.00 Monetary amount, percentage
otherNum 456789 Other number
allCaps BBN Organization
capPeriod M. Person name initial
firstWord first word of sentence No useful capitalization information
initCap Sally Capitalized word
lowerCase can Uncapitalized word
other , Punctuation marks, all other words

Table 3.1 Word features, examples and intuition behind them

to |V|, this “interior” bigram language model is

ergodic,i.e., there is a probability associatedwith
2 .

everyoneof the |V|* transitions. As a parameter-

ized, trained model, if such a transition were never
observedthe model “backs off” to a less-powerful
model, as described below, in §3.3.3 on p. 4.

3.2 Words and Word-Features

Throughout most of the model, veensiderwords
to be ordered pairs (or two-element vectors),
composecbf word and word-feature denoted (w, f).

The word featureis a simple, deterministiccomputa-
tion performedon eachword as it is addedto or
lookedup in the vocabulary. It producesone of the
fourteen values in Table 3.1.

Thesevaluesare computedin the order listed, so
that in the case of non-disjoint feature-classes, ssch
containsDigitAndAlpha and
containsDigitAndDash , the former will take
precedence. The first eight featuresarise from the
needto distinguish and annotatemonetaryamounts,
percentages, times and dateBhe restof the features
distinguish types of capitalizaticandall otherwords
(such as punctuation marks, which are separate
tokens). In particular, thigrstWord featurearises
from the fact that if a word is capitalizedand is the
first word of the sentence,we have no good
information asto why it is capitalized(but note that
allCaps and capPeriod are computed before
firstWord , and therefore take precedence).

The word featureis the one part of this model
which is language-dependentFortunately, the word
feature computation is aextremelysmall part of the
implementationat roughly ten lines of code. Also,
most of the word featuresare usedto distinguish

typesof numbers,which are language-independeht.
The rationalefor having such featuresis clear: in
Romanlanguagescapitalizationgives good evidence
of names.

3.3 Formal Model

This section describes the model formally,
discussingthe transition probabilities to the word-
states, which “generate” the words of each name-class.
3.3.1 Top Level Model

As with most trained, probabilistic models, we
have a most accurate,most powerful model, which
will “back off” to a less-powerful model when theie
insufficient training, and ultimately back-off to
unigram probabilities.

In order to generate the first word, we must make a
transition from onename-clasgo another,aswell as
calculatethe likelihood of that word. Our intuition
wasthat a word precedingthe start of a hame-class
(suchas“Mr.”, “President” or other titles preceding
the PERSON name-class)and the word following a
name-classwould be strong indicators of the
subsequenand precedingname-classegespectively.
Accordingly, the probability for generatingthe first
word of a name-class is factored into two parts:

Pr(NC| NC_,, w,) OP((w,f),, | NC, NC,)-
(3.1)

2 Non-English languagestendto usethe comma and period in
the reverseway in which English does, i.e., the commais a
decimalpoint and theperiod separatesgroups of three digits in
large numbers. However, the re-orderingof the precedenceof
the two relevant word-featureshad little effect when decoding
Spanish, sahey wereleft asis.

3 Although Spanish hasnany lower-casewordsin organization
names. See §4.1on p. 6 for more details.

The top level model for generatingall but the first
word in a name-class is

Pr((w,)] (w, f)_,, NC)- (3.2)

Thereis also a magical “+end+” word, so that the
probability may becomputedfor any currentword to
be the final word of its name-class,,

Pr((+end+,ot her) | (w, f) NC)- (3.3)

As onemight imagine,it would be uselessto have
the first factorin Equation3.1 be conditionedoff of
the +end+word, so the probability is conditionedon
the previousreal word of the previousname-class,
i.e, we compute
Owv, =+end + if
Pr(NC | NC_,, W,l) % NC_, = START - OF - SENTENCE
B/V_l = |ast observed word otherwise
(3.4)
Note that the abovprobability is not conditionedon
the word-featureof W_,, the intuition of which is

that in the casewherethe previousword would help
the model predict the next name-class,the word
feature—capitalizatiorin particular—is not impor-
tant: “Mr.” is a good indicator of the next word
beginning the PERSON name-class, regardless of
capitalization, especially since it @mostneverseen
as “mr.”.
3.3.2 Calculation of Probabilities

The calculation of the above probabilities is
straightforward, using events/sample-size:

final ?

Pr(NC | NC, w,) = SNENC.. W) (3.5)
c(NC_,,w_,)
f)
Pr(<w’ f>r a NC, NC_l) = C(<W' >f”5[’ NC, NC—l)
i C(NC' NCil)
(3.6)

c((w, f{w, f)_, NC)
c((w, f) . NC)

Pr((w.)| (w, f)_,, NC) =

(3.7)
wherec() representshe numberof times the events
occurred in the training data (tbeunt).
3.3.3 Back-off Models and Smoothing

Ideally, we would have sufficient training (or at
least one observation of!) every event whose
conditional probability we wish to calculate. Also,
ideally, we would have sufficient samplesof that
upon which each conditional probability is
conditioned,e.g., for Pr(NC\ NC,,, w_l), we would

like to have seensufficient numbersof NC_;, w_,.
Unfortunately,thereis rarely enoughtraining datato
computeaccurateprobabilities when “decoding” on
new data.

3.3.3.1 Unknown Words

The vocabulary of the systeis built asit trains.
Necessarilythen, the systemknows aboutall words
for which it stores bigram counts orderto compute
the probabilities in Equations3.1 — 3.3. The
guestion arises how the system should deal with
unknownwords, sincetherearethreewaysin which
they canappeatin a bigram: asthe currentword, as
the previousword or asboth. A good answeris to
train a separate, unknowword—modeloff of held-out
data, togatherstatisticsof unknownwords occurring
in the midst of known words.

Typically, one holds out 10—-20% of one’s training
for smoothing or unknown word—training. In order
overcome the limitations of a small amount of
training data—particularlyin Spanish—wehold out
50% of our datato train the unknown word—model
(the vocabularyis built up on the first 50%), save
thesecountsin training datafile, then hold out the
other 50% and concatenat¢hesebigram counts with
the first unknownword—trainingfile. This way, we
can gather likelihoods ain unknownword appearing
in the bigram using all availabletraining data. This
approachis perfectly valid, as we are trying to
estimate that whichve havenot legitimately seenin
training. When decoding, if either word of thigram
is unknown, the model used to estimate the
probabilities of Equations 3.1-3 is the unknoword
model, otherwiseit is the model from the normal
training. The unknown word—-model caniewed as
a first level of back-off, therefore, since itusedas a
backup model when an unknown wasdencountered,
and is necessarily not as accuratéhesbigram model
formed from the actual training.

3.3.3.2 Further Back-off Models and Smoothing

Whethera bigram containsan unknown word or
not, it is possiblethat either model may not have
seenthis bigram, in which casethe model backs off
to aless-powerful Jess-descriptivenodel. Table 3.2
shows a graphic illustration of the back-off scheme:

Name-class Bigrams

First-word Bigrams

Non-first-word Bigrams

Pr(NC | NC_,, w.,)
Pr(NC | NC_,)

Pr(NC). '
; Pr((w,)| NC)

1
number of name- classes

1 1

Pr{(w, f), | NC, NC_)

Pf(<W, f)| (+begin+, ot her), NC)

Pr(w| NC) [Pr(f | NC)

Pr{(w,) | (w, f)_,, NC)
Pr((w, f) | NC)
Pr(w | NC) [Pr(f | NC)

1n)
|V| number of word features

M number of word features

Table 3.2 Back-off strategy

The weight for eachback-off modelis computedon-
the-fly, using the following formula:
If computingPr(X]|Y), assignweight of A to
the direct computation (using one of the
formulae of §3.3.2) and weight of (1 — A) to
the back-off model, where

% oldc(Y)O 1 ,
A=~ :
c(Y) 0O, unique outcomes of Y
c(Y)

(3.8)
where “oldc(Y)” is the sample size of th@odelfrom
which we are backing off. This is a rather simple
method of smoothing, which tends to work well
whenthereareonly threeor four levels of back-off#
This method also overcomesthe problem when a
back-off model has roughly the same amount of
training as the current model, via the first factor of
Equation3.8, which essentiallyignoresthe back-off
model and putsll the weight on the primary model,
in such an equi-trained situation.

As an example—disregardinghe first factor—if
we saw the bigram “come hither” oncetmining and
we saw “come here” three times, amawhereelsedid
we seethe word “come” in the NOT-A-NAME class,
when computing

Pr(“hither” | “come”, NDT-A-NAME),
we would back off to the unigram probability

Pr(*hither” | NOT-A-NAME)
with a weight of %, since the number of unique
outcomes for the word-state for “come” wouldte,

4 Any more levels of back-off might require a more
sophisticated smoothing technique, such as deleted
interpolation. No matter what smoothing techniqueis used,
one mustrememberthat smoothing is the art of estimatingthe
probability of that which is unknown (i.e., not seen in
training).

andthe total numberof times “come” had beenthe
preceding word in a bigram would be four (a
1/(1+2) = £ weight for the bigram probability, a

1- 2 = 1 weight for the back-off model).

3.4 Comparison with a traditional HMM

Unlike a traditional HMM, the probability of
generatinga particularword is 1 for eachword-state
inside each of the name-class states. An
alternative—andnore traditional—modelwould have
a small number of states within each name-cleash
having, perhaps,some semanticsignificance, e.g.,
three statetn the PERSON name-classtepresenting
first, middle andast name,whereeachof thesethree
stateswould have some probability associatedwith
emitting any word from the vocabularyVe choseto
use a bigram languagemodel because while less
semantically appealing, suakgram languagemodels
work remarkablywell in practice. Also, as a first
researchattempt,an n-gram model captureshe most
generalsignificanceof the wordsin eachname-class,
without presupposing any specifics of tteuctureof
names,a la the PERSON name-classxample,above.
More important, either approachis mathematically
valid, aslong asall transitionsout of a given state
sum to one.

3.5 Decoding

All of this modelingwould be for naughtwereit
not for the existenceof an efficient algorithm for
finding the optimal state sequendtieereby“decoding”
the original sequence of name-classes. The nuofber
possible state sequencegor N statesin an ergodic
modelfor a sentenceof m wordsis N™, but, using
dynamic programmingnd an appropriatemerging of
multiple theorieswhenthey convergeon a particular
state—the Viterbi decoding algorithm—a senteocae
be “decoded” in time linear to the number of tokens

the sentenceO(m) (Viterbi, 1967). Since we are
interested in recovering theame-classtatesequence,
we pursueeight theoriesat every given step of the
algorithm.

4. Implementation and Results

4.1 Development History

Initially, the word-featurewas not in the model;
instead the system relied on a third-level backpaft-
of-speechtag, which in turn was computedby our
stochasticpart-of-speechiagger.The tags were taken
at facevalue: therewere not k-besttags; the system
treated the part-of-speechtagger as a “black box”.
Although the part-of-speedaggerusedcapitalization
to help it determine proper-noun tags, this featuas
only implicit in the model,and then only after two
levels of back-off! Also, the capitalizationof a word
was submergedin the muddinessof part-of-speech
tags, which can “smeathe capitalizationprobability
mass over several tags. Becauseit seemedthat
capitalization would be a good name-predicting
feature, and that it shoulbpearearlierin the model,
we eliminated the reliance on part-of-speech
altogether, and optefbr the more direct, word-feature
model describedabove,in §3. Originally, we had a
very small number ofeatures,ndicating whetherthe
word was a number,the first word of a sentenceall
uppercaseinitial-capitalizedor lower-case. We then
expanded the feature set todtarentstatein orderto
capturemore subtletiesrelated mostly to numbers;
due to increasedperformance(although not entirely
dramatic)on everytest, we kept the enlargedfeature
set.

Contrary to our expectations (which were basad
our experience with English), Spanish contained
many examplesof lower-casewords in organization
and location names. For example, departamento
(“Department”) could often start an organization
name, and adjectival place-namessuch as coreana
(“Korean™ could appear in locations and by
convention are not capitalized.

4.2 Current Implementation

The entire system ignplementedn C++, atopa
“home-brewed”, general-purpose class library,
providing a rapid code-compile-train-testycle. In
fact, many NLP systems suffer from a lack of
software and computer-science engineesfigrt: run-
time efficiency is key to performing numerous
experimentswhich, in turn, is key to improving
performance. A system may have excellent
performanceon a given task, but if it takeslong to
compile and/or run on test data, the rate of
improvement of that system will be miniscule

compared to that which can run very efficiently. ®©n
Sparc20or SGI Indy with an appropriateamount of
RAM, Nymble can compile in 10 minutesainin 5
minutes and run at 6MB/hr. There were days in
which we hadas much as a 15% reductionin error
rate,to borrow the performanceneasureusedby the
speechcommunity, where error rate = 100% — F-
measure. (See §4.3 for the definition of F-measure.)

4.3 Results of evaluation

In this sectionwe reportthe resultsof evaluating
the final versionof the learningsoftware. We report
the resultsfor English andfor Spanishand then the
results of a set of experimentsto determine the
impact of the training set size on the algorithm’s
performance in both English and Spanish.

For each language, we have a held-out
developmentest set and a held-out, blind test set.
We only reportresultson the blind test set for each
respective language.

4.3.1 F-measure

The scoringprogrammeasure$oth precisionand

recall, termsborrowedfrom the information-retrieval

community, where
_ humber of correct responses 5

number responses
R= number of correct responses (4.2)

number correct in key
Put informally, recall measureshe numberof “hits”
vs. the number of possible correct answers as
specifiedin the key file, whereasprecision measures
how many answers were corr@atescomparedo the
number of answers deliveredlhesetwo measuresf
performance combine to form one measure of
performancethe F-measurewhich is computedby
the weighted harmonic mean of precision and recall:
2
F- (B +1)rP (4.2)
(B°R)+P
where # representghe relative weight of recall to
precision (and typically hasthe value 1). To our
knowledge, our learned name-finding system has
achieveda higher F-measurethan any other learned
system when comparedto state-of-the-artmanual
(rule-based) systems on similar data.
4.3.2 English and Spanish Results
Our test set of English data for reportiregultsis
that of the MUC-6 test set, a collection of 30 WSJ
documents (we used a different test set during
development). Our Spanishtest setis that usedfor
MET, comprisedof articles from the news agency
AFP. Table4.1 illustratesNymble’s performanceas

compared to the best reported scores for each category.

Best Reported
Case | Language Score Nymble
Mixed | English 96 93
Upper | English 89 91
Mixed | Spanish 93 0

Table 4.1 F-measure Scores

4.3.3 The Amount of Training Data Required

With any learning technique, oreé the important
guestions is how much training dasarequiredto get
acceptableperformance. More generally how does
performancevary asthe training set sizeis increased
or decreased?We ran a sequenceof experimentsin
English and in Spanish to ttp answerthis question
for the final model that was implemented.

For English, there were 450,000 womafstraining
data. By thatve meanthat the text of the document
itself (including headlinesbut not including SGML
tags) was 450,00&ordslong. Given this maximum
size of training available to us, we successfully
divided the training materialin half until we were
using only one eighth of the originthining setsize
or a training set of 50,000 words for the smallest
experiment. To give a senseof the size of 450,000
words, that is roughly half the length of one edition
of the Wall Street Journal.

The resultsare shownin a histogramin Figure
4.1 below. The positive outcomeof the experiment
is that half as much training datawould have given
almost equivalentperformance. Had we used only
one quarter of the data or approximately 100,000
words, performancewould have degradedslightly,
only about1-2 percent. Reducingthe training set
size to 50,000 words would have had a more
significant decrease in therformanceof the system;
however, the performanceis still impressive even
with such a small training set.

100
90
80
70
60
50
40
30
20
10

e 2 B £B

Figure 4.1: Impact of Various Training Set
Sizes on Performance in English. The learning
algorithm performs remarkable well, nearly
comparable to handcrafted systems with as little as
100,000 words of training data.

On the other hand, the result also shows that
merely annotatingmore datawill not yield dramatic
improvementin the performance. With increased
training datait would be possibleto use even more
detailed models that require more data and could
achieve significantly improved overall system
performance with those more detailed models.

For Spanishwe had only 223,000 words of
training data. We also measuredhe performanceof
the system with half the training data or slightly
more than 100,00@ordsof text. Figure4.2 shows
the results. There is almost no change in
performanceby using as little as 100,000 words of
training data.

Therefore the results in both languageswere
comparable. As little as 100,000 words of training
data produces performance nearly comparable to
handcrafted systems.

100
90
80
70
60
50
40
30
20
10

0 =)

© 8 XE

SE S5

O3 =S

= =

Figure 4.2: Impact of Training Set Sze on
Performance in Spanish

5. Further Work

While our initial results have been qufevorable,
thereis still much that can be done potentially to
improve performanceand completely close the gap
between learnednd rule-basechame-findingsystems.
We would like to incorporatethe following into the
current model:

e lists of organizations, person names and
locations

e an aliasing algorithm, which dynamicallypdates
the model (where eg. IBM is an alias of
International Business Machines)

* longer-distancanformation, to find namesnot
captured by our bigram model

6. Conclusions

We have shown that using a fairly simple
probabilistic model, finding names and other
numerical entities as specifidy the MUC taskscan
be performedwith “near-humanperformance”,often
likened to an F of 90 or aboveWe havealso shown
that such a systemanbe trainedefficiently andthat,
given appropriatelyand consistently marked answer
keys, it can be trained on languagedoreign to the
trainer of the system;for example,we do not speak
Spanish,but trainedNymble on answerkeys marked
by native speakers. None of the formalisms or
techniquesgresentedn this paperis new; rather, the
approachto this task—the model itself—is wherein
lies the novelty. Giverthe incredibly difficult nature
of many NLP tasks, this example of a learned,
stochastic approadio name-findinglendscredenceo
the argument that the NLP community outhtpush
these approaches, to find thmit of phenomenahat

may be captured by probabilistic, finite-state
methods.

7. References

Aberdeen,J., Burger,J., Day, D., Hirschman,L.,
Robinson, P. and Vilain, M. (1995) In
Proceedings of the Sxth Message
Understanding Conference (MUC-6)Morgan
Kaufmann Publishers, Inc., Columbia,
Maryland, pp. 141-155.

Appelt, D. E., JerryR. Hobbs, Bear, J., Israel, D.,
Kameyama, M., Kehler, A., Martin, D.,
Myers, K. and Tyson, M. (1995) In
Proceedings of the Sxth Message
Understanding Conference (MUC-6)Morgan
Kaufmann Publishers, Inc., Columbia,
Maryland, pp. 237-248.

Church, K. (1988) Irecond Conference on Applied
Natural Language Processing, Austin, Texas.

Cover, T. and Thomas, J. A. (1991) Elements of
Information Theory, John Wiley & Sonsjnc.,
New York.

Miller, S., Bobrow, R., Schwartz,R. andIngria, R.
(1994) In Human Language Technology
Workshop, Morgan Kaufmann Publishers,
Plainshboro, New Jersey, pp. 278-282.

Viterbi, A. J. (1967) IEEE Transactions on
Information Theory, | T-13(2), 260-269.

WeischedelR. (1995) In Proceedings of the Sxth
Message Understanding Conference (MUC-
6)Morgan Kaufmann Publishers, Inc.,
Columbia, Maryland, pp. 55-69.

Weischedel, R., Meteer, M., Schwartz, R.,
Ramshaw, L. and Palmucci, J. (1993)
Computational Linguistics, 19(2), 359-382.

8. Acknowledgements

The work reportedherewas supportedin part by
the DefenseAdvancedResearchProjects Agency; a
technical agent for part of the work was Fort
Huachuchaunder contract number DABT63-94-C-
0062. The views and conclusionscontainedin this
documentarethoseof the authorsandshouldnot be
interpreted as necessarilyrepresentingthe official
policies, either expressear implied, of the Defense
Advanced ResearchProjects Agency or the United
States Government.

We would alsolike to give specialacknowledge-
ment to Stuart Shieber, McKay Professor of
Computer Science at Harvard University, who
endorsed and helped fostae completionof this, the
first phase of Nymble’s development.

