
INTELLIGENT TUTORING SYSTEMS:

THE PRACTICAL IMPLEMENTATION

OF CONSTRAINT-BASED MODELLING

A thesis

submitted in partial fulfilment

of the requirements for the degree

of

Doctor of Philosophy in Computer Science

in the

University of Canterbury

by

Brent. I. Martin

University of Canterbury

2001

ii

Acknowledgements

Thank you to my supervisor Dr Tanja Mitrovic, for her invaluable guidance during

my research and for making this period of study so enjoyable. Thanks also to my

associate supervisor Professor Ian Witten from Waikato University, who taught me

how to write and provided valuable feedback on this thesis. I am also grateful to the

other members of the Intelligent Computer Tutoring Group—especially Pramudi,

Mike, Kurt, Amali and Konstantin—for the many fruitful discussions on research in

progress. Thank you also to Jane Mackenzie for her help with the Language Builder

tutor, and the Canterbury University COSC programmers for keeping the machines

well oiled. I also appreciate the staff (especially Ray Bygate) and year seven students

at Akaroa Area School for their enthusiastic evaluation of the Language Builder ITS.

Finally, I thank my wife Suky and son Hugh for enduring the inevitable financial

constraints, for supporting me during this time, and for taking an active interest in my

research.

This research was supported by a University of Canterbury Doctoral Scholarship.

iii

Abstract

An Intelligent Tutoring System (ITS) differs from other educational systems because

it uses knowledge to guide the pedagogical process. It attempts to optimise the

student’s mastery of domain knowledge by controlling the introduction of new

problems, concepts and instruction/feedback. Central to this process is the student

model, which provides information about what the student knows. The state of the art

in student modelling is model tracing, which compares student actions against an

“ ideal” procedure.

Constraint-based modelling is a new domain and student modelling method that

describes only pedagogically informative states, rather than following the procedure

the student used to arrive at their answer. Ohlsson introduced the idea, which is based

on learning from performance errors, but did not provide details of how it should be

implemented. Even his definition of constraints is very broad. SQL-Tutor is an

existing ITS that uses a constraint-based model. The representation of constraints

within this system is as loose as Ohlsson’s description. The constraints in SQL-Tutor

are LISP code fragments, where domain structural knowledge is incorporated into the

constraints via ad hoc functions.

In this thesis we present a more specific representation for constraints that

obviates the need for complex user-defined functions. Constraints (and their

associated taxonomies and domain-specific functions) are specified as pattern

matches. This new approach has two advantages: the constraints are simpler to author,

and they can be used to generate solutions on demand. We have used the new

representation to create algorithms for solving problems and correcting student

mistakes, and for generating novel problems to present to the student. We present the

details of these algorithms and the results of both laboratory and classroom

evaluations. The solution generation algorithm is demonstrated in laboratory testing to

iv

be practical, and the problem generation algorithm, together with a new problem

selection method, exhibits improved learning performance in the classroom.

We also present the design and implementation of an authoring system for

constraint-based tutors and demonstrate its efficacy in authoring tutors for two

domains. One of these, a tutor for English language skills, was evaluated in an

elementary school classroom. This evaluation was a success. The students enjoyed

using the tutor, found the interface easy to use, and felt that they had learned a lot. An

analysis of their mastery of the constraints suggested that they did indeed learn the

underlying principles in the course of the session. The authoring tool enabled us to

develop this system quickly using a spelling resource book as the source of both the

domain taxonomy from which to produce the problems (i.e. a vocabulary of words to

use) and the principles for the constraints. The authoring tool provided all other

functions. This evaluation therefore showed that our authoring tool allows the rapid

creation of an effective ITS.

v

Table of Contents

1 INTRODUCTION ..1

1.1 INTELLIGENT TUTORING SYSTEMS...2

1.2 THE DOMAIN AND STUDENT MODELS...4

1.3 CONSTRAINT BASED MODELLING ..5

1.4 LIMITATIONS OF CBM...6

1.5 THESIS CONTRIBUTIONS AND OUTLINE ..7

2 BACKGROUND...12

2.1 INTELLIGENT TUTORING SYSTEMS...12

2.1.1 Architecture..14

2.1.2 Domain model and expert module..14

2.1.3 The Student model ..15

2.1.4 Pedagogical module...19

2.1.5 Communication Module..19

2.2 THE STATE OF THE ART: COGNITIVE TUTORS ..19

2.2.1 ACT theory: rules of the mind ..20

2.2.2 ACT-R and learning..21

2.2.3 Cognitive tutors..22

2.2.4 Example: LISP TUTOR..24

2.2.5 Summary...26

2.3 MOTIVATION FOR CHANGE..26

2.4 CONSTRAINT-BASED MODELLING..29

2.4.1 Learning from performance errors...29

2.4.2 CBM in ITS...31

2.4.3 Comparison with Cognitive tutors..32

2.4.4 Applicability of CBM..36

2.4.5 Example of a constraint-based system: SQL-Tutor ..37

3 ADDRESSING LIMITATIONS OF CBM ...43

3.1 FEEDBACK CAN BE MISLEADING..43

3.2 LIMITED PROBLEM SET ..47

vi

3.3 BUILDING AN ITS IS HARD...49

3.4 SUMMARY ...50

4 CONSTRAINT REPRESENTATION..51

4.1 CONSTRAINT REPRESENTATION...52

4.1.1 MATCH...52

4.1.2 TEST...54

4.1.3 TEST_SYMBOL ..55

4.1.4 Removing domain-specific functions: macros..56

4.1.5 Limitations of the representation..59

4.2 THE CONSTRAINT EVALUATOR ..60

4.3 SUMMARY ...64

5 PROBLEM SOLVING USING CONSTRAINTS...65

5.1 MOTIVATION ...65

5.2 THE APPROACH..68

5.3 PROBLEM SOLVING WITH CONSTRAINTS..69

5.4 CORRECTING AN ERRONEOUS SOLUTION ...70

5.5 EXAMPLES OF SOLUTION CORRECTION ..71

5.6 DISCUSSION...77

5.7 THE PROBLEM-SOLVING ALGORITHM ..78

5.7.1 Algorithm overview...78

5.7.2 Collecting corrections..79

5.7.3 Fixing errors...80

5.7.4 Putting it all together..85

5.8 ROBUSTNESS TESTING ...86

5.8.1 Testing robustness..87

5.9 CONCLUSIONS ...91

6 PROBLEM GENERATION..95

6.1 MOTIVATION ...97

6.2 IDENTIFYING THE TARGET CONSTRAINT ..97

6.2.1 Motivation...98

6.2.2 Increasing the knowledge depth ...98

6.2.3 Manually adding the concept hierarchy...99

6.2.4 Inducing the student model using machine learning ..103

6.2.5 Evaluation...105

6.2.6 Selecting the target constraints...107

6.3 BUILDING A NEW IDEAL SOLUTION ..108

vii

6.4 CONTROLLING PROBLEM DIFFICULTY ..110

6.5 CONVERTING TO NATURAL LANGUAGE ...114

6.6 PROBLEM GENERATION EXAMPLE..115

6.7 THE PROBLEM GENERATION ALGORITHM ..116

6.8 EVALUATION ...120

6.8.1 Testing of hypotheses 6.1 and 6.2...121

6.8.2 Classroom evaluation of hypotheses 6.3 and 6.4..123

6.8.3 Pre- and post-test performance..126

6.8.4 Problem difficulty ...126

6.8.5 Learning speed ...128

6.9 DISCUSSION...135

7 AN AUTHORING SYSTEM FOR CBM TUTORS..141

7.1 EXISTING AUTHORING SYSTEMS..142

7.1.1 REDEEM: adding instructional planning to CAI ...142

7.1.2 Demonstr8: programming by demonstration..143

7.1.3 Teaching by simulation: RIDES...146

7.1.4 Support for authoring the domain model..148

7.2 WETAS: A WEB-ENABLED CBM TUTOR AUTHORING SYSTEM..149

7.2.1 Scope...150

7.2.2 Implementation of WETAS..153

7.2.3 Building an ITS using WETAS..157

7.2.4 Example domain 1: SQL-Tutor ...165

7.2.5 Example domain 2: Language Builder ITS (LBITS)...167

7.2.6 Evaluation...169

7.2.7 Conclusions..173

7.2.8 Further work...174

7.2.9 Other domain paradigms..175

7.3 PROSPECTIVE AUTHORING TOOLS..175

7.3.1 Constraint learner ..176

7.3.2 Constraint editor...186

8 CONCLUSIONS...188

8.1 NEW REPRESENTATION..188
8.2 SOLUTION GENERATION ..189
8.3 PROBLEM GENERATION ...190
8.4 AUTHORING...192
8.5 CONCLUDING REMARKS ..192

APPENDIX A. SQL-TUTOR EVALUATION TESTS ...196

APPENDIX B. LANGUAGE BUILDER SURVEY QUESTIONS...200

viii

APPENDIX C. PUBLICATIONS..202

APPENDIX D. EXAMPLE CONSTRAINTS FOR SECTION 5.5 ..206

REFERENCES...210

ix

List of Tables

Table 1. Results for the training set ...89

Table 2. Results for the first test set (same population)...90

Table 3. Results for three students...106

Table 4. Test score results...126

Table 5. Aborted problems..126

Table 6. Attempts per problem..128

Table 7. Learning rates for individual students...131

Table 8. Learning rates for individual students: new constraint set...133

Table 9. Constraints mastered per problem...134

Table 10. Summary data for the LBITS evaluation...170

Table 11. LBITS survey results...170

x

List of Figures

Figure 1. Architecture of an ITS..14

Figure 2. Perturbation model ...18

Figure 3. SQL-Tutor interface (web-enabled version) ..38

Figure 4. Solution Space..69

Figure 5. Solution generation algorithm..79

Figure 6. Tidying constraint ..83

Figure 7. Constraints corrected per log..92

Figure 8. Concept hierarchy for “all tables present” ..100

Figure 9. Problem generation algorithm..120

Figure 10. Learning curves, cut-off = 40 problems...130

Figure 11. Learning curves, cut-off = 5 problems...130

Figure 12. Examples of individual learning curves...131

Figure 13. Error rates excluding constraints that are always true..132

Figure 14. Learning Curves using the new evaluator for both groups...134

Figure 15. Constraints mastered per problem..135

Figure 16. Problems available by difficulty ..137

Figure 17. WETAS architecture..151

Figure 18. WETAS interface (SQL domain) ...154

Figure 19. WETAS input files...155

Figure 20. DOMAINS.CL ...159

Figure 21. Example problem from LBITS/LAST-TWO-LETTERS.PROBANS160

Figure 22. Screen appearance of Lewis diagram question ..161

Figure 23. Example of a Lewis diagram problem ...161

Figure 24. Examples of syntactic constraints..163

Figure 25. Examples of semantic constraints..164

Figure 26. WETAS running the Language Builder (LBITS) domain..167

Figure 27. Error rate for raw constraint data ...171

Figure 28. Error rate for revised constraint set ..173

Figure 29. Constraint for checking uniqueness of relationship names..176

1

1 Introduction

Intelligent Tutoring Systems (ITS) differ from classic computer-aided instruction

(CAI) in the way they adapt to users’ individual needs. This is accomplished by

modelling what the student does or does not understand. The basis of this student

model is a domain model, which is a detailed description of the subject being taught.

A common element of an ITS is its provision of a scaffolded environment for the

student to practise the skill they are trying to learn. The domain and student models

may be used to provide detailed feedback on student answers, select new problems,

and indicate to the user their current strengths and weaknesses. They are an effective

way to teach students, and gains in the order of 1 to 2 standard deviations in

performance are possible when compared with classroom teaching alone (Bloom

1984; Anderson, Corbett, Koedinger and Pelletier 1995). Teaching by ITS promises to

be more efficient than one-on-one tutoring, although not necessarily as effective.

Unfortunately, building them is hard and this imposes a major bottleneck in their use

(Murray 1997).

Constraint-Based Modelling (CBM) (Ohlsson 1994) is an effective approach that

simplifies the building of domain models. However, CBM is still a young approach

that lacks detail. In this thesis we investigate how to build effective ITSs using CBM.

We present a representation for CBM that is easy to use and facilitates automatic

problem solving. We then demonstrate how it can be used to decrease the effort

required to build an ITS by automatically providing detailed, student-specific

feedback, and by generating new problems according to students’ needs. The

remainder of this chapter introduces ITS and CBM, describes our thesis, and outlines

the structure of the remainder of this document.

2

1.1 Intelligent tutor ing systems

In the early 1970s, Intelligent Tutoring Systems began to evolve from simple

computer-aided instruction (CAI). In simple CAI the interface is static with respect to

each user. Information is presented in a lecture (or “storyboard”) fashion, grouped

into topics to form some sort of curriculum. The student navigates their way through

the curriculum according to their needs, however each student is presented with

exactly the same information and choices. They may also be asked questions either on

request or automatically, to test their understanding so far. Feedback on their answers

is usually restricted to an indication of whether their answer was right or wrong, and

what the correct answer was. If any further feedback is required, such as comments on

individual incorrect answers, it must be handcrafted for each question.

The problem with such systems is two-fold. First, the information they present

does not target their audience. Although the student may select parts of the curriculum

they are interested in, this is performed at a very high level, and the actual content of

each topic is unvarying. The system may therefore present information that the

student is already familiar with, requiring them to wade through it in search of the

parts that are of use. Worse, it may make assumptions about what the student knows,

even though they have not covered the required part of the curriculum. The student

will then need to hunt for the relevant concepts in the rest of the material.

This problem extends to the setting of exercises. On conclusion of a topic, a

simple CAI often poses some questions so the student can see how well they have

understood the material. However, the system may make invalid assumptions about

what the student knows at this point, and hence set problems that they are unable to

solve. Also, if the student has understood most of the content but is struggling with a

particular aspect, the system is unaware of this and may not set any/enough exercises

in the problem area.

Second, the feedback on problems is of limited use. People learn by applying the

relevant skills, and so problem solving is an important part of learning. However, the

usefulness of performing exercises is dependant on how much can be learned from

mistakes made (Ohlsson 1996). To be helpful, the system needs to tell the student why

the answer was wrong. In simple CAI, this is difficult, because the system has no

3

understanding of the domain: it simply presents information and problems that have

been stored by a teacher. Any additional feedback is developed from scratch for each

problem.

Early CAI adopted an approach called “ linear programming”, where the topic was

presented in very small steps, such that questions posed have at least a 95% chance of

being answered correctly (Last 1979). CAI has since evolved into ITS (and other

methods) via a series of improvements, which have deepened the level of adaptivity.

Some examples are (O'Shea and Self 1983):

� Branching, e.g. (Ayscough 1977) – the program adapts its response

depending on the answer given. For example, it might present corrective

feedback for a given error, or engage in a dialogue;

� Generative (Palmer and Oldehoeft 1975) – generate new problems of

appropriate difficulty for the student, according to their current

performance;

� Simulation, e.g. (McKenzie 1977) – the student interacts with a “virtual

laboratory” ;

� Games

� Dialogue systems (Carbonell 1970) – an extension of branching CAI where

the student interacts with the system in a natural language

Intelligent Tutoring Systems (ITS) have evolved from these early attempts. They

are an example of adaptive educational systems. Adaptivity is an important extension

of CAI. Instead of presenting static information, adaptive systems use domain

knowledge to actively decide what to show the student next. Techniques such as

active hypermedia (Brusilovsky 2000; Murray, Piemonte, Khan, Shen and Condit

2000) combine and format content for presentation, depending on what the student

has so far seen and understood. Intelligent coaches (Lajoie and Lesgold 1992) tailor

the interface of online “coaches” so that the help they provide is useful without being

extraneous. Practice-based systems select problem tasks based on the students’

current understanding. Some systems combine aspects of all three approaches. A key

attribute of ITS is that the adaptive aspects of the system are separated from the

course content. In other words delivery of the course material is supported by features

that facilitate adaptivity, such as a domain and student model, teaching strategy, etc.

4

1.2 The domain and student models

The benefits of ITS over standard CAI are a result of their adaptivity, which in turn is

derived from their deep modelling. ITSs contain two main models: a domain model

and a student model.

The domain model represents the subject being taught in such a way that the

system can use it for reasoning. There are many possible representations, including

semantic networks, production rules and constraints. What representation is adopted

depends partly on how it will be used. It supports other functions such as information

selection and representation, problem selection, and feedback generation.

Whereas the domain model is common to all users of the system, the student

model varies between students, or groups of them. It is a representation of their

beliefs. This may take many forms, including general measures such as level of

competence, rate of acquisition, attentiveness and motivation. Commonly, it includes

detailed information such as which parts of the curriculum the student has visited,

what problems they have solved and not solved, and, ideally, which concepts they

have grasped or failed to grasp. The student model provides the ITS with adaptability.

Given the system’s current state plus the information from the student model,

decisions will be made about how next to proceed. Because the student model is

included, behaviour will be unique to that student.

The student model is usually related in some sense to the domain model. One

common approach is to use an overlay: the student model is a kind of “window” to the

domain model, providing a unique view of the underlying domain concepts coloured

by the student’s beliefs. As a simple example, it may specify that each individual

knowledge unit has been learned or not learned. When talking about the student

model, it is therefore not usually possible to separate it from the domain model, or,

conversely, the representation of the domain model usually characterises much of the

student model.

5

1.3 Constraint based modelling

CBM is a method that arose from experiments in learning from performance errors

(Ohlsson 1996). Ohlsson proposes that we often make mistakes when performing a

task, even when we have been taught the correct way to do it. He asserts that this is

because the declarative knowledge we have learned has not been internalised in our

procedural knowledge, and so the number of decisions we must make while

performing the procedure is sufficiently large that we make mistakes. By practicing

the task however, and catching ourselves (or being caught by a mentor) making

mistakes, we modify our procedure to incorporate the appropriate rule that we have

violated. Over time we internalise all of the declarative knowledge about the task, and

so the number of mistakes we make is reduced.

Some domain model methods such as model-tracing (Anderson, Corbett,

Koedinger and Pelletier 1995) check whether or not the student is performing

correctly by comparing the student’s procedure directly with one or more “correct”

ones. In CBM, we are not interested in what the student has done, but in what state

they are currently in. As long as the student never reaches a state that is known to be

wrong, they are free to perform whatever actions they please. The domain model is

therefore a collection of state descriptions of the form:

“ If <relevance condition> is true, then <satisfaction condition> had better

also be true, otherwise something has gone wrong.”

In other words, if the student solution falls into the state defined by the relevance

condition, it must also be in the state defined by the satisfaction condition.

SQL-Tutor (Mitrovic 1998) is an example of an ITS that uses CBM. The domain

model consists of over 500 constraints. A simple overlay student model is used, which

records the number of times each constraint has been satisfied or violated. Although

we have built a new tutor using the methods described in this thesis (see Section

7.2.5), we used SQL-Tutor as the basis of much of this research. This is chiefly

because it already contains a model for a rich and complex domain, the SQL database

language. This enabled us to test our ideas thoroughly without needing to build a new

6

domain model of similar complexity from scratch, which is difficult and time-

consuming; instead we modified the existing domain model to fit our new approach.

Further, it provided us with a full working system on which we could test individual

ideas. Finally, SQL-Tutor had already been subjected to four evaluations between

1998 and 2000, providing a wealth of student performance information that could be

used as input for our testing.

1.4 Limitations of CBM

In his definition of CBM, Ohlsson does not include implementation. In particular, the

domain model is limited purely to describing how to critique a student solution. Even

the student model representation is left for further research. SQL-Tutor, for example,

uses a very simplistic student model that does not include any form of curriculum.

CBM is also not concerned with how problems are produced or selected, and provides

detail of only one type of feedback: declarative messages that are attached to each

constraint.

Many ITSs contain a problem solver, whose function is to determine the correct

solution to a given problem state, or, at the very least, the next best action to take.

Because a constraint-based model contains all the required information to determine

whether or not a solution is in a valid state, we propose that this is sufficient to solve

the problem. Further, we contend that because CBM always considers the student

solution’s state, it is capable of correcting any student solution. We argue that this is

useful because it allows the system to show the student how to eliminate their

mistakes without misleading them by introducing unnecessary changes.

CBM’s modular nature allows information relating to different domain concepts

to be mixed together at will, subject to satisfying the constraints. This provides an

opportunity for automatic experimentation within the domain: SQL-Tutor could

potentially try patching different SQL constructs together to produce novel SQL

statements. Since the answers to problems in this domain are SQL statements, we can

use this technique to craft new problems.

The basis of our work was therefore to produce a representation for CBM that

allows it to be used for problem solving, and to exploit this capability by adding

7

algorithms for solving student problems and for generating new exercises

dynamically.

1.5 Thesis contr ibutions and outline

Constraint-based modelling is a promising approach with a plausible psychological

foundation. However, experiences with SQL-Tutor suggest that while such models are

fairly easy to build, on their own they are of fairly limited utility. This thesis explores

the practicalities of building ITSs using CBM. It proposes a representation for

constraints, and a set of algorithms that extend the capabilities of CBM to problem

solving and problem generation. It proposes and experimentally evaluates the

following four hypotheses:

� Hypothesis 1: It is possible to build a constraint-based domain model that

contains sufficient information to solve problems and correct student

solutions, by adopting a constraint representation that makes all of the

logic in each constraint reversible;

� Hypothesis 2: Using the representation defined in hypothesis 1, it is

possible to develop an algorithm for solving problems and correcting

student answers, which does not need further domain information to

achieve this;

� Hypothesis 3: CBM can also be used to generate new problems that fit the

student’s current beliefs, and this is superior to selecting one from a pre-

defined list;

� Hypothesis 4: Because the new representation is domain-independent, it

may form the basis of an ITS authoring tool that supports the development

of new CBM tutors.

For hypothesis 1 to be true for a given domain, the constraint representation must

be sufficiently expressive that it can describe the entire model without relying on

external functions, yet simple enough that all operations it performs (such as testing

for a valid value of a term) can be reversed, i.e. given that term t is valid, we can say

8

why it is so. ITS domains come in many different types, such as procedural,

declarative and open-ended. Whether hypothesis 1 is true for all domains (and if not,

what characterises the domains for which it is true) remains an open question. In this

thesis we explore two domains: the SQL database query language, and English

vocabulary and spelling. We develop a representation that is suitable for both these

domains.

Similarly, the algorithm we develop to demonstrate hypothesis 2 works quite well

for the SQL domain but is not guaranteed to work for all others. Also, the behaviour

of the algorithm relies heavily on the completeness and correctness of the domain

model. In Chapter 5 we demonstrate that the algorithm performs satisfactorily in the

SQL domain but is not flawless, because of problems with the constraint set. Instead

of trying to prove hypothesis 2 for all domains, we set ourselves the practical target of

showing that hypothesis 2 is feasible in that solution generation can be performed

acceptably in a complex domain such as SQL, despite errors in the domain model.

For hypothesis 3 we discuss the possibility of generating problems on the fly in

Chapter 6, but we do not demonstrate that it works. Again, we are at the mercy of the

constraint set, which makes the approach risky. Instead, we propose a more practical

solution: we use problem generation to create a large problem set offline, which

increases the chance that the system will choose a suitable problem in a given

situation. In doing so, we develop a novel method of determining problem difficulty

based on the constraints, which is needed to create appropriate problems on the fly.

This new difficulty measure turns out to provide a more accurate means of problem

selection.

We have built an ITS authoring tool that uses our new representation. The domain

model is entirely represented in data files using the new constraint language, with no

added code for external functions. We therefore satisfy hypothesis 4 for the

representation chosen. Again, it remains an open question whether there are types of

domains for which this would not be possible.

An outline of the thesis structure follows. In Chapter 2, we briefly describe the

fundamentals of ITS, and give details on the current state of the art, Cognitive tutors.

We then introduce constraint-based modelling, and discuss how it compares to

9

Cognitive tutors, and show why CBM is a worthwhile approach to research. We also

describe SQL-Tutor, an example of CBM applied to a complex domain.

Chapter 3 describes the limitations of CBM as implemented thus far and gives the

motivation for our work. In Chapter 4 we introduce a new representation for

constraints that we have developed, which is designed to be easy to use and readily

reasoned about by the system. This representation forms the basis of the work in the

next three chapters. Chapter 5 discusses the idea of solving problems (and correcting

student answers) directly from constraints, and details the algorithm we have

developed. This algorithm makes it possible for the system to return (as feedback) a

corrected version of a student’s incorrect answer. We also give the results of a

laboratory evaluation of this approach. In Chapter 6 we extend the approach to

generating novel SQL statements, and describe how this is used to build new

problems for the student to solve, based on their current student model. We present

the results of both a laboratory test and a six-week classroom evaluation. We also

describe a method for inducing high-level student models using machine learning,

which we developed while trying to determine the best way to select target constraints

for problem selection.

The purpose of our research is to facilitate the authoring of new CBM tutors. In

Chapter 7 we describe an authoring system we have implemented for building text-

based CBM tutors. We have reimplemented a tutor (SQL-Tutor) using this system,

and built a new system for teaching English language skills. Both are described. We

also discuss an algorithm for building new CBM domain models based on the

MARVIN machine learning system. Finally, we summarise the results of our research

and reiterate fruitful areas for future work. This thesis makes the following

contributions to research in ITS:

� We develop a representation for constraints that is simple and transparent, and

show that it is sufficiently expressive for two domains—English vocabulary

and SQL—the latter being structurally complex;

� We present an algorithm for correcting student solutions that uses only the

constraints to guide it, and allows constraint-based tutors to show the student

10

hints about what they should have done. We demonstrate its feasibility in a

complex domain (SQL);

� We develop an algorithm for generating new problems from the constraint set

and demonstrate its efficacy in the SQL domain. We also introduce a method

for determining the difficulty of each problem with respect to an individual

student, and demonstrate via a classroom evaluation that a system using both

problem generation and the new difficulty measure outperforms one that uses

neither;

� We implement a constraint-based authoring system that uses the new

representation and demonstrate its effectiveness in the domains of SQL and

English vocabulary. We show through a classroom evaluation how the latter is

an effective tutoring system, despite being built in a very short time by

someone who was not an expert in teaching that domain;

� Through all the above, we increase the practicability of implementing

constraint-based tutors, and thus make a significant contribution to the field of

ITS.

In the course of this research, we have prepared and presented 11 publications,

which are listed in Appendix C.

11

12

2 Background

2.1 Intelligent tutor ing systems

Computers have been used in education since the sixties (O'Shea and Self 1983). The

first Computer Aided Instruction (CAI) systems presented material to the student in a

static “storyboard” fashion, where every student received the same material, although

they may have had some control over how they navigated through the curriculum. At

appropriate (again, static) intervals, the system posed questions for the student to

answer. The earliest CAI systems (so-called “ linear” systems) assumed that the

student’s answer would nearly always be correct, and that the system needs

modification if this is not true (O'Shea and Self 1983). Later systems included

“branching” , where the response to a student’s answer differed according to what

their response was. However, because these CAI systems lacked any knowledge of

the domain being taught, specific feedback was difficult, because it had to be hand-

crafted for each problem. As a consequence, the system’s response was often limited

to indications of right/wrong or presentation of the correct answer, and so the

problems posed usually required only yes/no, multi-choice or a short (e.g. numeric)

answers.

CAI systems can achieve modest gains in learning performance over classroom

learning (Kulik, Kulik and Cohen 1980), however this falls short of individual one-

on-one (human) tutoring, which may improve students' learning performance by up to

two standard deviations (Bloom 1984). This prompted researchers to investigate ways

that computer-based teaching environments could more closely approximate human

13

tutors. Many approaches have been tried, some very anthropomorphic, such as

animated agents (Johnson, Rickel and Lester 2000) and natural language dialogue

systems (Petrie-Brown 1989). The latter allows computers to emulate classic tutoring

behaviour such as Socratic dialogues.

Intelligent Tutoring Systems (ITS) may mean any system that uses advanced

techniques such as those described to improve teaching/learning performance.

However, in more recent times ITS has come to mean teaching systems that “care”

(Self 1999). Self describes “care” as meaning that ITSs are sensitive to what the

student knows, what they misunderstand, and what they want to do. In other words,

ITS attempts to tailor the system to the individual using it.

Even under this more restrictive definition of ITS there remain many different

possible approaches. Cognitive Tutors (Anderson, Corbett, Koedinger and Pelletier

1995) provide a problem-solving environment with rich feedback. Collaborative

learning systems (Dillenbourg and Self 1992; Soller, Goodman, Linton and Gaimari

1998) try to facilitate positive interaction between students by promoting interaction,

encouraging participation, supporting collaborative skill practice and promoting group

processing, rather than directly tutoring each individual knowledge in the domain

being learned. Computer coaches such as SHERLOCK (Lajoie and Lesgold 1992)

present the system as both an environment in which the student can practise tasks, and

as a more advanced peer who can lead the student through impasses and thus enable

them to work on problems that would otherwise be out of reach. Simulation tutors

(Alexe and Gescei 1996; Satava 1996; Yacef and Alem 1996; Forbus 1997; Munro,

Johnson, Pizzini, Surmon, Towne and Wogulis 1997; Rickel and Johnson 1997)

provide an environment in which the student can experiment in the chosen domain

with computer direction. Some tutors fall into more than one of these categories: for

example, SHERLOCK is both a simulation tutor and a coach.

In this thesis we are primarily interested in systems like the Cognitive Tutors,

which support learning by problem solving. The student is given a problem in the

chosen domain, which they attempt to answer. The main roles of the system are to set

the problem, and to provide rich help and feedback as the student progresses. Lajoie

(Lajoie 1993) identifies four types of cognitive tools that can be identified by the

functions they served: those that (1) support cognitive processes such as memory and

14

metacognitive processes, (2) share the cognitive load by providing support for low-

level skills, (3) allow learners to engage in activities that would otherwise be beyond

their reach, and (4) allow learners to generate and test hypotheses in the context of

problem solving. The ITSs we are concerned with cover at least the last three of these.

However, they most strongly fit category 3. By providing rich and detailed feedback

during problem solving, they allow the student to tackle problems that they would be

unable to solve on their own. In this context they are like an individual human tutor

coaching a student through a difficult problem by teaching them the knowledge and

skills they currently lack to complete the exercise.

2.1.1 Architecture

Many different architectures exist for intelligent tutoring systems. However, most

share a common set of functional units as shown in Figure 1 (Beck, Stern and

Haugsjaa 1996). Each of these is now described.

2.1.2 Domain model and expert module

The domain model contains a representation of the information to be taught. It

provides input into the expert module, and ultimately is used to produce detailed

feedback, guide problem selection/generation, and as a basis for the student model.

The domain model may take many forms, depending on the knowledge

representation used, the domain it represents, and the granularity of the information

Figure 1. Architecture of an ITS

Student
Modeller

Pedagogical
Module

Communication
Module

Domain
Model

Expert Module

15

being represented. In page-based systems such as adaptive hypertext (Brusilovsky

2000) or adaptive storybook systems such as those produced by the REDEEM

authoring system (Ainsworth, Grimshaw and Underwood 1999), domain knowledge

is stored at the page level, and provides basic information about the content of the

page, which aids in problem selection and course sequencing. In Cognitive tutors, the

domain model consists of low-level production rules that completely describe the

expected student behaviour down to “atomic” thought components (Anderson and

Lebiere 1998). Simulation-based systems, e.g. RIDES (Munro, Johnson, Pizzini,

Surmon, Towne and Wogulis 1997), use the domain model to describe how each

component of the simulation should behave (i.e. what actions are possible with this

object, and what the consequences of each action should be), and how components are

interrelated. Constraint-based systems describe the possible (and pedagogically

interesting) valid states that an answer may occupy.

The expert model uses the domain knowledge to advise other parts of the system.

It may indicate the relative difficulty of curriculum sections or problems, such that the

pedagogical module can select the next task. In Cognitive tutors it identifies whether

or not the student’s current solution is on track and, if not, what has gone wrong. It

may also be able to run the domain model to solve the problem from a given state. In

constraint-based systems it evaluates the student solution against the constraints to

determine what concepts have been misapplied.

2.1.3 The Student model

The student model contains information specific to each individual student (or,

possibly, populations of students), which is used to tailor the system’s response to

individual needs. The student model does not actually do anything by itself. Rather, it

provides input to the pedagogical module.

Because student modelling is so central to ITS, it is also a controversial area.

Initially, the goal was for the student model to model the student’s mental state as

completely as possible. Modellers therefore tried to represent many different mental

constructs and attributes, such as learned facts and omissions in knowledge, mal-

formed knowledge, relevant real-world experiences, attentiveness, tiredness, and so

on. The task quickly became impossible and pessimism set in. Then, in 1988 Self

16

published the paper “Bypassing the intractable problem of student modelling” , which

sought to find a solution to the impasse (Self 1990). Self proposed four “ rules” of

student modelling, which sought to overcome the pessimism and silence some of ITSs

detractors. They are:

1. Avoid guessing. Have the student supply information such as the current goal,

if it is needed by the system, rather than trying to infer what they are doing.

This decreases the requirements of the system, and reduces the likelihood of

making decisions about actions based on incorrect assumptions;

2. Don’ t diagnose what you can’ t treat. There is no point in modelling

information that will never be used by the pedagogical module. Rather than

trying to model everything you can about the student, decide what pedagogical

actions you wish to take, and build the student model to support it;

3. Empathise with the student’s beliefs. Don’ t label them as bugs if they

disagree with the system, but rather strive to converge the system and the user

beliefs. This means, for example, being mindful that the student might be

correctly solving the problem, but in a different way to the system. Strive for

sufficient flexibility that the system can accept, and adapt to, different

problem-solving approaches;

4. Don’ t feign omniscience. Assume the role of “ fallible collaborator” . That is,

allow the model to be overridden by the student, rather than taking complete

control and refusing to relinquish it.

Following Self’s paper, there has been much more research into student modelling,

with many different systems being devised. However, most of these fall into three

main approaches (Holt, Dubs, Jones and Greer 1994): overlay models, perturbation

models, and other methods. Each is now described.

Overlay models

These assume that the domain model contains all of the concepts the student must

learn, and that the student knows a subset of this information. The task of teaching is

therefore seen as filling in the holes in the student’s knowledge until they have

learned sufficient of the model to achieve mastery. For a production rule domain

17

model this means that all rules have been applied with sufficiently few errors that they

can be said to be learned. In an adaptive hypertext system all of the curriculum has

been either covered, or is considered learned (because more comprehensive material

has been covered), with enough problems on each page answered correctly. In a

simulation the student may have successfully applied all the procedures they are

required to learn (such as resuscitating the simulated drowning victim). A variation on

overlay models is the differential model, which assumes that different parts of the

domain have different importance, and so models the difference between student

knowledge and the expected student knowledge rather than the entire domain. The

expected subset may vary over time, thus “ forgiving” some gaps in the student’s

knowledge early on but remediating them later, as the expected model changes to

require them. WEST (Burton and Brown 1978), a gaming system for teaching

arithmetic, is an example of such a differential model.

Whilst many different systems fall into the general category of overlay systems,

they may vary greatly in their specific implementations, particularly how they judge

which parts of the domain are learned and which are not. The simplest method is to

consider a knowledge element learned after it has been successfully applied n times.

Some Cognitive Tutors (Anderson, Corbett, Koedinger and Pelletier 1995) use a

complex Bayesian formula to calculate the probability that each production rule has

been learned. It takes into account several a priori probabilities: that the student

already knew the production, that they will learn it at a given opportunity to apply it;

that they will correctly guess how to use it, and that they will accidentally misuse it,

even if they know it. Then, after each step, they calculate and update the probability

that the student actually knows the rule, given their observed performance. This

information can then be used to predict performance, and thus help select new

problems. Mayo and Mitrovic (Mayo and Mitrovic 2000) use a similar method for a

constraint-based student model. The Cardiac Resuscitation simulation system, or

Cardiac Tutor (Eliot and Woolf 1995), estimates the desirability that the system end

up in a given simulation state (e.g. patient fibrillating) given the student’s behaviour

so far, and the probability that the student’s behaviour will lead it to this state. This

information is used to adjust parameters of the simulation such that the desired state is

more likely to be reached. Many other schemes exist.

18

Perturbation models

Whereas an overlay model assumes that the student’s knowledge is a subset of that of

an expert, a perturbation model recognises that the student may harbour

misconceptions, or “buggy knowledge”, which must also be represented. Figure 2

illustrates the notion of a perturbation model.

Figure 2. Perturbation model

Building a perturbation model usually requires that the underlying domain model

contain information about the mistakes students are likely to make, or “bug libraries”

(Burton 1982) so that they can be identified in individual students’ behaviour. For

example, model-tracing tutors often include incorrect productions, which represent

commonly made mistakes.

Other approaches

Researchers have recently begun to use machine learning to try to induce student

models. ADVISOR (Beck and Woolf 2000) uses a functional approximator to predict

the time taken to solve the next problem and the probability that the student will

answer it correctly, based on the complexity of the problem, the student’s proficiency,

and the number of hints they have received for this problem. In Section 6.2 we use a

variation of the rule induction algorithm PRISM (Cendrowska 1988) to infer a high-

level student model from the low-level constraint information (Martin 1999). Gilmore

and Self (Gilmore and Self 1988) similarly use an ID3 type classification system to

learn the concepts the student has and hasn’ t learned.

Expert Knowledge

Learned
Concepts

Buggy
Concepts

Student Knowledge

Not Learned

19

2.1.4 Pedagogical module

This module decides what to present to the student next. It uses information from the

student, domain and expert models to arrive at each decision. In effect, this module

models the “ teaching style” to be applied. For example, it may favour examples over

the presentation of static text. It may make both low-level decisions, such as the level

of difficulty of practice exercises, and high-level ones, such as when the student

should move to the next topic of the curriculum. There are many different forms,

depending on the teaching style being modelled, and the kind of information

available: adaptive hypertext systems may only control page presentation, while the

pedagogical module of a Cognitive tutor may determine problem difficulty, level of

feedback, and when to declare that a portion of the curriculum is learned.

2.1.5 Communication Module

Also known as the interface module, it interacts with the learner, displaying

information and accepting input from the student.

In this research, we are primarily interested in the domain and student models.

With the exception of the authoring system in Chapter 7, which is a complete system

built around CBM, we have intended the methods we have developed to be

independent of interface or pedagogy.

2.2 The state of the ar t: Cognitive Tutors

Cognitive tutors (Anderson, Corbett, Koedinger and Pelletier 1995) model the domain

to be learned as a runnable model (such as a set of production rules), that map out all

the valid ways a student may solve the problem. Based on Anderson’s ACT-R theory

or “ rules of the mind” (Anderson 1993; Anderson and Lebiere 1998), they were

initially proposed partially as a means of validating Anderson’s theories. Since then

they have become successful tutors in their own right, the most celebrated being the

Algebra Tutor, which has been shown to provide gains of 1 SD (over non-tutor users)

in the subject of secondary school algebra (Koedinger, Anderson, Hadley and Mark

1997).

20

2.2.1 ACT theory: rules of the mind

The central tenet of Anderson’s theory is that the processes of thought can be

modelled using declarative and procedural knowledge. Whereas others have argued

over which of these (if either) are a better representation of the mind, e.g. (Winograd

1975), Anderson contends that both are necessary. To be able to perform a task, a

person needs the required procedural knowledge. However, before they can learn this

they first need the underlying declarative knowledge. Learning then becomes a two-

step process: first the student must acquire the appropriate declarative knowledge, and

then they must develop this into the required procedural knowledge. Although

humans can perform tasks where they have forgotten the declarative knowledge that

led to their acquisition of the skill, Anderson asserts that they must have had that

knowledge at some point.

Anderson produced a formal representation for declarative knowledge using

chunks (Miller 1956) and procedural knowledge (production rules) to describe a

person’s knowledge state. This representation, plus the rules for their use and

creation, forms the ACT theory. Since its inception in 1976, the ACT theory has been

modified heavily, giving rise to several major versions: ACTE, ACT*, and several

versions of ACT-R, of which the current is ACT-R 5.0. During this time Anderson

has refined the definitions for chunks and procedural rules by restricting what can be

represented in a single chunk or rule, and the way in which they can be generated. For

example, a production rule may only produce one of the following six combinations

of effects: no change, goal elaboration (current goal modification, no change to the

goal stack), side effect (new goal on stack, no modification to current goal), return

result (modify current goal, push new goal on stack), pop unchanged (pop completed

goal without modification), and pop changed (modify current goal and pop off the

stack). He believes his latest representation models the atomic components of thought.

This is backed by empirical evidence: given an appropriate latency for the firing of

each production rule and the retrieval of each chunk, simulations of tasks using

Anderson’s model display behaviour where the time taken to perform a task correlates

closely with human performance on a wide variety of tasks.

21

2.2.2 ACT-R and learning

Any theory that describes the structures of thought must also be able to describe how

they got there. ACT-R contains theories of learning for both declarative and

procedural knowledge. As stated previously, production rules can only make

modifications to goals. Since productions are also the only means of performing a

mental action, goal chunks must be used to store new declarative knowledge. In ACT-

R 4.0 when a novel problem is solved, a goal chunk is stored that essentially

represents the solution to the solved problem (such as “ the answer to 6+4 is 10”). If a

person later solves a problem that is similar to an existing one, the two may be

merged to form a more general declarative chunk. Thus declarative knowledge may

be obtained from performing some procedure and remembering the result. For

example, some children learn their addition tables by using counting to add numbers

and remembering the answer. Note that this learning process is not deterministic:

having noted that 6 plus 4 is 10, the child may subsequently fail to remember this fact

and again resort to counting. However, the more times the child encounters the

problem 6+4, the more likely they are to remember the answer. This is born out by

experiment.

ACT-R 4.0 also describes the learning of procedures. As a person performs some

procedure, they may at intervals seek to understand what they have done, so as to be

able to repeat the task. ACT-R represents this via a dependency goal, which specifies

the relationship between two (encountered) goals and the constraints upon when this

dependency is valid. Consider the following point in a multi-column addition

problem, which a child is being shown how to perform:

 23
+34
- - -
 7

At this stage the student is aware that 3 + 4 = 7. They have an initial state where no

numbers have been filled in, followed by the next state where “7” has been written.

They also have a declarative chunk that corresponds to the two numbers in the

22

column, namely “7 is the sum of 3 + 4” . They now create the dependency goal (in

pseudocode):

I ni t i al goal i s ADD- COLUMN wi t h val ues 3 and 4, and an answer of
NI L
Modi f i ed goal i s ADD- COLUMN wi t h val ues 3 and 4, and an answer of 7
Const r ai nt i s FACT34: ADDI TI ON- FACT 3 + 4 = 7

ACT-R now pops this dependency goal and creates a procedural rule from it. Since

the values “3” and “4” appear in the initial and modified goals, plus the dependency,

ACT-R assumes that such repetition is not coincidence, but that it indicates that such

terms can be variablised, so the following rule can be induced:

I F
 I ni t i al goal i s ADD- COLUMN wi t h val ues N1 and N2, and answer NI L
AND
 Ther e exi st s ADDI TI ON- FACT N1 + N2 = SUM
THEN
 Modi f y goal t o ADD- COLUMN wi t h val ues N1 and N2, and answer SUM.

ACT-R 4.0 also provides a theory for the learning of the sub symbol parameters, i.e.

how fast each piece of declarative knowledge can be retrieved and the speed and

utility of performing the production rules. Together these four aspects of learning

(creating declarative chunks, merging/generalising chunks, dependency goals for

procedural learning, and retrieval speed and utility) constitute a robust theory of

learning based on ACT-R’s definitions of the atomic components of thought, which

are well corroborated in practise.

2.2.3 Cognitive tutors

Cognitive tutors were initially developed in part to validate the (then) ACT* theory of

mind. An early goal was that the tutors should possess a plausible model of what the

student was trying to learn:

“The core commitment at every stage of the work and in all applications is that

instruction should be designed with reference to a cognitive model of the competence

that the student is being asked to learn. This means that the system possesses a

computational model capable of solving the problems that are given to students in the

ways students are expected to solve the problems.”

23

(Anderson, Corbett, Koedinger and Pelletier 1995).

Thus, from the outset Cognitive tutors have followed (versions of) the ACT-R theory

of learning as described above, which continues to this day. Recall that learning in

ACT-R is described as the acquisition of declarative knowledge chunks, followed by

the compilation of procedural rules that apply declarative knowledge to tasks being

mastered. Anderson believes that the acquisition of declarative knowledge is

relatively straightforward and unproblematic compared with the subsequent

refinement into procedural knowledge. Hence, Cognitive tutors focus on the

acquisition of production rules and represent their domain models in this manner,

supported by declarative knowledge chunks, which are assumed to already be learned.

Initial work on Cognitive tutors was intended to support the ACT theory of skill-

acquisition by showing that learning could be achieved by getting students to behave

like the production-rule model. This required from the outset that the domain model

be a complete model of the task being performed, specified using production rules.

Tutoring is achieved using a method known as model tracing. As the student works at

the problem, the system traces her progress along valid paths in the model. If she

makes a recognisable off-path action she is given an error message indicating what

she has done wrong, or perhaps an indication of what she should do. If the action is

identified as being off-path but cannot be recognised, she may only be told that it is

incorrect, but not why. Because of the combinatorial infeasibility of tracking the

student’s state relative to the correct path throughout the entire domain space, early

Cognitive tutors forced the student to stay on a correct path. Later tutors relaxed this

requirement somewhat, however this was done in an ad hoc way. For example, later

versions of the LISP tutor (Anderson, Farrell and Sauers 1984) allowed delayed

feedback, which dropped the necessity for the student to stay on a recognised path.

Instead, if the student produced a program that could not be recognised, it was run

against a set of test cases and accepted if it returned the correct results. This has the

disadvantages that specific feedback may not be given for an incorrect solution, and

that the student might “get lucky” , producing an incorrect program that happens to

work for the test cases.

24

Analogous to the model tracing technique for critiquing the student’s action is the

student modelling method of knowledge tracing. A Bayesian procedure is used to

estimate the probability that a production rule has been learned after each attempt.

Formulas 1 and 2 give the probability that a production is in a learned state after a

correct answer and an error, respectively.

� �
� � � �� �

� � � �� � � � � �GpUpSpLp

SpLp
CLp

nn

n
nn *1*

1*
|

11

1
1

��

�

�
��

�
� (1)

� �
� � � �

� � � � � � � �� �GpUpSpLp

SpLp
ELp

nn

n
nn

��
�

��

�

� 1**

*
|

11

1
1 (2)

� �1�nLp is the probability that the rule was already learned, � �Sp is the probability of

a slip, � �1�nUp is the probability that the production was not previously known, and

� �Gp is the probability that the student guessed.

This information is used to decide when the skills of a section of curriculum have

been satisfactorily learned. Anderson et al. found that these skill probabilities could be

used to accurately predict post-test performance (Corbett and Anderson 1992).

2.2.4 Example: L ISP TUTOR

The LISP tutor (Anderson, Farrell and Sauers 1984) was an early attempt at a

Cognitive tutor. The student is given a description of a small program to encode in

LISP, which she then writes with the system’s help. Interaction is similar to using a

(very comprehensive) language-sensitive editor. As the user builds their solution, the

system inserts tags that describe the general form of the program, for example (user

input in bold):

(def un f act (n)
 (cond ((equal p) <ACTI ON>)
 <RECURSI VE- CASE>))

The standard LISP tutor does not allow the student to stray at all from the model

of desired performance. In the above example, the student needs to test for zero, for

which there is a dedicated function. The tutor immediately interrupts the student and

25

makes them use the ZEROP function, rather than the more general EQUALP. In fact,

the use of EQUALP is valid, however this would lead to a solution that is off the path

specified in the LISP tutor, because the authors have deemed it undesirable. Note that

this is a design decision, rather than a characteristic of the modelling method. Further,

the LISP tutor will interrupt the student at key points, even if no recognisable mistake

has been made, if they perform actions that are not expected. In the previous example,

this student is writing a recursive function. Anderson et al. determined that students

tend to find the terminating case easy to write, but struggle with the recursive case.

Therefore, if they perform any unexpected actions after writing the terminating case,

the system asks them a question about the recursive case, even though they may be

performing some valid action. If they fail to answer the question correctly, the system

digresses with some exercises to help them understand the nature of the recursion they

are trying to build. Again, this is an issue with the model being used, but it highlights

how deficiencies in the model may lead to overly prescriptive behaviour.

In order to follow the student correctly, the LISP tutor needs to constantly know

their intent. In many cases this is obvious, but in others (such as declaring one of

several variables) further clarification is needed. The LISP tutor pops up a menu

whenever something needs to be disambiguated. Once they have finished the exercise,

they are presented with a standard LISP environment in which they can test their

code.

The LISP tutor performs very well. In an initial mini-course at CMU, students

using it solved a series of exercises in 30% less time than those in a standard LISP

environment, and performed one standard deviation better on their final test. As a

result, a full year course was devised using the LISP tutor, which continues to this

day. However, later evaluations failed to conclusively prove that the style of teaching

used (notably comprehensive, immediate help) improved performance per se.

Anderson et al. concluded that the main reason for improved performance in post-

tests previously was probably because the LISP tutor enabled students to cover more

exercises in the same amount of time, which subsequently gave them an advantage.

However, this in itself is considered a worthwhile outcome, since enabling students to

achieve their learning in less time gives them more time to learn additional material,

or to do other things.

26

2.2.5 Summary

Cognitive tutors are some of the most successful to date. The PAT tutor for high

school mathematics has produced gains as high as 100% for areas targeted by the

system (Koedinger, Anderson, Hadley and Mark 1997). The model-tracing technique,

on which they are based, is derived from a comprehensive theory of learning, ACT-R,

and the results obtained with it strongly support that theory.

2.3 Motivation for change

Since Cognitive tutors are so effective and the technology for building them is well

understood, it may seem unnecessary to explore other options. However, they harbour

several outstanding issues. In particular, the following may be attributed directly to

the Cognitive tutoring method, rather than to the wider field of ITS in general

(Anderson, Corbett, Koedinger and Pelletier 1995): Cognitive tutors are hard to build,

they may be too restrictive, and they may not suit all domains. These three issues are

all related.

With respect to difficulty in building tutors, Anderson estimates the typical time to

author a system is around 10 hours per production (Koedinger, Anderson, Hadley and

Mark 1997), although this figure is not backed up by empirical data, and seems overly

large. For example, Koedinger authored the 25 productions for Kermit in just a few

days (See section 2.4.3). Complex domains may run into hundreds, perhaps

thousands, of productions. Using the 10 hours estimate, a very simple tutor for

teaching subtraction with carry requires at least six production rules (Blessing 1997),

so would require more than a week’s effort, and a domain such as SQL might take

years just to author the production rules. Such effort would be a serious barrier to

building tutors for very complex domains, yet this is where the need is arguably

greatest.

Some domains are highly suited to a procedural approach. In arithmetic for

example, there tend to be a few well-defined procedures for performing tasks such as

addition, subtraction, and division. In others such as programming, this is not the case.

Commenting on tutoring systems for programming in general, (Deek and McHugh

1998) note that:

27

“ Intelligent systems present the student with a simple problem containing a clear

definition, specifications and constraints. The student is then led into finding the

‘ ideal solution’ .”

A consequence, they claim, is that students become dependent upon being led to the

solution, and fail to develop the skills to determine the solution for themselves. Part of

the reason for this is that often only a single solution path is encoded in the production

rules. In the LISP tutor for example, the student is guided very closely along a

particular path. For example, alternative means of testing a condition may be

discounted by the tutor. Allowing greater flexibility in programming language tutors

is difficult because they often contain a high level of redundancy. For example, in

SQL there are three completely different problem-solving strategies for retrieving

data from multiple tables. The following three queries all perform the exact same

function (retrieve the name of the director of “Of mice and men”), but use different

strategies:

SELECT l name, f name
FROM movi e, di r ect or
WHERE di r ect or = di r ect or . number and t i t l e = ' Of mi ce and men'

SELECT l name, f name
FROM movi e j oi n di r ect or on movi e. di r ect or = di r ect or . number
WHERE t i t l e = ' Of mi ce and men'
SELECT l name, f name
FROM di r ect or
WHERE number =
 (sel ect di r ect or f r om movi e wher e t i t l e = ' Of mi ce and men')

There is no obvious “ ideal” solution to the above problem, although there may be

criteria with which one could judge merit (e.g. efficiency). Further, there are many

subtle details that could be modified arguably without affecting the quality of the

solution, such as whether or not to qualify names (e.g. “director.lname”), and whether

or not to use table aliases to shorten name qualifications. While such alternatives

could be represented using the production rule approach, it would be a substantial

undertaking. Even successful Cognitive tutors such as the LISP tutor are sometimes

criticised for being too restrictive because they inevitably exclude valid solutions

(Anderson, Corbett, Koedinger and Pelletier 1995; Deek and McHugh 1998),

although it is arguable whether or not this affects learning. Since Cognitive Tutors

28

have been shown to be capable of producing dramatic learning outcomes (Koedinger,

Anderson, Hadley and Mark 1997), this might even be a positive feature.

More importantly, in SQL the solution is structured into six clauses representing

different aspects of the problem: what to select (SELECT), where from (FROM), any

restrictions (WHERE), grouping (GROUP-BY), sorting (ORDER-BY) and group

restrictions (HAVING). There is no right or wrong way to approach writing an SQL

query. For example, some students may choose to focus on the “what” part of the

problem first, and then fill in the restrictions, whereas others may first attend to the

restrictions, or even sorting. Again, it is possible to encode all variations as separate

paths through the production rule model, but this would make the mode large and

unwieldy. Worse, the actual paths represented are of no importance to us. The

production rule model is simply too low-level an abstraction for this type of domain.

Similarly in data (entity-relationship) modelling, it is equally valid to define all

entities and then their relationships, or define each pair of entities and their

relationships simultaneously. Thus it appears that there are domains for which

Cognitive tutoring is likely to be an unwieldy (or possibly unworkable) tool for

modelling.

What happens when there is no “ right” answer to a problem at all? For example,

imagine a tutor for musical improvisation, where the student’s input is via an

instrument such as a keyboard and the “problem” is an accompaniment that the

student must improvise over. There is clearly no such thing as a “correct” answer to

this problem. The domain is procedural in that the student is performing the procedure

of playing a note, followed by another one, where each action (note) will have many

characteristics, such as pitch, volume, timing and colouration (bending, tremolo, slide,

etc), however there is no correct procedure to follow other than “after playing a note,

either play another one (sometime) or finish” . It is not at all obvious how a production

rule model could be built for such a domain, and yet there are still many ways an ITS

could provide useful feedback, such as how well the notes played fitted the key of the

piece, whether the student’s playing was an example of the style (e.g. “blues”) being

practised, and how “ interesting” the piece was (as judged by the tutor’s author).

In summary, although Cognitive tutoring has been shown to work extremely well

for some domains, there are others for which they may be less suitable, or even

29

impossible to implement, although we have not explored this in any detail. In

particular, open-ended domains such as the musical improvisation tutor described

seem less suited to the Cognitive Tutor approach, because they do not require a model

of procedure, and might not benefit from the effort of building one. This might also

apply to more declarative domains such as SQL. There is therefore scope for

alternative methods that can cope with, and are suited to, declarative and open-ended

domains. The research presented in this thesis is concerned with one such alternative,

constraint-based modelling.

2.4 Constraint-based modelling

In 1994, Ohlsson proposed another method for domain and student modelling that is

also based on a psychological theory of learning. Both the underlying theory and the

resulting modelling system are radically different from Anderson’s, and represent a

major change in direction. The theory and model are now described. We also compare

CBM to Cognitive tutors, and describe an existing system that uses CBM, to illustrate

how it is implemented.

2.4.1 Learning from per formance er rors

As described in Section 2.2.2, Anderson’s ACT-R theory included a theory for how

new knowledge is learned by the creation of new declarative chunks and the

compilation of new production rules. The former, he asserts, happens automatically

via the retention of new problems and their solutions. The latter, according to his later

theories in ACT-R 4.0, occurs when the student makes a conscious decision to reflect

on how they just performed some step of the solution. Tutors based on ACT-R

therefore concentrate on keeping the student on a valid solution path, such that they

commit correct productions to memory, not buggy ones they have arrived at

erroneously.

Ohlsson (Ohlsson 1996) has a different view. In a theory called “ learning from

performance errors” , he asserts that procedural learning occurs primarily when we

catch ourselves (or are caught by a third party) making mistakes. Further, he contends

that we often make errors even though we know what we should do, because there are

30

simply too many things to think about, and we are unable to make the correct decision

because we are overloaded. In other words, we may already have the necessary

declarative knowledge, but for a given situation there are too many possibilities to

consider for us to determine what currently applies. Thus merely learning the

appropriate declarative knowledge is not enough: only when we have internalised that

knowledge—and how to apply it—can we achieve mastery in the chosen domain.

We can represent the application of a piece of declarative knowledge to a current

situation by describing the current problem-solving state. Ohlsson uses constraints for

this task. Each constraint consists of a relevance and a satisfaction condition. The first

specifies when this piece of declarative knowledge is relevant, and the second

describes the state whereby this piece of knowledge has been correctly applied, i.e.:

I F <r el evance condi t i on> i s t r ue
THEN <sat i sf act i on condi t i on> wi l l al so be t r ue

Consider a person learning to drive. On approaching an intersection, she must

consider many factors regarding who gives way and decide whether or not to stop.

Such pieces of knowledge relate, among other things, to the driving rules of the

country she is in. In New Zealand for example, one such rule is that “at uncontrolled

intersections, traffic on the right has right-of-way” . Now, as our driver approaches an

uncontrolled intersection, she must consider whether or not to give way. A constraint

for the above situation might be (in pseudocode):

I F uncont r ol l ed i nt er sect i on
AND car appr oachi ng f r om r i ght
THEN gi ve way

By Ohlsson’s theory, our learner driver may be flustered by the number of things she

has to consider (especially if there are several other cars at the intersection), overlook

the above constraint, and drive into the path of a car on her right. However, a skilled

driver knows “ intuitively” to look for the car on the right and stop because they have

applied this constraint many times before, and it has been internalised in some way as

procedural knowledge. The corresponding procedural rule in an ACT tutor might be:

I F t he goal i s t o t r avel t hr ough t he i nt er sect i on
AND t he i nt er sect i on i s uncont r ol l ed
AND a car i s appr oachi ng f r om t he r i ght

31

THEN set a sub goal t o gi ve way t o t he car

2.4.2 CBM in ITS

Whilst the underlying theories of ACT-R and Performance Errors may be

fundamentally different, in terms of ITS implementation the key difference is the

level of focus: ACT-R focuses in detail on the procedures carried out, while “ learning

from performance errors” is concerned only with pedagogical states. This translates

directly into the domain models. Cognitive tutors faithfully model the procedures that

should be learned, while constraint-based tutors represent just the states the student

should satisfy, and ignore completely the path involved.

In a constraint-based tutor, the domain model is represented by a set of

constraints, where each constraint represents a pedagogically significant state. That is,

if a constraint is relevant to the student’s answer, this is an example of a principle that

we wish to teach the student. If the constraint is violated, the student does not know

this concept and requires remedial action. A key test of whether or not a constraint

represents a single pedagogically significant state (i.e. that all problems/solutions that

fall into this state are pedagogically equivalent) is whether or not a single piece of

feedback can be delivered for all problems that violate this constraint. Once the

domain model has been so defined, we can associate feedback actions directly with

the constraint. The basic definition of a constraint in a constraint-based tutor is

therefore:

<const r ai nt i d>
<f eedback act i on >
<r el evance condi t i on>
<sat i sf act i on condi t i on>

For example, in the domain of multi-column addition with carry, the following

constraint (in pseudocode) checks that the student has correctly added the numbers in

each column, where ideal-solution represents a correct solution to this problem,

problem is the original problem specification, and student-solution is the student’s

attempt.

(1

32

“ You have added t wo number s i ncor r ect l y i n col umn <N> – pl ease
check your addi t i on. Not e t hat t her e i s no car r y f or t hi s col umn. ”

(and
 i deal - sol ut i on. col umn(N) = SUM
 pr obl em. col umn(N) . car r y = NO
)

(st udent - sol ut i on. col umn(N) = SUM
)

The constraints are used to evaluate the student’s input by comparing it to an

“ ideal solution” . The ideal solution is just one of the set of possible solutions to the

problem, and is considered “ ideal” in the sense that it is the answer the author would

ideally like the student to submit. However, it is not necessary for the student to

submit this particular answer, nor to solve the problem in this particular way.

When the student submits a solution or action, each constraint is evaluated one at

a time. Constraints may test elements of the student solution only (syntactic), or

compare aspects of the student and ideal solutions (semantic). For each constraint if

the relevance condition is true, this constraint is relevant to the student’s current

solution or action. The satisfaction condition is then tried. If this is also true, the

solution is correct with respect to this constraint and no further action is required.

Otherwise, the constraint has been violated and the feedback action is taken.

The student model is also based on the constraints. The simplest is an overlay

model, where the system determines that each constraint is either learned or not

learned. There are various ways to classify each constraint. This is discussed further

in Section 6.2.

2.4.3 Compar ison with Cognitive tutors

The philosophies underpinning Cognitive Tutors and Constraint-Based modelling are

fundamentally at odds. ACT-R asserts that learning is achieved when students reflect

on a successful action, and internalise what they did as procedural knowledge. This

requires a conscious effort on the student’s part to assimilate what they have done. In

contrast, Ohlsson asserts that learning occurs as the result of an unsuccessful action: to

correct their mistake, students must apply their underlying knowledge to the current

situation, and in doing so they automatically reinforce their internal knowledge of

what to do. Ohlsson further believes that because the student is forced to reflect on the

33

declarative knowledge that underlies the action to be taken each time they are shown

feedback, they are learning at a deeper level than simply remembering the procedure

for solving a particular problem or kind of problem, and so their performance is more

likely to be transferable to other problems and to the real world.

At the practical level, CBM has the following advantages (Ohlsson 1994):

1. The domain model is simple, and need not be runnable.

Cognitive tutors require a model of the desirable path from problem to solution so that

they can trace the students’ actions against it. This model must be complete and

correct from the outset; otherwise the system cannot follow what they are doing. In

contrast, a constraint-based model need only model pedagogically significant states,

which in many cases is a much simpler task, because the number of factors that must

be taken into account is less than the number of steps on alternative paths that a

Cognitive tutor would need to model. Further, if a constraint is missing the effect is

highly localised: the system simply fails to detect a particular type of error. Since

constraints are modular, the rest of the solution should still be able to be assessed.

This reduces the need to conduct large-scale empirical studies with a domain expert,

and allows the domain model to be developed incrementally and deployed before the

model is complete. For example, SQL-Tutor has been used for four years now, yet the

model is still acknowledged to be incomplete. The initial version exhibited quite a few

problems when used by a class, yet was still shown to be an effective teacher

(Mitrovic and Ohlsson 1999).

To illustrate the difference in effort required, consider the domain of database

(entity-relationship) modelling. KERMIT (Suraweera and Mitrovic 2001) is a

constraint-based ITS in this domain. Consider the following two simple problem

statements, which the student must represent by ER diagrams:

1. Some students live in student halls. Each hall has a unique name, and each

student has a unique number.

2. Each student has a unique number, a first name, and a last name.

To assess answers to these two problems, KERMIT requires 23 constraints, such

as (in pseudocode):

(1

34

“ Each r egul ar ent i t y shoul d have at l east one candi dat e key
at t r i but e”

(and
 (each st udent - sol ut i on. OBJECT) ,
 (OBJECT. t ype = ent i t y)
)

(count of (OBJECT. ATTRI BUTE. t ype = key) >= 1)
)

In contrast, Koedinger implemented a procedural model for a Cognitive tutor that

can assess the same two problems. It required 25 productions, 10 (trivial) general

chunks and 30 problem-specific chunks, or a total of 55 major elements and 10 trivial

ones. The 30 problem-specific chunks have no use outside these two problems, so are

analogous to the ideal solution in the constraint-based solution, which consists of a list

of tags, which represent the important features of the problem (entities, relationships,

etc). For the example problems there are a total of 11 tags. Also, the production rules

are typically more specific than constraints, so cover less of the domain. KERMIT has

only 90 constraints in total, so in authoring the domain model for these two problems

more than a quarter of the domain model has been implemented.

2. There is no need for a bug library

Cognitive tutors may optionally contain mal-productions as well as the correct ones.

Without these, the model-tracer is unable to say why a step that is not on the correct

path is wrong, and so is limited to a “ that is incorrect” message, or demonstrating the

correct next step.

In CBM, incorrect answers are implicitly encapsulated by the constraints: if a

student has not added two numbers together correctly, they have implicitly made

some error in their step. It may still be desirable to analyse students’ answers to

determine which parts of the domain are problematic, and so need to be modelled. It

is also useful to observe student behaviour to help decide at what level student

mistakes are pedagogically equivalent. However, the level of analysis required is less

because it is not necessary to tag errors back to particular procedural steps.

3. There is no requirement for sophisticated inference mechanisms

Cognitive tutors need to know the intent of every student action, in order to decide

what the current goal is, so that the action may be compared to the appropriate goal in

35

the model. Further, every action needs to be made available to the tutor. This requires

either that the tutor perform evaluation after every student action (e.g., after every key

stroke), or that the necessary details be inferred. In CBM, we are only interested in the

state of the answer at any stage, rather than the sequence of actions or the intent of the

student. We can therefore check constraints using simple pattern matching.

4. The model permits free exploration of the domain

A complaint of model-tracing tutors is that they are too restrictive (Self 1999). In

particular, it is difficult to allow the student to perform explorative actions. Some

systems do allow variation from the desirable path, but the extent to which this is

practical is limited by the need to be able to determine when the student has gone

completely off-track. The further the student is allowed to wander, the harder it is for

the system to understand why they have deviated from the path and therefore to make

judgments about whether or not they are completely lost. Worse, it quickly becomes

almost impossible to make recommendations about how to get back on the path, apart

from returning to the state where their solution first deviated, so the student may be

forced to abandon a promising line of attack. SHERLOCK (Lajoie and Lesgold 1992)

overcomes this by allowing multiple solution paths for each problem, but can still run

into difficulty if the student keeps switching strategies. Many documented cases, e.g.

(Ohlsson and Bee 1991), support the notion that “ radical strategy variability” (i.e.

complete changes of problem-solving approach) is the normal case.

CBM, on the other hand, is less troubled by strategy variation, since it does not try

to track the student’s problem-solving procedure. All that is therefore required is to

implicitly represent all possible valid solutions. For example, in the SQL domain a

constraint that tests that all tables are present must consider that tables may be

represented in either the FROM or the WHERE clause, that the tables may be by

themselves, in JOINS, in comma-separated lists, or in nested queries, and that table

names may or may not be aliased. It need not consider whether the student is trying to

implement a JOIN or nested SELECT. This obviates the need for multiple paths

through the various options.

36

5. The model is neutral with respect to pedagogy.

Cognitive tutors need to follow every step the student takes and evaluate that step

with respect to the correct solution path. For reasons of computational complexity, if

the student strays from a solution path, it is necessary to get them back onto it quickly,

before the task of determining the way back becomes computationally intractable. It is

therefore necessary to remedy problems in a timely fashion, which dictates the

teaching strategy used: evaluate every step, and provide immediate feedback if there

is a problem. Note that this may be a deliberate decision: Anderson et al argue that the

efficacy of this type of feedback is psychologically plausible, and they have

conducted experiments with the LISP Tutor that show the immediate feedback leads

to faster learning (Anderson, Corbett, Koedinger and Pelletier 1995).

CBM does not have this requirement. The solution may be evaluated at any time,

since it is not necessary to be on any particular path. Partial solutions may be

evaluated provided the system recognises that the solution is not complete, leaving

tests for completeness until the student declares they are done. When the student

submits her final solution, it is checked for completeness as well as correctness.

2.4.4 Applicability of CBM

The systems described in this thesis are all declarative in nature, in that the order in

which student actions take place (i.e. the problem-solving procedure) are not

considered relevant to the correctness of their behaviour. However, this does not mean

that CBM can not be applied to procedural tasks. Consider the task of learning to

count a set of objects. This domain requires a number of constraints upon the order of

behaviour, such as (Ohlsson and Rees 1991):

� Always start with the first number in the numbering system being used (i.e.

integers);

� Use the numbers in the order defined for the numbering system being used;

� Only use a new number if the one immediately preceding it has been used

already;

� Do not count an object that has already been counted

� Do not cycle back to an object already counted

37

Ohlsson describes how CBM can deal with such rules by including into the

student’s current solution state all of the actions taken so far. Thus, if the solution

state includes a set of the objects counted so far, a constraint may easily check that the

current object being considered has not already been counted. Similarly, if the

solution state includes an ordered list of the numbers used so far, it is easy to check

this to ensure the current number is one greater than the last, and that the current

number has not already been used.

Another example is the Cardiac Tutor (Eliot and Woolf 1995) . In this domain, the

student is presented with a heart patient, which they must diagnose and treat. In this

domain, both the sequence some actions and the timing of actions is important. CBM

could model this by including, in both the problem and the solution, a trace of the

required actions and their times. The constraints could then compare the order and

timestamps of actions where it is important. In general, procedural domains may be

handled by ensuring that the problem and solution states contain ordering and/or

timing information.

In summary, CBM is a state-based approach that compares the state of the student

and “ ideal” solutions, to ensure that the student solution is always in a permissible

state. It may be applied to any domain where the problem and solution can be

presented this way. This may include procedural domains. However, for procedural

domains with a relatively small level of branching in the trace of possible solutions, it

might be more natural to use a model-tracing approach, since this immediately

provides the benefit of being able to suggest the next action.

2.4.5 Example of a constraint-based system: SQL-Tutor

SQL-Tutor (Mitrovic 1998) is a CBM ITS that teaches the SQL database query

language to Stage 2 and 3 students at the university of Canterbury. Several versions

have been built, the latest being a web-enabled system, built using Allegro Common

LISP, and the Allegroserve web server software (see www.Franz.com).

Figure 3 shows the user interface. In SQL-Tutor, constraints are encoded as LISP

fragments, supported by domain-specific LISP functions. For example, in the

following constraint, “attribute-in-db” , "find-schema”, “current-database” and “valid-

table” are all specific to SQL.

38

; pr obl em number

(p 147

; f eedback message
" You have used some names i n t he WHERE cl ause t hat ar e not f r om
t hi s dat abase. "

; r el evance condi t i on
(and (not (nul l (wher e ss)))
 (bi nd- al l ?n (names
 (s l ot - val ue ss ' wher e)) bi ndi ngs))

; sat i s f act i on condi t i on
(or (at t r i but e- i n- db (f i nd- schema (cur r ent - dat abase * st udent *)) ?n)
 (val i d- t abl e (f i nd- schema (cur r ent - dat abase * st udent *)) ?n))

; whi ch SQL cl ause t hi s const r ai nt i s most r el evant t o

" WHERE")

Figure 3. SQL-Tutor interface (web-enabled version)

39

SQL-Tutor contains 509 such constraints.

SQL-Tutor teaches SQL by presenting the student with English descriptions of

queries, for which they must write an SQL SELECT statement. The answer section of

the interface is structured into fields for the six clauses of a SELECT statement:

SELECT, FROM, WHERE, GROUP-BY, ORDER-BY and HAVING. The student

types their answer directly into these fields. At any time, they may receive feedback

on their answer by submitting it to the system. At this stage the answer is evaluated by

the constraint evaluator, and returns feedback regarding the state of their solution.

There are six levels of feedback: “Feedback” , “Error log” , “Hint” , “Partial

solution” , “All errors” , and “Complete solution” . “Feedback” simply informs them

that they are right or wrong. “Error Log” indicates which of the six clauses the first

error encountered is in. “Hint” presents the feedback message for the first violated

constraint. “Partial solution” displays the ideal solution for the clause to which the

first violated constraint relates. “All errors” lists the feedback messages for all

violated constraints. Finally, “Complete solution” simply displays the ideal solution in

its entirety. The feedback level is automatically set by the system, and increments

from “Feedback” to “Error log” to “Hint” automatically if the student continues to

submit an incorrect answer. However, the student may override this behaviour by

manually selecting the feedback type they require.

SQL-Tutor also attempts to ease cognitive load by providing scaffolding. The

bottom section of the screen details the structure of the database the student is

currently working on, so that they do not need to remember the details of the database

tables, nor interrupt their work seeking help. This information may be drilled into if

necessary for further detail.

The constraint set for SQL-Tutor (like all CBM tutors) is a flat set of constraints.

Approximately half are semantic, and the other half syntactic. The constraints are

unevenly distributed among the six SQL clauses: 12% are for the SELECT clause, 9%

FROM, 34% WHERE, 32% HAVING, 6% GROUP BY and 7% ORDER BY. In

particular, two thirds of the constraints are related to restrictions upon the data

extracted from the database (i.e. the GROUP BY and HAVING clauses). The domain

can also be split into basic queries (requiring a SELECT, FROM and WHERE clause)

40

and more advanced one, which also require the GROUP BY, HAVING, and ORDER

BY clauses. The basic queries account for 55% of the constraint set, although note

that the HAVING constraints are mostly identical to those for WHERE. Another way

of splitting the constraints into basic and difficult is to consider those constraints

concerning nested queries as advanced (approximately 10%).

In SQL-Tutor a single pedagogical state may be represented by more than one

constraint. For example, there are 14 constraints with the feedback message:

“ Check t he i nt eger const ant you used wi t h t he aggr egat e f unct i on i n
HAVI NG”

 Of the 509 constraints, there are 347 distinct feedback messages. Also, there are

cases where the same constraint is repeated because it is relevant to all clauses.

Sometimes this is pedagogically significant, but in other cases it is merely a

consequence of the way the constraints are encoded on a clause-by-clause basis. For

example, the following constraint is present for all six clauses:

“ You have ended t he <cl ause- name> cl ause wi t h a comma - t hat i s not
al l owed. ”

If feedback messages that are identical except for the clause name are considered

equivalent, the number of pedagogically significant states further drops to 202. A

further consideration is that up to a large number of the constraints deal explicitly

with constructs where attribute names have been “qualified” by adding the table

name, e.g. “MOVIE.DIRECTOR”. This is really only a single concept: either the

student knows how (and when) to use them or she does not. Also, many constraints

test for the absence of a particular construct, for example:

' (p 95
 " Scal ar f unct i ons (numer i c, dat e or st r i ng ones) cannot be used i n
t he FROM cl ause - t hey may onl y appear i n WHERE, HAVI NG and SELECT. "

 t

 (nul l (i nt er sect i on ' (" ABS" " DATE") (f r om- cl ause ss) : t est ' equal p))

 " FROM")

41

The data from the study described in section 6.2 suggests that a student will cover

around 25% of the constraint set after an extensive session with SQL-Tutor, and that

this is sufficient to display proficiency in SQL.

CBM does not require any explicit structure to the model, however there may

benefits to applying one: the model may be easier to maintain, and the model might

form the basis of a curriculum. Adding structure might also allow the model to be

opened to the teacher and student, by providing a high-level view of the student’s

performance. It also aids the selection of a target constraint for selecting the next

problem. The difficulty is in deciding what structure to use, since this may differ

according to how it will be used. Further, teachers may disagree on the structure, and

students may learn the domain in different ways, necessitating individual domain

structures. This is discussed in section 6.2.

SQL is an example of a declarative domain: the student’s task is to transform a

natural language description of a query into the SQL representation. The order in

which they do this is not important. SQL is a relatively small language, because it is

very compact: unlike more general programming languages such as Java, a single

construct, such as a join in the FROM clause, has high semantic meaning, in that it

implies considerable activity which is hidden from the writer (lock the table, open an

input stream, retrieve the first record…). In spite of its syntactic simplicity, students

find SQL very difficult to learn. In particular, they struggle to understand when to

apply a particular construct, such as GROUP BY or nested queries. The major tasks of

the tutor are therefore twofold:

1. To provide a rich set of problems, requiring many different constructs, that

the student may learn when to apply them, and;

2. To provide drill in building those constructs.

SQL therefore seems well suited to CBM: given sufficient practise, the student will

internalise when to apply each construct, and how to build it.

SQL-Tutor has a fairly large constraint set because of the amount of redundancy

in the SQL language: there are often different ways to solve the same problem, and

the details can vary greatly (e.g. qualification of attribute names, aliasing of table

and/or attribute names). This gives SQL a quite high branching factor. However, more

general programming tasks such as Java would probably be worse in this respect,

42

leading to very large constraint sets. An alternative might be to limit what the student

can do. The latter is a common strategy in the domain of programming languages

(Deek and McHugh 1998).

The response from students has been very positive, and statistical analysis of their

performance indicates a significant improvement after as little as two hours of

exposure to the tutor (Mitrovic and Ohlsson 1999). SQL-Tutor is now used regularly

as part of a second year course on databases, and is popular with students. It is also

the test bed for further research into ITS and CBM, including animated pedagogical

agents (Suraweera and Mitrovic 2000), Bayesian student modelling (Mayo and

Mitrovic 2000; Mayo and Mitrovic 2001), evaluating feedback effectiveness

(Mitrovic and Martin 2000; Mitrovic, Martin and Mayo 2002), and the research

described in this thesis (Martin 1999; Martin 2000; Martin and Mitrovic 2000a;

Martin and Mitrovic 2000b; Martin and Mitrovic 2001a; Martin and Mitrovic 2001b;

Martin and Mitrovic 2002a; Martin and Mitrovic 2002b).

43

3 Addressing limitations of CBM

Tutors built using CBM have been shown to be effective teaching environments.

SQL-Tutor has been successful in the classroom, and is well liked by the students

who use it. Further, the Web version is used by a large number of people world-wide:

over 400 people have tried it, and when the Web version was last taken “off-air” for

evaluation testing this invoked scores of emails from users wanting to know why it

was no longer available. KERMIT elicited favourable qualitative feedback from

students at Canterbury University. CAPIT, an ITS for teaching punctuation and

capitalisation to elementary school children, has also been well received (Mayo and

Mitrovic 2001).

In spite of these successes, there are still many improvements that could be made.

We are interested in two main themes: increasing the usefulness of the knowledge

base, and making constraint-based tutors easier to build. From these broad categories,

we chose three specific goals to direct our enhancements to CBM: improving the

quality of feedback, facilitating the generation and selection of new problems, and

simplifying the creation of the knowledge base. Each of these is now introduced.

3.1 Feedback can be misleading

Feedback in SQL-Tutor is applied directly to each constraint in the domain model:

when a constraint is violated, it produces a message that describes the underlying

domain principle that has been failed. The student may additionally be shown all or

part of a correct solution. SQL-Tutor selects problems from an authored set of

examples. Each problem consists of the problem text, and an “ ideal” solution to the

problem. In SQL there is usually more than one correct query for any problem, so the

ideal solution represents just one of a (possibly large) set of correct solutions. Because

44

the domain model is state-based, it is able to cope with differences between the

student and ideal solutions by modelling the various different ways that a state (e.g.

all tables used) might be represented.

However, problems arise when the ideal student solution is presented to the

student as feedback. Through a series of in-class evaluations of SQL-Tutor, we have

measured the apparent speed of learning while pupils interact with the system

(Mitrovic and Martin 2000). Analysis of the data obtained indicates that differences in

the feedback given have a significant effect on the speed of learning. For example,

presenting either the constraint feedback or part of the ideal solution increases

learning speed, while presenting the entire solution is detrimental. Further, one of the

most successful modes of feedback is “partial solution” , where the pupil is presented

with the fragment from the ideal solution for one of the SQL clauses in which they

have made mistakes. The drawback with this approach is that the fragment may

sometimes be correct within the context of the ideal solution, but incorrect within the

context of the student solution. Consider the following example:

Problem:

List the titles of all movies directed by Stanley Kubrick.

Ideal Solution:

SELECT t i t l e
FROM movi e
WHERE di r ect or =(sel ect number f r om di r ect or
 wher e f name=' St anl ey ' and l name=' Kubr i ck ')

Student Solution:

SELECT t i t l e
FROM movi e j oi n di r ect or on number = di r ect or
WHERE f name=' St anl ey ' and l name=' Kubr i ck '

Submitting this attempt (correctly) yields the following result:

"You have used an attribute in the FROM clause which appears in several tables you

specified in the FROM clause. Qualify the attribute name with the table name to

eliminate ambiguities."

45

However, when prompted for a partial solution for the FROM clause, the system

returns “FROM movie” , which is correct for the ideal solution but not correct within

the context of the student solution.

A CBM knowledge base uses the constraints to diagnose the student’s answers

and build a student model, the latter being described by Ohlsson only in passing. In

contrast, Cognitive tutors are able to indicate to the student what they should be doing

next, by modelling the problem-solving steps. While a CBM-based system can

comment on the incorrect solution (even if empty), it cannot offer specific instructions

on how to fix errors because the model intentionally contains no information

whatsoever about the problem-solving procedure. Neither is CBM able to solve the

problem in order to indicate a possible solution, because the knowledge elements

(constraints) are discrete and so lack information indicating the sequence in which

they should be considered. Finally, the only requirement of each constraint is that they

are able to test whether or not the student solution is in the appropriate relevance and

satisfaction states, but they do not need to be able to indicate why the answer is in this

state or how to get it into this (satisfaction) state if it is not there already.

In the three CBM implementations described earlier (SQL-Tutor, CAPIT, and

KERMIT), this limitation is real. In SQL-Tutor, constraints are encoded in LISP. In

each constraint the relevance and satisfaction conditions are each a standard LISP

condition consisting of function calls, combined using the standard LISP logical

connectives AND, OR and NOT. Functions may be internal to LISP (e.g. CONS,

FIRST) or domain-specific (e.g. at t r i but e- of (t abl e, at t r i but e) , which

tests whether a particular term attribute is belongs to the database entity table). A

domain-independent pattern-matching routine is also included. Similarly, KERMIT

contains a domain-specific functional language for representing constraints. CAPIT

(Mayo and Mitrovic 2001) uses an extension of regular expressions to represent

constraints. It is possible that this could be used to correct errors, although no attempt

is made to do so. However, CAPIT is unusual in that the domain is deterministic:

there is only one way to correctly capitalise and punctuate a sentence in New Zealand

English. Further, the domain is simple: there are only 25 constraints. It is doubtful that

the language used in CAPIT could be extended to more complex domains because it

is too limited.

46

The consequence of this is that none of these systems can tell the user what their

answer should have been because when they discover a constraint violation, they

cannot determine what to do about it. In SQL-Tutor the output of the constraint

evaluation process is the list of satisfied and violated constraints, and the variable

bindings for all instances where each constraint was found to be relevant. This is of

little use however, since the system is unable to use them to run the constraint

evaluation in reverse to arrive at a correct version (with respect to this constraint) of

the student solution. KERMIT also uses a domain-specific representation of

constraints, which include specialised sub functions plus ad hoc algorithms to

evaluate solutions against the constraints.

KERMIT, CAPIT and SQL-Tutor therefore not only lack an algorithm for

problem solving, for two of them it would not be possible directly from the constraint

set because the constraints do not provide the information necessary to overcome a

violation. To be able to correct errors, it would be necessary for these systems to

include specific “ repair” functions for each constraint, which would (at least) double

the constraint authoring effort. However, since each constraint maps a relevance state

to a satisfaction state, it in some way describes how the student solution, if in the

relevance state, should be further constrained in order to satisfy the underlying

declarative rule. It therefore seems that the constraint does encapsulate how to

produce a valid part-answer from a certain range of inputs (i.e. those relevant to this

constraint), but this information is hidden in the functions that carry out the testing.

Therefore, what is needed is a constraint representation that makes all of this

information transparent, and hence able to be used by an algorithm to generate a part-

solution that satisfies the constraint. We have developed such a representation, which

is described in Chapter 4.

Once the constraints are in a suitable representation, an algorithm is needed that

reverses the logic of the constraint evaluator, i.e. given a satisfaction condition it

produces a part-solution that satisfies it with respect to the ideal solution and the

student’s attempt. We have developed such an algorithm, which is described in

Chapter 5.

47

3.2 Limited problem set

Another feature the three ICTG systems share is that they contain enumerated

problem sets that have been hand-authored by their creators. SQL-Tutor currently

contains 82 such problems, KERMIT has six, and CAPIT has 45. Each system

chooses problems based on the student model: the constraints which are relevant to

each question are compared to the student model, to see how they match the student’s

performance on those constraints. The problem that best matches the currently

targeted constraints wins. Different methods are used to determine the target

constraint(s). SQL-Tutor uses the constraint that has been violated most often. This

may be selected from the entire constraint set, or from a subset from a specific part of

the curriculum, such as “sorting” . In deciding which constraint has been violated most

frequently, either all or a recent subset of the student’s behaviour may be considered.

Candidate problems are those for which this constraint is relevant, with the problem

of the most suitable difficulty being selected. A similar system is used in KERMIT.

CAPIT, in contrast, uses a Bayesian normative system to decide which constraint

should be targeted and to determine which problem is most suitable.

The problem with all of these systems is that the size of the problem set is very

limited, and so although the problem selection criteria may appear sensible, in

practice they may of limited use because there are so few problems to select from. For

example, in SQL-Tutor each constraint is, on average, relevant to three problems in

the set, with only 20% of the constraints being relevant to any problem at all. It is

therefore highly likely that if a student is having particular trouble with an individual

constraint, they will quickly exhaust all relevant problems. Further, since not all

constraints have relevant problems, there are many concepts in our domain knowledge

base that we are simply unable to test. We also need to be able to support users of

varying (and changing) abilities, so we need to be able to test each constraint using

problems that have varying difficulties, which further increases the number of

problems required. Finally, in determining the difficulty of a problem with respect to

the current student at this moment in time, we should ideally consider the student’s

knowledge of each constraint relevant to each problem. This means the real range of

difficulties a problem set represents changes with time, so we cannot guarantee at any

48

time that we have a problem of a given difficulty with respect to the student. For

example, if a student does very well and rapidly learns a large proportion of the

constraints, the difficulty of the problems with respect to that student may quickly

drop too low to contain any problems that are sufficiently challenging. Conversely, if

they keep violating constraints, the simplest problems may soon appear beyond their

ability. This increases the range of difficulties we need to represent, and so further

increases the number of problems required.

None of these issues are caused by CBM per se: to reduce them we simply need to

write more problems. However, writing problems is hard. It took many days to write

the 82 problems for SQL-Tutor. Moreover, it is difficult to write a problem set that

covers all constraints: we can either write problems independently of the constraints

and regularly test them against the constraint set to see what the current coverage is,

or we can manually investigate each constraint, and try to write several problems that

cover that constraint over a range of difficulties. Recalling that SQL-Tutor contains

over 500 constraints, this will be a large undertaking.

In the previous section we argued that it should be possible to use the information

in the constraints to correct a student answer with respect to an individual constraint.

A special case is when the student answer is blank. In this case, we are solving a

problem from scratch. Recall that in all three ICTG systems, an ideal solution is used

when diagnosing the student answer: both the student answer and the ideal solution

are used as input to the constraint evaluator. However, for around half of the

constraints, only the syntax of the student answer is tested, and so the ideal solution is

not required. Since constraints are modular, it follows that these can act independently

of the semantic constraints to determine whether the current solution is valid SQL,

regardless of the ideal solution. If, as suggested in the previous section, the constraints

can map an incorrect solution to a correct one, the syntactic constraints should be able

to map an invalid SQL statement to a valid one. Given a suitable starting point, it

should be possible to automatically generate an arbitrary SQL statement. In Chapter 6

we show how we can use an individual constraint as the starting point and

automatically “grow” a valid SQL statement for which this constraint is relevant, and

we describe an algorithm we have developed for doing this. This new SQL statement

forms the ideal solution of a new problem for testing this constraint. We can then

49

apply this algorithm to the entire constraint set, to generate problems to cover the

domain. Thus while CBM does not cause the limitations discussed in this section, it

can be used to overcome them.

3.3 Building an ITS is hard

CBM knowledge bases are easier to build for some domains than those adopting

model tracing. For example, the knowledge base in KERMIT contains just 92

constraints. Recall from Section 2.4.3 that an equivalent representation for a

Cognitive tutor required a total of 55 non-trivial knowledge elements to represent just

23 constraints and two problem statements (with 11 tags). While direct comparisons

can be misleading, this nevertheless seems a significant difference. Further, in

Cognitive tutors each knowledge element has an effect on a potentially large region of

the model. In comparison, modifying a constraint has no effect at all on the rest of the

constraint set.

In Cognitive tutors the model has a high requirement of fidelity. An incomplete

model will prevent the user completing the task. Thus, having decided what problems

you want the student to solve, a complete model must then be built for the procedures

involved. In contrast, CBM does not have this necessity. An incomplete constraint-

based model will fail to catch some student errors but it will not prevent the user

finishing the problem. A missing constraint is therefore not a catastrophic situation,

unlike a missing knowledge element (or procedural rule) in Cognitive tutors. This

enables CBMs to be built incrementally, adding new constraints whenever incorrect

student answers are “ let through” by the system.

In spite of these advantages CBMs are still hard to build. It is unrealistic to expect

someone other than an ITS engineer to build one from scratch since they require a

good knowledge of how the system will use the constraints, as well as of the domain

itself and the representation used to build the knowledge elements. Since, in Section

3.1, we identified a need for a new constraint representation, we also took this

opportunity to develop a simple constraint representation, together with a set of rules

on how constraints should be written, so that someone other than an ITS engineer

(e.g. a domain expert) might be able to produce the knowledge base for a given

50

domain. This is discussed in Section 7.3. A consequence of the new representation

and its requirements to facilitate problem solving is that all domain-specific

information must be explicitly encoded in the constraints. This has the advantage that

the domain-specific information is cleanly separated from the constraint evaluator.

We can capitalise on this feature to produce an authoring tool for constraint-based

ITS. We have developed such a system, Web-Enabled Tutor Authoring System

(WETAS), which is described in Chapter 7.

3.4 Summary

CBM is a relatively new approach to domain and student modelling that simplifies the

construction of domain models. In doing so however, it loses one of the major

advantages of other methods such as model tracing: it is unable to indicate what the

student should have done. As a result, it provides a poorer level of feedback. We have

sought to overcome this limitation. We have also endeavoured to address the

continuing problem of how to make ITS easier to construct. In the next four chapters,

we describe these enhancements to CBM.

51

4 Constraint representation

To be able to reason about the nature of constraint violations, either every operation

performed during constraint evaluation must have a corresponding counter-operation

that corrects the fault, or all of the information used to test the constraint must be

available to the problem-solving algorithm. The latter has the benefit of (theoretically)

not requiring any more effort on the part of the author, whereas the former would

roughly double the knowledge engineering effort. For this reason, we introduce a new

representation of constraints is more transparent, and is reversible. Reversible means

that a constraint defined in this language can not only be used to determine whether or

not the solution satisfies it, it can also be used to enumerate correct solutions with

respect to this constraint.

The constraint representation in SQL-Tutor already uses pattern matching via the

domain-independent MATCH function. However, it also uses many domain-specific

functions to decide valid values of terms, test for compatibility of two or more values

(e.g. an attribute and the table that the attribute appears to belong to), and to post-

parse terms such as qualified names. These functions hide the logic that determines

whether or not a solution is correct. For example, the function val i d- t abl e(t 1)

determines whether or not t 1 is a valid table name, but is unable to tell us what t 1

should be if this test fails. It is these functions that must be removed from the

representation. We investigate whether this can be overcome, and propose the

following hypothesis:

Hypothesis 1: It is possible to build a constraint-based domain model that

contains sufficient information to solve problems and correct student solutions, by

adopting a constraint representation that makes all of the logic in each constraint

transparent to the system.

52

4.1 Constraint representation

In the new representation, constraints are encoded purely as pattern matches. Each

pattern may be compared either against the ideal or student solutions (via the

MATCH function) or against a variable (via the TEST and TEST_SYMBOL

functions) whose value has been determined in a prior match. An example of a

constraint in SQL-Tutor using this representation is:

(34
" I f t her e i s an ANY or ALL pr edi cat e i n t he WHERE cl ause, t hen t he
at t r i but e i n quest i on must be of t he same t ype as t he onl y
expr essi on of t he SELECT cl ause of t he subquer y. "

; r el evance condi t i on
(mat ch SS WHERE (?* ?a1
 (" <" " >" " =" " ! =" " <>" " <=" " >=")
 (" ANY" " ALL") " (" " SELECT" ?a2 " FROM" ?* ") " ?*))

; sat i s f act i on condi t i on
(and (t est SS (^ t ype (?a1 ?t ype))
 (t est SS (^ t ype (?a2 ?t ype))))

" WHERE"
)

This constraint tests that if an attribute is compared to the result of a nested

SELECT, the attribute being compared and that which the SELECT returns have the

same type (^ t ype is an example of a macro, which are described in section 4.1.4).

The new representation consists of logical connectives (AND, OR and NOT) and

three functions: MATCH, TEST, and TEST_SYMBOL. These are now described.

4.1.1 MATCH

This function is used to match an arbitrary number of terms to a clause in the student

or ideal solutions. The syntax is:

(MATCH <sol ut i on name> <cl ause name> (pat t er n l i s t))

where <sol ut i on name> is either SS (student solution) or I S (ideal solution) and

<cl ause name> is the name of the SQL clause to which the pattern applies.

However, the notion of clauses is not domain-dependent; it simply allows the solution

53

to be broken into subsets of the whole solution. The (pat t er n l i s t) is a set of

terms that match to individual elements in the solution being tested. The following

constructs are supported:

� ?* – wildcard: matches zero or more terms that we are not interested in. For

example, (MATCH SS WHERE (?* ?a ?*)) matches to any term in the

WHERE clause of the student solution, because the two wildcards can map to

any number of terms before and after ?a, so all possible bindings of this

match gives ?a bound to each of the terms in the input;

� ?* var – named wildcard: a wildcard that appears more than once, hence is

assigned a variable name to ensure consistency. For example:

(AND (MATCH SS SELECT (?* w1 " AS" ?* w2) (1)
 (MATCH I S SELECT (?* W1 ?N ?*)) (2)

First, (1) tests that the SELECT clause in the student solution contains the

term " AS" . Then, ?* W1 in (2) tests that the ideal solution also contains all the

terms that preceded the " AS" , and then maps the variable ?N to whatever

comes next. The unnamed wildcard at the end of the second MATCH discards

whatever comes after ?N;

� ?var – var iable: matches a single term. For example,

(MATCH I S SELECT (?what))

matches ?what to one and only one item in the SELECT clause of the ideal

solution;

� " st r " – literal str ing: matches a single term to a literal value. For example,

in

(MATCH SS WHERE (?* " >=" ?*))

one of the terms in the WHERE clause of the ideal solution must match

exactly to " >=" ;

� (l i t 1 l i t 2 l i t 3. . .) – literal list: list of possible allowed values for a

single term. For example:

54

(MATCH SS WHERE (?* ?n1 (" >=" " <=") ?n2 ?*))

assigns the variable ?n1 to any term preceding either a " >=" or a " <=" , and

?n2 to the term following it. Note that because ?n1 and ?n2 are not

wildcards, they must map to a single term each, hence if the " >=" or " <=" is

either at the start or the end of the clause this match will fail, because one (or

both) of ?n1 and ?n2 will fail to match.

Variables and literals (or lists of literals) may be combined to give a variable

whose allowed value is restricted. For example,

(MATCH I S ORDER_BY (?* ((" ANY" " ALL") ?what) ?*))

 means that the term that the variable ?what matches to must have a value of " ANY"

or " ALL" . There is no limit to the number of terms that may appear in a literal list, or

in a MATCH in general.

4.1.2 TEST

Having performed a MATCH to determine the existence of some sequence of terms,

we often wish to further test the value of one or more variables that were bound. This

is carried out using the TEST function, which is a special form of MATCH that

accepts a single pattern term and one or more variables. For example (the following

constraint is simplified):

(2726
" Check you have used t he cor r ect l ogi cal connect i ve i n WHERE t o
r epr esent a r ange of number s. "

(and
 (mat ch SS WHERE (?* ?n1 ?op1 ?what 1
 ((" and" " or ") ?l c)
 ?n1 ?op2 ?what 2) ?*) (1)
 (mat ch I S WHERE (?* ?n1 " bet ween" ?*)) (2)
)

(t est SS (" and" ?l c)) (3)

" WHERE"
)

55

This constraint first tests for an attribute (?n1) in the WHERE condition of the

student solution that is being compared to two different values (?what 1 and

?what 2) in (1). Then, (2) looks for the same attribute being used in a BETWEEN

construct in the ideal solution. If this is the case, the two tests in the student solution

must be ANDed together. The TEST function call in (3) checks that this is the case,

by ensuring that the logical connective (represented by the variable ?l c) equates to

“and” . The syntax of the TEST function is:

(TEST <sol ut i on name> (t est - t er m))

where <sol ut i on name> is again IS or SS, and (t est - t er m) is a single value

test, such as a test against a literal or list of literals. In the previous example, a single

value test is made for the value " and" . In effect, TEST performs the same function

as MATCH, but where the pattern contains just a single match term, on a list that

contains just the value of the variable in question, in this case ?l c .

4.1.3 TEST_SYMBOL

We often need also to be able to test characters within the value of a term. For

example, a valid SQL string is defined as a single quote followed by any characters,

and closed with another single quote. To test this we add the function TEST-

SYMBOL, which acts exactly like the MATCH function, except it accepts a variable

name instead of a clause name, and further parses the value of the variable binding

into individual characters, before applying the match pattern. For example, to test for

a valid SQL string in the variable ?st r :

(TEST_SYMBOL SS ?st r (" ' " ?* " ' "))

This test would succeed for values of ?st r such as " ' Kubr i ck ' " for example, but

fail for " ' Smi t h" because of the missing closing quote. The general syntax is:

(TEST_SYMBOL <sol ut i on> <var > (pat t er n))

Note that in both TEST and TEST_SYMBOL, the solution name is passed as a

parameter even though it doesn’ t appear to be necessary, since these tests are on

already bound variables, not an input string. However, this is required because the test

56

may be a macro, which may perform further pattern matches on the input, so it needs

to know which solution to match. Macros are now described.

4.1.4 Removing domain-specific functions: macros

At the start of this chapter we stated that SQL-Tutor uses domain-specific functions to

extract features of the solutions and to make special comparisons between them. In

the new representation this is forbidden, because it hides the logic of the test. In SQL-

Tutor almost all domain-specific functions test for a valid value or pair of values. For

example, in:

(val i d- t abl e (f i nd- schema (cur r ent - dat abase * st udent *)) ' ?t 1)

Val i d- t abl e tests that ?t 1 is a valid table name in the student’s current database.

Similarly:

(at t r i but e- of (f i nd- t abl e ' ?t 1 (cur r ent - dat abase * st udent *)) ' ?a1))

tests that ?a1 is a valid attribute in the table ?t 1. Routines such as f i nd- t abl e

and cur r ent - dat abase (a Common Lisp Object System selector method) are

simply data accessors. In both val i d- t abl e and at t r i but e- of , the function

might alternatively be represented as a membership test on an enumerated list: for

val i d- t abl e the list will contain the set of table names for a given database, while

for at t r i but e- of each member of the list will be a tuple of type

(<at t r i but e> <t abl e>) . Since our language already supports testing against

lists of literals, these can be encoded using the pattern matching language, i.e.

(TEST SS ((" MOVI E" " DI RECTOR" . . .) ?t 1))

which tests that ?t 1 is a valid table, and

(TEST SS ((" TI TLE" " MOVI E") (" YEAR" " MOVI E") (" LNAME"
" DI RECTOR") . . .)
 (?a1 ?t 1))

which tests that ?a1 and ?t 1 form a valid attribute/table combination, i.e. that ?a1

is an attribute of table ?t 1.

Many of the other domain-specific functions are either accessor functions or

perform pattern matching. The former can be eliminated by making the required

57

values available to the pattern-matching algorithm (for example, as standardised

global variables), while the latter can all be achieved using the pattern matching

language itself. The only function from SQL-Tutor we were unable to represent

elegantly was “ length” , which tests how many of a particular item exist. In practice,

we could represent this function in our language by some other means in all but one

case of its use. In the single exception, which tests for the number of attributes in the

SELECT clause, we did not consider this constraint pedagogically necessary,

although we could have easily coded it via a macro that enumerates all possibilities.

However, it remains an open question whether other functions (such as a more general

“ length” function) would be necessary in other domains.

We have now replaced function calls with pattern matching, however it would be

cumbersome to have to enumerate all attributes of all tables every time we wish to

perform such a test. To overcome this we use macros to represent partial pattern

matches that are used often. For example, the macro for ^at t r i but e- of used

previously is:

(^at t r i but e- of (??a ??t)
 (TEST SS (((" TI TLE" " MOVI E") (" LNAME" " DI RECTOR") . . .)
 (?a1 ?t 1)
)
)
)

The syntax of a macro definition is:

(<MACRO NAME> (<par amet er s>) <body>)

The name must always begin with a “^ ” so that macros can be easily identified by the

constraint compiler. Similarly, the parameter names are preceded by “??” so that they

can be distinguished from local variables in the macro body. The body may be any

valid condition including logical connectives, MATCH functions and other macro

calls. Consider the following example from SQL:

(^at t r i but e- al i as (??name ??at t r ??t abl e)
 (and

 (t est ?? (^name ??name))
 (or - p
 (t est ?? (^at t r - name (??name ??at t r ??t abl e))) (1)
 (mat ch ?? SELECT
 (?* (^at t r - name (?_a1 ??at t r ??t abl e)) " AS" ??name)) (2)

58

)
)

)

This macro accepts an attribute name as input and returns the physical attribute and

table names. In SQL attributes can be aliassed, i.e. they can be assigned another name.

For example:

SELECT movi e. number AS num
FROM movi e
ORDER- BY num

In this example, “num” is defined as an alias for movi e. number in the SELECT

clause, and is used again in ORDER-BY. To test that num in ORDER-BY is a valid

attribute, we need to know what it maps to, which is achieved by the ^at t r i but e-

al i as macro defined previously. If ??name fails the test in (1), i.e. it is not a valid

attribute name, (2) tries to match it to an alias definition in the SELECT clause.

Hence, the macro needs to know which solution it is testing. The constraint that tests

for a valid attribute in ORDER-BY is therefore:

(149
" You have used some names i n t he ORDER BY cl ause t hat ar e not f r om
t hi s dat abase. "

(mat ch SS ORDER_BY (?* (^name ?n) ?*))

(t est SS (^at t r i but e- al i as (?n ?a ?t)))

" ORDER BY")

When the constraint set is loaded, the macro names are expanded into their

corresponding pattern matches. The parameter names in the macro definition are

substituted for those passed in, and the “??” solution name placeholders are replaced

with the solution name from the caller. Hence, all routines that can call a macro (i.e.,

MATCH, TEST and TEST_SYMBOL) must specify a solution name. Note that

macros may also be embedded in pattern matches, and that the macro being called

may have more than one parameter. For example:

(mat ch SS SELECT (?* (^at t r - name (?n ?a ?t)) ?*))

59

In this case, the first parameter to ^at t r - name (?n) is matched to a term in the

input string, with ?a and ?t being either tested or instantiated by the macro,

depending on whether or not they are already bound.

When the constraints are compiled all macro calls are recursively removed such

that the resulting code contains purely pattern matches with no sub functions, and

hence all tests are fully enumerated. It is this property that facilitates generating SQL

from the constraint set.

4.1.5 Limitations of the representation

The constraint language is limited by the need to be able to generate solutions that

satisfy the constraint set. This means that it must be possible to enumerate the set of

constructs that satisfies each constraint. This gives rise to two limitations: the inability

to call external functions, and a lack of recursion. Each is now described.

Inability to call external functions

It is not permissible for constraints to call external functions, such as arithmetic

operations, since these could not be relied upon to return the set of all possible

answers in a given situation. For example, the built-in “+” function could not return

all possible values of X and Y in the question “X + Y = 5?” . This is a common

problem with languages that perform unification: for example, PROLOG is unable to

answer such questions. The workaround is to write these functions in the pattern

matching language, usually by enumerating all cases in which we are interested. In

SQL-Tutor, for example, the operator INCR (where INCR(X,Y) means Y = X + 1)

was encoded by enumerating all values of X and Y that arose in the problem set.

Lack of recursion

A fundamental limitation of the new representation is that it cannot represent

recursive definitions: although the macros add structure to the constraints in raw form,

the expanded representation of any test is simply the logical connection of linear

pattern matches upon a set of strings. This means that functions such as

“greater_than” and “ less_than”, for example, would need to be enumerated, rather

than writing a recursive definition. In the SQL domain, it was necessary to test

60

whether a number was one larger than another, and this too had to be enumerated.

Perhaps more seriously, the domain itself may allow recursive constructs, such as

nested loops. In SQL, queries may be nested in the SELECT clause to an arbitrary

depth. It is not possible in the new constraint language to represent such constructs,

and so it is not possible to test their correctness. However, it is still possible to

represent a suitable subset. In SQL-Tutor, we set a limit of three levels of nesting,

since we reasoned that it is unlikely a query would require more than this, so we

would never set a problem that exceeded this limit. We then wrote constraints that

explicitly tested for up to three levels, i.e. we enumerated all the possibilities from

zero to three levels of nesting. However, there may be other domains for which

recursion is more fundamental, and hence this limitation may be more difficult to

overcome.

4.2 The constraint evaluator

The constraint evaluator performs three functions: test the student solution against the

constraint set, extract relevant fragments of the solution, and collate the set of

corrections that need to be performed (if any). These latter functions are required for

problem solving (Chapter 5).

Constraints are evaluated one at a time. On completion, the solution is either

correct with respect to the constraint set (i.e. it does not violate any constraints) or it

has violated one or more constraints and may be passed on for correction. For each

constraint the relevance condition is first checked. If it fails, the constraint is not

relevant and no further action is taken. Otherwise, the satisfaction condition is

checked. If this fails, the list of required corrections is passed on. If the constraint

succeeded, binding and fragment information is recorded.

All of the individual statements in the relevance condition are evaluated using the

pattern matcher until a failure occurs, which signifies that we are no longer interested

in this constraint. However, when the satisfaction condition is evaluated, we test all

bindings that resulted from the relevance condition even if a failure has been

encountered, so that we have failure information about all of the failed bindings, not

just the first. The overall constraint evaluation algorithm is:

61

Test - sol ut i on:
For each const r ai nt i n t he set
 i f t he r el evance condi t i on eval uat es
 For each set of val i d bi ndi ngs
 i f t he sat i s f act i on condi t i on eval uat es
 Add t he (modi f i ed) bi ndi ng set t o t he set of
 f r agment i nf or mat i on f or t hi s const r ai nt
 el se
 Add t he cor r ect i on i nf or mat i on f or t hi s bi ndi ng set
 t o t he l i s t of cor r ect i ons needed f or t hi s
 const r ai nt
 Add t he bi ndi ng and cor r ect i on i nf or mat i on f or t hi s
 const r ai nt t o t he set f or t hi s pr obl em.

Constraints are tested directly by evaluating the LISP fragments that they consist of.

There are only six functions that may be called: MATCH, TEST, TEST_SYMBOL,

AND, OR-P, and NOT-P. “AND” is the built-in LISP function, while OR-P and

NOT-P are modified versions of the built-in functions OR and NOT, which are

required to maintain binding and correction information consistency during failures.

The logic pattern-matcher is therefore contained wholly within these functions, with

MATCH and TEST being the most important. Further, all binding and correction

information is collected by these functions. Each function is now described.

The MATCH and TEST Functions

The MATCH and TEST functions are essentially wrappers around the same

algorithm. In the case of MATCH, the input is a clause from the student solution,

which is tested against a list of one or more pattern terms. TEST accepts a single

pattern term and has no other input: all variables participating in the pattern are

assumed to be either instantiated already, or they will be instantiated as a side effect

of the test.

When a MATCH is performed, some of the terms in the match pattern may have

already been bound by previous matches. Because matching can include wildcarding,

some terms may have already been bound in multiple ways. Therefore, an underlying

function, MATCH-BINDINGS, takes the pattern list and tries to match it to the

student solution for each valid set of bindings so far. On commencement of evaluating

a given constraint, the binding set contains just a single set with a default root

binding. Each time a variable is encountered, the binding set is updated with the

current binding set being duplicated for each possible binding value for the variable.

62

Each of these new sets is then recursively tested against the rest of the pattern to try to

complete the match. At any point one or more of these binding sets may be further

split because another variable in the same pattern is encountered that can be satisfied

in multiple ways. Further, during problem solving (see Chapter 5), each clause of the

interim solution may contain more than one fragment, so MATCH-BINDINGS tests

each fragment individually. The final binding list returned is a list of the sets of

binding values for which the pattern successfully matches.

The MATCH function further modifies the binding set returned from MATCH-

BINDINGS. Each time a match is successful, it implies that the associated piece of

SQL is of interest to us for problem solving. Therefore, the pattern itself is recorded in

each valid binding set. The problem solver can then instantiate the fragment with the

bindings from the set to reconstruct the original fragment of the solution that is

relevant to this constraint. Similarly, the TEST function records successful tests in the

binding information. This is required because many tests result in new variables being

instantiated, which are later involved in a MATCH or TEST. Without this

information, the link between the variables would be lost, so corrections made to the

latter variable because of a failure would not propagate back to the original MATCH.

Consider the following constraint:

(21
" I f a DATE t ype at t r i but e i s used i n a condi t i on, i t must be
compar ed t o an at t r i but e of t he same t ype. "

(and (mat ch SS WHERE (?* (^at t r i but e- p (?a ?at t ?t)) " =" ?c ?*))
 (t est SS (^ t ype- p (?at t " DATE")))
)

(and (t est SS (^at t r i but e- p (?c ?at t 2 ?t 2))) (1)
 (t est SS (^ t ype- p (?at t 2 " DATE"))) (2)
)

" WHERE")

When ?c is tested in (1) to see if it is in fact an attribute, a side effect is that

?at t 2 and ?t are instantiated to the physical attribute name and table name that ?c

represents. If (2) fails, ?at t 2, which is an intermediate variable only, is corrected.

Test (1) therefore needs to be recorded so that the problem-solver can deduce that ?c

63

also needs to be corrected because ?at t 2 was derived from it. An example of a

correction list entry with such a test is given in Section 5.7.1.

Logical Connectives

We are prevented from using the inbuilt OR and NOT functions by the fact that

MATCH and TEST update the binding lists as they are encountered. Therefore, if a

disjunct consists of a conjunction of MATCH and TEST calls, some of these may

succeed before the disjunct as a whole finally fails, and so the binding list will contain

fragment entries for part of the failed disjuncts as well as for successful ones. This is

also true in the case of NOT: if the test being negated itself succeeds, it will update

the fragment list, even though this means the negation has failed. The custom routines

OR-P and NOT-P ensure that the binding set is consistent, by restoring it each time a

disjunct or negation fails.

The pattern matcher

The MATCH, TEST and TEST_SYMBOL functions share a common pattern

matcher, which tries to match a given pattern list to an input fragment one term at a

time. The matcher works from left to right, maintaining the current binding set as it

goes. The pattern terms may each be one of an unnamed wildcard, named wildcard,

literal, or variable. Each of these is treated differently.

Literals (and lists of literals) are the simplest type of pattern term: the next term

must match the literal exactly. Variables are more complex. If the variable hasn’ t been

instantiated yet, it may take any value. If it has been instantiated, the next term must

match the instantiated value. Further, the variable term may also contain a match (e.g.

a list of allowed values) that must be met. The term is first compared with any match

requirements, and then compared to the current binding set to ensure consistency is

maintained.

The purpose of an unnamed wildcard is to “consume” zero or more terms until the

rest of the pattern can succeed. When one is encountered a flag is set that indicates

that if a subsequent term fails, the matcher may backtrack to this position, drop the

current input term and try again. In contrast, the behaviour for a named wildcard

depends on whether or not it is instantiated. If the wildcard variable is not currently

instantiated, it behaves the same as an unnamed one except the binding list is updated

64

with an entry for the wildcard on successful completion of the pattern. However, if the

wildcard has been already instantiated, it is treated the same as a literal: the next n

terms must now be the same as the value of the wildcard, where n is the length of the

original match to this wildcard.

Because a variable may be preceded by a wildcard, it can potentially take more

than one value, which will cause the current binding set to be split into many. Further,

there may be more variables further on in the pattern that allow this branching to

happen again. Each variable value must therefore be resolved recursively for the rest

of pattern: if the rest of the pattern succeeds, one or more binding sets are inserted

into the binding list representing all the ways the pattern could resolve given the

current value for this variable. Then, if the variable was preceded by a wildcard, the

next potential value is obtained, and again the rest of the pattern is tested to see

whether it returns any further valid bindings.

Finally, special consideration must be given to the situation where either the

pattern list or the input runs out before its counterpart. The input is only permitted to

run out before the pattern list if the remainder of the pattern list consists entirely of

unnamed wildcards, un-instantiated wildcards, and wildcards instantiated to NULL.

Conversely, the pattern is only permitted to run out before the input if the last term is

a wildcard that can be resolved to the remainder of the list.

4.3 Summary

We have developed a new constraint representation where all testing functions are

transparent and reversible, and implemented the associated constraint evaluator. We

have reimplemented the domain model for SQL-Tutor using the new representation.

We use this version of the domain model and constraint evaluator in the classroom

evaluation in Chapter 6, which demonstrates that it works. Recall that hypothesis 1

required a transparent representation that facilitates problem solving. We have now

defined the representation and shown it to be feasible for at least the SQL domain. In

the next chapter we show that it is sufficient to solve problems in this domain.

65

5 Problem solving using constraints

The CBM approach obviates the need for a problem solver because the constraints are

only interested in the solution state and can check this by testing the student solution

directly against an ideal solution. Strategy variation is allowed for within the

constraints by testing at the conceptual level (e.g. does this solution have all the

necessary tables represented somehow, rather does this solution represent tables the

same way as the ideal solution). Even procedural domains can be represented this way

by capturing declarative knowledge that constrains sequences of events (“you must

have started the engine before you release the clutch”).

However, CBM does not preclude the use of a problem solver. In this chapter we

explain why one is beneficial and describe the implementation of a problem-solving

algorithm that uses just the existing constraints to arrive at correct solutions.

5.1 Motivation

We described in Chapter 3 how feedback could be misleading. In many domains

including SQL, there is more than one way to solve a problem. There can therefore be

valid differences between the student and ideal solutions. Often these will be minor,

such as performing two unconstrained tasks in a different sequence (in the case of a

procedural domain), or using a qualified name instead of an unqualified one in SQL.

In other cases however, the entire problem solving strategy may differ. Recall the

example from Chapter 3:

Problem:
List the titles of all movies directed by Stanley Kubrick.

66

Ideal Solution:
SELECT t i t l e
FROM movi e
WHERE di r ect or =(sel ect number f r om di r ect or
 wher e f name=' St anl ey ' and l name=' Kubr i ck ')

Student Solution:
SELECT t i t l e
FROM movi e j oi n di r ect or on number = di r ect or
WHERE f name=' St anl ey ' and l name=' Kubr i ck '

The ideal solution uses a nested SELECT to obtain supplementary data from a

second table, while the student uses a JOIN, which is a totally different strategy to

solving the problem. This doesn’ t pose a problem until the student is presented with

part or all of the answer as feedback. In the above case the full solution is of no use to

the student unless they are prepared to abandon their attempt, in which case they do

not get to complete the learning they are currently experiencing. However, to be

shown a partial solution is worse: both the FROM and WHERE clauses of the ideal

solution would be wrong in the context of the student’s attempt. Since we believe that

showing a partial solution is beneficial (Mitrovic and Martin 2000), we need to

address this shortcoming.

In a model tracing ITS we might try to get from the erroneous solution back onto a

correct solution path by either using a bug library to determine what is wrong, or

retracing the sequence of steps back to where the student solution first deviated from a

correct path. In the case of CBM, we do not have a bug library, nor do we have any

method of getting back to a desirable solution. We therefore desire a problem solver

that uses the constraints themselves to solve the problem. Moreover, since the student

solution may be incorrect in any number of ways that we have never seen before, we

would like this problem solver to be able to arrive at a correct solution given an

arbitrary student solution. To be useful the resulting solution should be as close to the

student’s attempt as possible.

Determining how to track and understand students’ (sometimes incorrect)

problem-solving procedures remains an important problem in ITS research. This is

particularly evident in the complex domain of programming. Various approaches have

been tried, but (Deek and McHugh 1998) report that almost all of them constrict the

student’s freedom in some way. The main issue is determining the student’s intent,

67

such that bugs can be understood and corrected in a logical way. Model-tracing tutors

overcome this problem by forcing the student to stay very close to one or more

“optimal” solution paths. Since building up these paths is difficult, often only one is

provided. The LISP Tutor (Anderson, Farrell and Sauers 1984; Anderson and Reiser

1985) relies on a bug catalogue, which models divergence from the expert behaviour

to keep the student within one step of the solution path so that the tutor always knows

their intent. This, combined with the language-sensitive-editor style of the user

interface, ensures that the system is always able to complete the solution by simply

carrying out the rest of the model. The ACT Programming Tutor (Corbett and

Anderson 1993) similarly models “ ideal” solution paths. However, model tracing does

not guarantee that student errors can always be corrected. Sometimes a student may

perform an action that is neither on a correct path nor on a defined incorrect one. At

this point, model tracing has nothing to say other than that it is incorrect. Model

tracing systems may use repair theory (VanLehn 1983) to overcome the impasse, by

backtracking and suggesting alternative actions which the student may adopt, until the

trace is “unstuck” . However, this is a non-trivial task since it is rarely clear where the

repair should be made, and so the repairer may encounter a combinatorial explosion

of potential paths (Self 1994).

DISCOVER (Ramadhan and Du Boulay 1993) maintains control of the model

tracing process by providing two interfaces: a general one where students may

construct solutions on their own without feedback, and a “guided phase” module,

where they are restricted in what they can input. An alternative method is to build the

student interface in such a way that only selected actions may occur. ELM-PE (Weber

1993) provides a syntax-based structure editor, which automatically fills in LISP

statement slots with appropriate insertions, such that only valid LISP may be

constructed.

In contrast, CBM tutors like SQL-Tutor intentionally place no such restrictions on

the user—they are free to write their solutions in any order using whatever constructs

they see fit. The solution is then evaluated as a whole according to whether or not it is

syntactically correct and satisfies the semantics of the problem. The solution may

therefore deviate radically from the correct solution, at which point the user’s

“ intentions” are completely unknown. Some systems that suffer this problem try to

68

overcome it by forcing the student to make their intentions explicit. Bridge (Bonar

and Cunningham 1988) breaks down the problem solving process into three steps.

First, the student formulates their ideas in English. Then, they translate their informal

ideas into plan specifications. Finally, they build the program code. Because it already

has their intentions, Bridge is able to understand partially completed code. Similarly,

Capra (Verdejo, Fernandez and Urretavizcaya 1993) breaks problem solving into

three parts: problem extraction, relation to a class of solutions, and refinement to a

final answer. Note however, that Capra does not allow the student to enter his or her

own solution. Rather, they are “ led” to one of a set of solutions stored in Capra’s

knowledge base. Such an approach has been criticised for making students dependant

on being led to a solution, rather than developing their own problem-solving skills.

In the previous chapter, we developed a representation for constraints that makes

the evaluation process transparent, in that a satisfied condition can be reversed, to

show why it succeeded, while for a failed test we can see what the construct should

have been. To satisfy hypothesis 1, it must be possible to build an algorithm that uses

this representation to solve problems. We present hypothesis 2:

Hypothesis 2: Using the representation defined in hypothesis 1, it is possible to

develop an algorithm for solving problems and correcting student answers, which

does not need further domain information to achieve this.

5.2 The approach

In a constraint-based model, each constraint can be thought of as a pair of conditions

that reduce the solution space. The relevance condition represents a certain subset R

of the solution space, which is the set of problem/solution states we are interested in.

Similarly, the satisfaction state defines another subset S, which represents correct

solutions given that our solution is a subset of R. This is depicted in Figure 4.

Each constraint divides the solution space U into four regions: (1) R-S, (2) S-R,

(3) R�S, and (4) U-(R�S). If the solution is in region 1, the constraint is relevant but

not satisfied, i.e. it is violated. If the solution is in (2), it is not relevant so we are not

interested in it. If it is in (3), it is both relevant and satisfied. A solution in 4 falls

outside the scope of this constraint altogether. Therefore, only (1) is a problem; all

69

other regions do not signify a violation. To remove a violation we need to move the

solution out of area (1) into any of the other regions.

Thus for each constraint we can either satisfy the constraint or render it no longer

relevant. When this is true for all constraints, the solution is correct with respect to the

constraints. If the constraint set is correct and sufficient, this will be a correct solution

to the problem.

In essence this is a constraint satisfaction problem: the problem/solution must

simultaneously satisfy (or not be relevant to) all constraints, and so is a difficult

problem to solve. In practice we can define some heuristics that reduce this to an

iterative problem, although the time taken to solve a given problem is not necessary

linear. We describe these heuristics in the next section.

5.3 Problem solving with constraints

In the new representation, the (expanded) constraints make explicit all of the encoded

domain knowledge: for any given constraint, all requirements of the ideal and student

solutions are encapsulated in the MATCH and TEST pattern lists and the logical

connectives between them. This means that the relevant constraints plus the variable

bindings for each describes all that we know about the solution relevant to the

problem, given our current domain knowledge.

Consequently, given a complete domain model, we can rebuild the solution from

just the relevant constraints and their bindings. In the following example we list the

match patterns resulting from the evaluation of a correct student solution. Only

matches related to the student solution are listed, with variable bindings substituted

Figure 4. Solution Space

U

R S R �S
(3) (1) (2)

(4)

70

back in to give bound fragments of the student solution. The resulting list contains

many fragments that subsume others, i.e. they are a more specific version of one or

more other fragments. We have omitted the subsumed fragments for clarity.

Ideal Solution
SELECT t i t l e
FROM movi e
WHERE di r ect or =(sel ect number f r om di r ect or
 wher e f name=' St anl ey ' and l name=' Kubr i ck ')

Student Solution
SELECT t i t l e
FROM movi e j oi n di r ect or on di r ect or = di r ect or . number
WHERE l name = ' Kubr i ck ’ and f name = ' St anl ey '

Bound Matches (with subsumed fragments omitted)
SELECT (t i t l e ?*)
FROM (?* movi e JOI N di r ect or ON di r ect or = di r ect or . number ?*)
WHERE (?* l name = ' Kubr i ck ' and ?*) (?* = ' Kubr i ck ' and f name ?*)
 (?* ' Kubr i ck ' and f name = ?*) (?* and f name = ' St anl ey ' ?*)

The WHERE clause contains more than one fragment. These are “spliced” together

by joining overlapping fragments and removing the duplication. Wildcards are then

deleted, yielding:

SELECT (t i t l e)
FROM (movi e JOI N di r ect or ON di r ect or = di r ect or . number)
WHERE (l name = ' Kubr i ck ' and f name = ' St anl ey ')

which is the same as the student solution.

5.4 Correcting an er roneous solution

To provide tailored feedback we produce a correct solution that is as close as possible

to the student’s attempt based on pattern matches from the relevant constraints. The

previous example illustrated that the constraints may contain sufficient information

about a correct solution to rebuild it. In the case of an incorrect solution, the

fragments obtained from satisfied constraints tells us about the correct parts of the

solution, while violated constraints indicate parts of the solution that must be repaired.

To build a correct solution from a mal-formed one, we correct each violated constraint

and add the resulting fragments to those obtained from the satisfied constraints.

There are three types of constraint violation that may occur: a MATCH against the

student solution fails; a MATCH against the ideal solution fails; and a

71

TEST/TEST_SYMBOL fails. The first failure type indicates that one or more terms

are missing from the student solution. This is corrected by adding the fragment for the

failed MATCH. The second failure indicates that there are one or more extraneous

terms in the student solution, which can be corrected by deleting the corresponding

match fragment. Finally, a failed TEST indicates that one or more variables in a

previous match fragment are incorrect. This is corrected by substituting the expected

value for those variables.

The correct solution is built by beginning with the set of solution fragments

created by the satisfied constraints and passing it through a modified version of the

constraint evaluator, which accepts bound matches (including wildcards) as input.

Each time a constraint is violated, action is taken (as indicated previously) to remove

the violation. The fragment set is then checked for subsumed fragments, which are

removed. The cycle then repeats until no constraints are violated. At this stage the

fragments are spliced together as illustrated in the previous section and wildcards

removed, yielding a corrected solution.

5.5 Examples of solution correction

SQL-Tutor has been subjected to four prior evaluation studies (Mitrovic, Martin and

Mayo 2002) where, as well as collecting general statistics about the performance of

the system, we logged the students’ attempts. There were many cases where the

student solution was fundamentally different to the ideal solution, and so the feedback

given for a partial solution was not relevant to their answer: Of all partial or full

solutions presented to a student, 22 percent were either fundamentally different to the

student solution or varied such that the student made unnecessary alterations to their

answer. We now examine the performance of solution generation in two such

situations. The first is a simple example to illustrate how the method works, while the

second demonstrates its flexibility. As detailed in the previous section, generating the

correct solution involves testing the solution against the constraints, extracting

solution fragments from satisfied constraints, and adding, removing or modifying

fragments for violated constraints. This process is repeated until all fragments are

72

valid and none are missing. The solution is then built by splicing together the

remaining fragments.

The following example is taken from one of the evaluation logs. The student has

made two mistakes. First, in the SELECT clause, they have used a “ .” instead of a “ ,”

to separate two fields. Second, they have used “=” instead of “>=” in the WHERE

clause. The system first tests the solution against the entire constraint set to determine

whether or not it is correct, and discovers that six constraints are violated:

I deal sol ut i on:
 (SELECT (l name , f name))
 (FROM (di r ect or ?*))
 (WHERE (bor n >= 1920 ?*))

St udent sol ut i on:
 (SELECT ((l name . f name)))
 (FROM (di r ect or ?*))
 (WHERE (bor n = 1920 ?*))

VI OLATED: (650 462 6500 1802 192 5)

The student has made the following errors:

� They have used “ .” instead of a comma to separate attribute names. To the

system they have omitted attributes (constraint 650) and included a spurious

one (constraint 6500). This attribute appears to come from an unnecessary table

(“ lname” – constraint 1802), which does not appear in the “FROM” clause

(constraint 192), and is not a valid database name (constraint 5).

� They have used an incorrect comparison operator (“=” instead of “>=”) to

compare “born” to “1920” (constraint 462)

The system now tries to correct the semantics first, since there is no point in

correcting the syntax of elements that are not actually required. Four semantic

constraints are violated, the first being 650, which tests that all required attributes are

present in the SELECT clause (see appendix D for the constraint definitions). The

system does not recognise l name and f name in the student solution, because they

have been interpreted as a single attribute, l name. f name. This fault is corrected by

adding the two missing fragments, i.e. the two attribute names:

St udent sol ut i on:
 (SELECT ((l name . f name)))

73

 (FROM (di r ect or ?*))
 (WHERE (bor n = 1920 ?*))

VI OLATED: (650 462 6500 1802)
ACTI ONI NG 650
 ADDI NG FAI LED MATCH ((SELECT f name ?*))
 ADDI NG FAI LED MATCH ((SELECT l name ?*))

New sol ut i on:
 (SELECT ((l name . f name)) (f name ?*) (l name ?*))
 (FROM (di r ect or ?*))
 (WHERE (bor n = 1920 ?*))

The solution is now retested, and still fails three constraints, as shown below. The

next one, 462, tests that the operator used to compare two terms is the right one. A

TEST fails, so the incorrect value of “=” is changed to the correct one of “>=” :

VI OLATED: (462 6500 1802)

ACTI ONI NG 462
TEST I S FAI L- TEST

New sol ut i on:
 (SELECT ((l name . f name)) (l name ?*) (f name ?*))
 (FROM (di r ect or ?*))
 (WHERE (bor n >= 1920 ?*))

The semantics are again tested below, and there are still two constraints failing. 6500

tests that there are no extraneous attributes in the SELECT clause, by trying to match

all attributes in the student solution to the ideal solution. This fails, so the offending

extra attribute (l name. f name) is removed:

VI OLATED: (6500 1802)

ACTI ONI NG 6500

New sol ut i on:
 (SELECT (l name ?*) (f name ?*))
 (FROM (di r ect or ?*))
 (WHERE (bor n >= 1920 ?*))

The solution is now semantically correct (removing l name. f name has corrected

constraint 1802 as a side effect). The syntax is now checked, and found to be correct.

The next step is to splice the fragments together. Only SELECT has more than one

fragment and they do not overlap, so they are simply concatenated. The spliced

solution is now tested (below) and found to fail the syntactic constraint 350, which

74

checks for commas separating attribute names by looking for the match (?a1 " , "

?a2) . This fails, so the missing fragment is inserted:

VI OLATED: (350)
ACTI ONI NG 350
 ADDI NG FAI LED MATCH ((SELECT l name , f name))

New sol ut i on:
 (SELECT NI L (l name , f name))
 (FROM (di r ect or ?*))
 (WHERE (bor n >= 1920))

The solution is now correct. However, this is a fairly trivial example because the

student and ideal solutions were very similar. Consider the next example, where the

student uses a different strategy to the system:

I deal sol ut i on:
 (SELECT " t i t l e")
 (FROM " movi e")
 (WHERE " di r ect or =(sel ect number f r om di r ect or wher e
 f name=' St anl ey ' and l name=' Kubr i ck ') ")

St udent sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE (l name = ' kubr i ck and f name = ' St anl ey '))

Here, the student has used a JOIN, whereas the ideal solution uses a nested query. The

only errors are that the trailing quote is missing off the string ' kubr i ck ' , and the

first letter in this string should be uppercase. The first error means the system doesn’ t

know where the string ends, so arbitrarily chooses the “=” as the terminator, giving a

(malformed) string of ' kubr i ck and f name. This causes nine constraints to fail.

The system now tests the semantics, and tries to correct the first violation. Constraint

372 tests that all required strings are present, by trying to match all strings in the ideal

solution to the student answer. This fails, so the missing fragment ' Kubr i ck ' is

inserted:

VI OLATED: (372 239 2730 1514 999)
ACTI ONI NG 372
 ADDI NG FAI LED MATCH ((WHERE ?* ' Kubr i ck ' ?*))

New sol ut i on:

75

 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE (l name = ' kubr i ck and f name = ' St anl ey ')
 (?* ' Kubr i ck ' ?*))

The semantics are retested, and constraint 2370 fails (below). This constraint tests that

attributes are compared to the correct string. The failure was a TEST of a value, so it

replaces the incorrect string value of “ ' kubr i ck and f name” with the correct

one of ' Kubr i ck ' . The algorithm also eliminates subsumed fragments during

processing, so the previously added fragment of (?* ' Kubr i ck ' ?*) is deleted:

VI OLATED: (2730 1514 999)
ACTI ONI NG 2730
TEST I S FAI L- TEST

New sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE (l name = ' Kubr i ck ' = ' St anl ey '))

At this stage the algorithm is satisfied with the semantics so the syntax is checked,

and three constraints fail. The first is that there are two conditions without a logical

connective:

VI OLATED: (347 454 4629)
ACTI ONI NG 347
 ADDI NG FAI LED MATCH ((WHERE l name = ' Kubr i ck ' AND = ' St anl ey '))

New sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE NI L (l name = ' Kubr i ck ' AND = ' St anl ey '))

Note that the choice of “AND” (rather than “OR”) is arbitrary; if it is not correct

another constraint should be violated that will substitute the correct value. Now, there

is a malformed condition “AND = ' St anl ey' ” , which fails a TEST that expected

the term preceding the “=” to be an attribute. This is corrected by replacing AND with

an arbitrary attribute:

VI OLATED: (454)
ACTI ONI NG 454
TEST I S FAI L- TEST

New sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE (l name = ' Kubr i ck ' number = ' St anl ey ' ?*))

76

The constraint just fixed (347—missing logical connective) now fails again, and is

corrected again:

VI OLATED: (347 203 20_A)
ACTI ONI NG 347

 ADDI NG FAI LED MATCH ((WHERE l name = ' Kubr i ck ' AND number =
 ' St anl ey ' ?*))

New sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE NI L (l name = ' Kubr i ck ' AND number = ' St anl ey ' ?*))

The next two corrections illustrate how the greedy approach used can cause

unnecessary work to be performed. The first corrects the fact that the newly added

attribute (number) is ambiguous. Immediately following this, constraint 20_A

determines that ‘number’ is of the wrong type (numeric) to be compared to a string, so

swaps it for another attribute of the correct type. Thus, the results of the previous step

are discarded.

VI OLATED: (20_A 203)

New Sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE (l name = ' Kubr i ck ' AND (movi e . number) = ' St anl ey ' ?*))

VI OLATED: (20_A)

New sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE (l name = ' Kubr i ck ' AND addr ess = ' St anl ey ' ?*))

The syntax is now correct, and the semantics are again checked. Constraint 175

(below) discovers that addr ess is the wrong attribute being compared to

' St anl ey' , and substitutes the correct one:

VI OLATED: (175)
ACTI ONI NG 175
TEST I S FAI L- TEST

New sol ut i on:
 (SELECT (t i t l e ?*))
 (FROM (movi e j oi n di r ect or on di r ect or = (di r ect or . number)))
 (WHERE (l name = ' Kubr i ck ' AND f name = ' St anl ey ' ?*))

77

The solution is now correct. It is very similar to what was originally entered, and

continues to use a different strategy to the ideal solution.

5.6 Discussion

In the second example we generated a corrected version of an incorrect student

answer despite the student and ideal solutions being fundamentally different: the ideal

solution used a nested SELECT, while the student solution included a JOIN. This

suggests that the new representation is sufficient for the domain model to be

generative. However, there is room for improving efficiency. First, the algorithm

described is greedy in that it performs actions for all failed constraints and their

bindings, even though they may be undone by actions for later constraints. In

particular, it may generate new fragments that are later deleted again. This is

inefficient, and we need to explore ways to reduce the amount of redundant work

performed, without adding unnecessary complexity.

Second, each failed constraint results in just one action, based on the first item in

the condition that failed. Some constraints are encoded as a MATCH, with either

unrestricted or partially restricted variable terms, which are then further restricted by

other tests. If the initial MATCH fails, it will generate an action that adds a fragment

containing similarly general terms. These terms will remain until they are picked up

by another constraint failure (possibly for this same constraint) in a subsequent

processing step. It may be possible to perform more work at each action by

incorporating more than just the first failed step in the condition, thereby reducing the

number of iterations overall.

Finally, there is no guarantee that the solution being built will converge. Often,

there are multiple ways to satisfy a failed constraint, some of which may lead to

extraneous constructs being added to the solution. It is important that these are

removed, and that the solution does not “oscillate” between two or more potential

solutions (for example, by continually adding an incorrect new term, only to have it

later removed because of another constraint violation). In the next section we describe

how we have attempted to avoid such situations, however they remain possible.

78

5.7 The problem-solving algor ithm

The problem solver tries to correct the student’s answer by removing violations, one

constraint at a time. It is greedy on three counts: (1) only the first constraint (in the

order they were encoded) is initially selected for repair, (2) each constraint may be

violated more than once, but only the first instance is initially selected for repair, and

(3) when there are multiple ways to satisfy a constraint (i.e. an OR disjunct), only the

LAST is selected. The latter is a simplification that obviates the need for the pattern

matcher to retain information about previous failed bindings: at the time the constraint

fails, the information about the last failed disjunct will be still available. This level of

greed is probably far from optimal.

5.7.1 Algor ithm overview

The problem-solving algorithm consists of two main parts: extensions to the pattern

matcher to retain all the information needed about fragments and failures, and the set

of routines that correct the errors. Further, the former can be further divided into

collecting fragments, and building a corrective action list, for the error correction

algorithm to carry out. Problem solving therefore consists of alternately testing the

solution and gathering fragments and corrections, and correcting the first failed

constraint. This continues until no constraints are violated, or the algorithm gives up.

The latter may occur if the constraints cause a loop. The fragments resulting from the

corrective actions are then spliced together into a single solution, which is again tested

for fidelity with respect to the constraints. Finally, the solution is tidied up. The

overall algorithm is given in Figure 5. Note that MAX-TOTAL-ATTEMPTS, MAX-

CORRECTIONS and MAX-TIDIES are constants that determine how many times the

algorithm should try to correct errors before giving up. Currently they are all set to 20.

Each of the main components is now described.

79

5.7.2 Collecting corrections

Correction information is collected by the pattern-matcher because it is tied to the

bindings that were valid up to the failure. The corrective action list is maintained

separately to the binding list. When a MATCH fails, MATCH-BINDINGS inserts an

entry into the corrective action list containing a tag indicating that the type of error

was a match failure, whether the test was for the ideal solution or the student solution,

and the set of bindings that were current at the time. This provides the full context

needed to perform the correction. Similarly, TEST adds an entry for each failed test.

The following is an example of a corrective action list entry:

(174
 (FAI L- TEST
 ((NI L (?A1)) ?A2 (1)

Cor r ect Answer :

Test answer agai nst t he synt act i c and semant i c const r ai nt s, gat her i ng
al l f r agment s and cor r ect i ve act i ons

I f any v i ol at i ons
 Loop unt i l no l onger v i ol at ed, or MAX- TOTAL- ATTEMPTS exceeded

Loop unt i l no mor e v i ol at i ons, or MAX- CORRECTI ONS exceeded
 per f or m al l const r ai nt v i ol at i on cor r ect i ons

t est t he sol ut i on agai nst t he semant i c and synt act i c
const r ai nt s, gat her i ng cor r ect i ons

Spl i ce t he r esul t i ng f r agment s i nt o a compl et e sol ut i on

t est t he sol ut i on agai nst t he semant i c and synt act i c
const r ai nt s, gat her i ng cor r ect i ons

 Loop unt i l no mor e v i ol at i ons or MAX- TI DI ES exceeded

t est t he sol ut i on agai nst t he t i dy i ng const r ai nt s, gat her i ng
cor r ect i ons

Per f or m cor r ect i ons

 I f any semant i c or synt act i c const r ai nt s st i l l v i ol at ed
 r et ur n FAI L
 el se
 r et ur n cor r ect ed sol ut i on
el se
 r et ur n t he or i gi nal sol ut i on

Figure 5. Solution generation algorithm

80

 ((?TEST SS ((((aanom i nt eger) …) (?A2 i nt eger)) (?A2 i nt eger))) (2)
 (?FRAG- R WHERE (?* ?N2 ?OP2 ?C ?*)) (3)
 (?OP2 . =) (4)
 (?TEST SS ((NI L (?A2)) ?N2)) (5)
 (?A2 . number) (6)
 (?N2 . number) (7)
 (?TEST I S (((. 0 1 … 9) ?104_D1) ?104_D1)) (?104_D1 . 1) (8)
 (?T1 . t ape) (9)
 (?TEST I S ((NI L (?A1)) ?N1)) (10)
 (?A1 . t i mes) (11)
 (?C . 10) (12)
 (?OP . >=) (13)
 (?N1 . t i mes) (14)
 (?TOP . TOP)) (15)
)
)

The input that caused this failure was:

I deal sol ut i on: WHERE t i mes = 10

St udent sol ut i on: WHERE number = 10

This entry is for constraint 174, which has failed a test. Line (1) indicates the

failed test: ?A2 failed to equate to ?A1. Lines (2) through (15) are the binding set for

this test, including fragment and test information. Line (3) is a fragment for a

successful match. Lines 5, 8 and 10 record successful tests, while the rest give the

actual values for the bindings, for example (4) indicates that the value of ?op2 is “=” .

Line (6) shows that the value of the variable ?A2 is “number ” , while (11) indicates

that ?A1 is “ t i mes” , hence the failure of the test for equivalence of ?a1 and ?a2.

The correction algorithm will correct the value of ?A2 to “ times” , however ?A2 does

not appear in the fragment in (3), so will have no effect on this fragment. Entry (5)

indicates that ?A2 and ?N2 are equivalent, so the correction algorithm will also

update ?N2, which does appear in the fragment. Hence, the fragment will be changed

from “number = 10” to “ t i mes = 10” , correcting the error.

5.7.3 Fixing errors

The constraints are divided into three sets: semantic, syntactic, and tidying constraints.

Semantic constraints are those that compare the student solution to the ideal solution.

Their purpose is to ensure that the student solution contains the necessary terms to

81

solve the problem. For example, the following semantic constraint checks that the

student has provided all the necessary attributes for sorting:

(531

" Check whet her you have speci f i ed al l t he necessar y at t r i but es i n
t he ORDER BY cl ause. "

(and
 (mat ch SS ORDER_BY (?what ?*)) (1)
 (mat ch I S ORDER_BY (?* (^at t r i but e- p (?n ?a ?t)) ?*)) (2)
)

(mat ch SS ORDER_BY (?* (^at t r i but e- p (?n2 ?a ?t)) ?*)) (3)

" ORDER BY")

Condition (1) checks that the ORDER_BY clause of the student solution is not

null. Then, (2) binds ?n to all valid attribute names in the ORDER_BY clause of the

ideal solution, and also binds ?a to the attribute, and ?t to the table name that are

either implicit (in the case of an unqualified name) or explicit in each ?n. The

satisfaction condition (3) then tests that there can be bound a valid attribute name ?n2

for each (?a ?t) value pair, such that ?n2 represents the same attribute and table

name. In other words, for each physical database attribute implied by a name in the

ORDER BY clause in the ideal solution, there must also be some name in the student

solution that represents the same physical attribute.

Syntactic constraints test that the student solution is valid SQL, with no reference

to the problems being solved. For example, the following syntactic constraint tests

that all names in the FROM clause are either valid table names or valid attribute

names.

(146

" You have used some names i n t he FROM cl ause t hat ar e not f r om t hi s
dat abase. "

(mat ch SS FROM (?* (^name ?n) ?*))

(or - p
 (t est SS (^at t r i but e- p (?n ?a ?t)))
 (t est SS (^ t abl e- i n- db ?n)))
)

82

A side effect of the greedy approach to problem solving is that some changes may

be made to the student solution that later turn out not to be needed and which degrade

the quality of the solution. In SQL attributes may be either qualified (e.g. SELECT

movi e. di r ect or) or unqualified (SELECT di r ect or). Attributes must be

qualified if they would otherwise be ambiguous. When correcting an error in SQL-

Tutor where an attribute has been used for which no table exists in the FROM clause,

the algorithm may add a new table to FROM, rather than remove the attribute, only to

later remove both the new table and the offending attribute because they were

superfluous. In the meantime however, the problem-solver may qualify one or more

other attributes because the addition of the new table made them ambiguous. This is

not an error since any attribute can be legally qualified, but it degrades the quality of

the solution and may lead the student to think it needed to be qualified. To solve this

dilemma and others like it, tidying constraints are used to effect desirable properties

of the solution. In SQL-Tutor, over-qualification is the only such case. An example of

a tidying constraint is given in Figure 6. This constraint tests that if there exists a table

?t 1 in the FROM condition to which some attribute ?n exists in the SELECT that is

an attribute of this table, and there can be found no other different table ?t 2 of which

the attribute ?a of ?n is also an attribute, then ?n need be the attribute name only, i.e.

not the qualified name (?t . ?a) .

The main (semantic and syntactic) constraints are split into two sets for efficiency.

The algorithm generally prefers adding new fragments or modifying existing terms

(solution growth), to deleting fragments (solution pruning). This is because terms that

are incorrect (such as an extraneous attribute name) may be part of a wider construct

that is mostly correct. If the incorrect attribute were deleted, it may render the larger

construct syntactically incorrect, causing it too to be deleted, and much of the

student’s original attempt will be lost. However, if the erroneous attribute is replaced

by the correct one, the wider construct may now be correct.

83

A side effect of preferring solution growth to solution pruning is that the

algorithm may go to considerable lengths to grow a new construct, only to discover

that it was based on a partial construct that was unnecessary. To reduce the chance of

this the solution is always checked semantically first, which will correct, add and, if

necessary, prune as many incorrect terms as possible. Once the solution satisfies all of

the semantic constraints, it is tested against the syntactic constraints to ensure that all

the current constructs are syntactically correct.

At this stage more terms may have been added that are semantically incorrect.

Consider the following constraint:

(455
" You need t o speci f y an at t r i but e t o compar e t he st r i ng const ant t o
i n HAVI NG. "

(mat ch SS HAVI NG (?* (^ r el - p ?op) (^sql - st r i ngp ?s) ?*))

(mat ch SS HAVI NG (?* (^at t r i but e- p (?a ?at t ?t abl e)) ?op ?s ?*))

" HAVI NG")

This constraint tests that a relational operator and a string (e.g. “= ' Fer r ar i ' ”)

is preceded by any valid attribute. If this constraint is violated, it will add an attribute

into the HAVING clause. The semantic constraints will then need to ensure that it is

the correct attribute. The problem solver thus loops, alternately testing the semantics

then the syntax, until all constraints are satisfied. Finally, the tidying constraints are

(2
" You have qual i f i ed an at t r i but e i n SELECT t hat woul d not be
ambi guous wi t hout t he qual i f i cat i on. "
(and
 (mat ch SS FROM (?* (^ t abl e- i n- db ?t 1) ?*))
 (mat ch SS SELECT (?* (^at t r i but e- of (?n ?a ?t 1)) ?*))
 (not - p
 (and
 (mat ch SS FROM (?* (^ t abl e- i n- db ?t 2) ?*))
 (not - p (t est SS ((?t 1) ?t 2)))
 (t est SS (^at t r i but e- i n- db (?a ?t 2))))
)
)

(t est SS ((?a) ?n))

" SELECT")

Figure 6. Tidying constraint

84

checked. These may be applied independently of the other constraints because they

are guaranteed not to make any changes that will violate the main constraints.

Only one constraint is corrected after each test of the constraints. This is necessary

because the satisfaction condition of many constraints contains more than one test. If

only the first test failure were corrected followed by the corrective action for another

constraint, the second could cause the rest of the first constraint never to happen,

causing looping or extraneous fragments. Consider the following two constraints:

(1
" Check you ar e compar i ng t he cor r ect at t r i but e t o t he nest ed sel ect
i n HAVI NG”
(and
 (mat ch SS HAVI NG (?* w1 (^at t r - name (?n1 ?a1 ?t 1)) (^ r el - p ?op)
 " (" SELECT ?* w3 " FROM" ?* w4 (^ t abl e- i n- db ?t 2) ?* w5))
 (mat ch I S HAVI NG (?* ?agg " (" ?what ") " ?op2 " (" SELECT ?*
 " FROM" ?* (^ t abl e- i n- db ?t 4) ?*))

)
(and
 (mat ch SS HAVI NG (?* w1 ?agg " (" ?what ") " ?op " (" SELECT ?* w3
 " FROM" ?* w4 ?t 2 ?* w5))

 (not - p (mat ch SS HAVI NG (?* w1 ?n1 ?op " (" SELECT ?* w3 " FROM" ?* w4
 ?t 2 ?* w5)))
)
" HAVI NG")

(2
" Check t he r el at i onal oper at or you ar e usi ng i n t he HAVI NG cl ause. ”
(and
 (mat ch I S HAVI NG (?* ?agg " (" ?what ") " ?op1
 " (" " SELECT" ?* " FROM" ?* ") " ?*))
 (mat ch SS HAVI NG (?* ?agg " (" ?what ") " ?op2
 " (" " SELECT" ?* " FROM" ?* ") " ?*))
)

(t est SS ((?op1) ?op2))

" HAVI NG")

SS: aawon > (sel ect aawon f r om…)
I S: avg(aawon) >= (sel ect aawon f r om)

Constraint 1 ensures that an aggregate function is used rather than just an attribute, if

this is present in the ideal solution. Constraint 2 tests that when an aggregate function

is compared to a nested query, the correct relational operator is used. In the example,

both constraints are violated. Constraint 1 first adds a new match (in bold), giving:

aawon > (sel ect aawon f r om…)
avg(aawon) > (sel ect aawon f r om…)

85

Suppose we now go on to correct the violation for constraint 2. In this case a test has

failed, so we substitute the correct value for the operator:

aawon > (sel ect aawon f r om…)
avg(aawon) >= (sel ect aawon f r om)

We now retest the constraint set again. Constraint 1 once again fails, giving:

aawon > (sel ect aawon f r om…)
avg(aawon) >= (sel ect aawon f r om)
avg(aawon) > (sel ect aawon f r om…)

Finally, on testing the constraint set one more time, (2) fails again, and corrects the

added fragment, which is now deleted because it is a duplicate, and we are back to

where we started:

avg(aawon) > (sel ect aawon f r om)
avg(aawon) >= (sel ect aawon f r om…)

The algorithm is now looping. If the constraints were corrected one at a time and

retested, the following would happen instead: First, constraint 1 fails, as previously:

aawon > (sel ect aawon f r om…)
avg(aawon) > (sel ect aawon f r om…)

The constraint set is tested again. Constraint 1 fails again, and removes the extra

fragment:

avg(aawon) > (sel ect aawon f r om…)

Finally, constraint 2 fails, and corrects the operator.

avg(aawon) >= (sel ect aawon f r om…)

Each failed constraint is therefore actioned and retested repeatedly until it is no

longer violated. This ensures that another constraint does not become relevant and

cause looping or extraneous fragments.

5.7.4 Putting it all together

On completion of the correction process, the solution now consists of a set of SQL

fragments that must be combined into a single SQL statement. The individual

fragments are concatenated, or spliced together, being mindful of two conditions: that

86

two or more fragments may represent different parts of the same SQL construct, and

that the order of the various parts of the solution (e.g. conditions in a WHERE clause)

should be the same as the student’s solution as far as possible. The first is achieved by

comparing each fragment with each other, to see if they overlap. If so, the overlapping

portion of one fragment is removed before concatenation. Ordering is kept consistent

by pre-sorting the fragments according to the student solution. Each fragment is

compared to the original student attempt, and given a rank of at which input term they

first (at least partially) match. For example, if a fragment has the same first term as

the third term in the student input, it will be given a ranking of 3. In the case of a tie,

the offending fragments are rechecked to see which continues to match in that

position if more terms in the fragment are considered. The fragments are then sorted

based on the ranking given.

The act of splicing the fragments can cause further constraint violations. For

example, the two condition fragments “ l name = ' Kubr i ck ' ” , and “ f name =

' St anl ey' ” will splice to form “ l name = ' Kubr i ck ' f name =

' St anl ey' ” which is incorrect, because there is no logical operator conjoining the

two conditions. The spliced solution is therefore re-checked against the entire

constraint set and necessary corrections made. This process iterates until the newly

spliced solution no longer violates any constraints. In practice, re-correction tends to

occur at most once.

5.8 Robustness testing

The solution generation method described is feasible but potentially unworkable. As

stated earlier, one of the chief advantages of CBM over model tracing is that the

constraint set need not be complete or perfect, because each constraint is used in

isolation without chaining. This means that the effect of an error is highly localised.

With solution generation the effect of errors in the constraint set is more severe. There

are two problems that may arise, both of which can be catastrophic: that a valid

construct is disallowed, and that an invalid construct is permitted. Disallowing valid

constructs can cause looping, because the construct in question may be added by one

constraint, only to be (erroneously) deleted by another. Allowing erroneous constructs

87

may cause the finished solution to contain spurious elements that were either

produced by the student or worse, added by the algorithm.

Incorrectly encoded constraints may also cause serious problems, including

looping. Consider the following constraint:

(1
" You need a l ogi cal oper at or bet ween condi t i ons i n WHERE"

(mat ch SS WHERE (?* ?w (^ r el - p ?op) ?c
 ?w2 (^ r el - p ?op2) ?c2 ?*))

(mat ch SS WHERE (?* ?w ?op ?c ((" and" " or " ?conn) ?w2 ?op2 ?c2 ?*))

" WHERE")

This constraint is trying to ensure that all conditions are joined by a logical

connective. However, it is encoded such that both the correct and incorrect versions of

the condition pair would be accepted, e.g.

" f name = ' St anl ey ' and l name = ' Kubr i ck ' and f name = ' St anl ey '
l name = ' Kubr i ck ' "

If another constraint modifies either the incorrect or the corrected pair, looping may

result.

Solution generation therefore imposes a burden of correctness upon the constraint

set: within the space of solutions to the problem set and potential student solutions to

the problem set, the constraint set must be complete and correct. The former is a

definable set that can be readily tested. The latter is impossible to define and

potentially infinite. It is therefore impossible to ever say with certainty that the

algorithm will always provide a correct solution based on the student’s input: the best

that can be said is that we are reasonably confident that a solution will prevail n% of

the time, and that the algorithm will always terminate. The second claim that the

algorithm will terminate is achieved by coding a halting condition, i.e. that the

algorithm stops after a fixed number of attempts. The first claim that the solution

should be correct n% of the time may only be empirically measured.

5.8.1 Testing robustness

The default constraint set for solution generation was a direct translation of the

existing constraints in SQL-Tutor. It was then tested to ensure it could solve all

88

problems in the problem space, by presenting the algorithm with a blank log file and

requiring it to generate the correct solution to each problem. This step resulted in

many corrections to the constraint set. Some of these were simply existing coding

errors. However, a large number were additions to the constraint set or modifications

to existing constraints because the constraint set was too loose, and so would miss real

errors. This is the trade-off for allowing an incomplete constraint set that CBM must

live with. It also highlights a positive side effect of the solution generation algorithm:

it can serve as a fairly rigorous means of testing the constraints.

The algorithm, together with the modified constraint set, was then tested by

attempting to correct wrong answers submitted by students in two previous evaluation

studies of SQL-Tutor. In each case 30 logs were chosen from the study and arbitrarily

split into two groups of fifteen students. For the first study, the 30 logs were those

with the most submissions (out of 46). For the second study, this was the entire set of

logs. Both studies were voluntary, and the participants were all students from a

university database course. They had attended several lectures on SQL prior to the

study.

Table 1 lists the number of student attempts that were corrected for the first set of

15 logs. It also lists the proportion of attempts that fell into each of the following

categories:

� Not resolved: the algorithm was forced to abort because it was looping;

� Incorrect: the algorithm terminated but the generated solution contained

errors, e.g. extraneous constructs in the generated solution;

� Strategy difference(s): the solution generated is correct but is an example

of a completely different problem strategy, e.g. a JOIN used instead of a

nested query;

� Structural differences: the solution is an example of the same strategy

but contains significant differences, e.g. the argument of an aggregate

function has been unnecessarily modified;

� Minor differences: the solution is correct and largely the same as the

students, but contains some unnecessary minor differences, e.g. an

attribute which was previously not qualified was unnecessarily qualified;

89

� All OK : the solution is totally correct, differing from the student solution

only where necessary.

For the training set, 71% of the attempts were satisfactorily corrected in that any

unnecessary differences between the new solution and the student’s attempt were

minor, and in the majority of cases there were no such differences. Of the rest, 8.5%

were correctly generated but had unnecessary differences that might confuse the

student, while 23% were wrong. This last category is the most critical: the algorithm

should seek to avoid ever presenting an incorrect solution to the student.

These problems were corrected by further modifications to the constraint set, until

corrections to all student attempts fell in the “All OK” category. At this stage the

algorithm can be shown to produce excellent results on a known dataset, but its

performance on future student input is unknown. To gauge this we now tested the

algorithm on a further set of 15 logs from the same student population. The results are

summarised in Table 2. For this test set, nearly 96% of the attempts were satisfactorily

corrected with almost all of these being completely correct. Of the rest, just 0.9%

failed to terminate, with 2.3% resolving, but having errors in the solution. Three

Log # Problem
Attempts

Not
Resolved

Incorrect Strategy Structural Minor All
OK

1 11 0 0 0 0 7 4
2 26 0 8 1 0 0 17
3 4 0 0 0 0 0 4
4 16 0 0 0 0 2 14
5 41 0 10 0 8 10 13
6 48 0 8 0 2 5 33
7 3 0 0 0 0 0 3
8 36 0 18 1 4 2 16
9 39 0 10 0 0 9 23
10 8 0 0 0 0 0 8
11 18 0 7 0 3 1 8
12 39 0 10 0 11 8 11
13 49 0 7 0 0 6 36
14 23 0 8 0 2 3 12
15 52 0 10 0 5 4 35

Total 413 0 96 2 35 57 237
% 0 23 0.5 8 14 57

Table 1. Results for the training set

90

problem attempts had a difference that was considered more than minor. Some of the

errors were:

Failed to resolve:

� Failed to resolve when the student used a different numeric constant (e.g. “0.1

* rentals” instead of “ rentals/10”)—caused by missing constraints;

� Difficulties when a numeric calculation was entered using an unexpected

representation, such as extra parentheses—caused by missing constraints;

Wrong:

� Combination of both “* ” and a list of all attributes in the SELECT clause—

caused by missing constraints;

� Both an unaliased and an aliassed representation of the same attribute in the

SELECT clause—missing constraints;

� “ type = (comedy or drama)” instead of “ type = ‘comedy’ or type = ‘drama’”

lead to incorrect structures—missing constraints;

Structural difference:

Log # Problem
Attempts

Not
Resolved

Incorrect Strategy Structure Minor All
OK

16 9 0 0 0 0 0 9
17 21 0 0 0 0 1 20
18 1 0 0 0 0 0 1
19 10 0 1 0 0 0 9
20 52 0 4 0 0 0 48
21 5 0 0 0 0 0 5
22 3 0 0 0 0 0 3
23 3 0 0 0 0 0 3
24 32 1 0 0 0 0 31
25 22 2 0 0 0 1 19
26 14 0 0 0 0 0 14
27 22 0 0 0 0 0 22
28 18 0 2 0 0 2 14
29 39 0 0 0 3 0 36
30 60 0 0 0 0 0 60
Total 311 3 7 0 3 4 294

% 0.9 2.3 0 1 1.3 94.5

Table 2. Results for the first test set (same population)

91

� “not (critics = nr)” is missing the quotes around ‘nr’ , but instead of inserting

the quotes, the algorithm changed the condition completely to “critics !=

‘nr’ ”—caused by the way the constraints were encoded: the nr is interpreted as

an (erroneous) attribute rather than a mal-formed string;

Minor differences:

� ordering of SELECT clause attributes—caused by incorrect attributes being

deleted, and their correct counterparts being inserted in a different position in

the clause.

The above problems were then fixed where possible, and a further 15 logs tested

from a different evaluation, representing a completely separate population. Of this set,

a larger proportion of solutions were unacceptable compared with the previous set

(9.5% compared with 3.2%). However, this was much better than the first set tested

from the previous population. Only four constraints required correcting to produce no

errors for this set.

Finally, another 15 logs were tested from this second evaluation study, giving

92% correct solutions. Recall that the motivation for this research was to try to reduce

the likelihood that students would be shown a partial or full solution that was

inconsistent with their attempt, or contained unnecessary changes. In this final test

group, 22 ideal solutions were presented to students in whole or in part, of which

seven (32%) differed sufficiently from their attempt that the student made

unnecessary changes. After applying solution generation, only one of the presented

solutions (less than 5%) differed unnecessarily from the student solution.

5.9 Conclusions

The solution generation algorithm successfully solved up to 95% of incorrect student

solutions. Once trained on a set of 15 student logs, it was able to achieve a 95% rating

on a further 15 previously unseen logs. After correcting the constraints to eliminate

the failures for this set it satisfactorily corrected over 90% of student errors for a

different population. Although this is a higher failure rate than for the previous test,

the number of constraints requiring correction trended steadily downwards. Figure 7

92

plots the number of constraints corrected or modified in response to problems with

each group the algorithm was tested on. This graph shows that the number of

modifications to the constraints decreased during the testing process. Further, more

than half of the modifications were performed before any testing on live data was

required, and a total of 96.6% of the modifications had been made to the knowledge

base after testing just one set of 15 logs. This suggests that the behaviour of the

algorithm is reasonably stable, in that once errors are eliminated it is unlikely that the

system will fare significantly worse on subsequent populations.

Finally, we previously mentioned that correcting errors in the constraint set is

desirable, because it leads to better diagnosis. We measured the level of misdiagnosis

in the system prior to using solution generation, compared to after bugs had been

fixed. For the test set of the second evaluation study (i.e. the last group tested above),

the original version of SQL-Tutor misdiagnosed 16 cases out of 347 submissions

(4.6%). In the final version (i.e. after correcting errors for all but this last group) there

was only one error (0.3%), caused by the student using real attribute names as

aliasses, which confused the constraint that checks that the correct attributes have

been retrieved. Thus although correcting misdiagnosis was not a conscious goal, the

system’s diagnostic ability has improved as a result of the testing performed for

solution generation, because it identified errors in the initial constraint set.

263

412

197

0

50

100

150

200

250

300

Blank Training Set Test Set 1 Test Set 2

Log set

C
o

rr
ec

ti
o

n
s

Figure 7. Constraints corrected per log

93

The robustness testing described indicates that the approach is promising and

realistic on real, complex domains. Further refinement of the algorithm may further

improve the situation. For example, more sophisticated ways of correcting errors than

the very greedy approach described may reduce the likelihood of looping. We have

therefore satisfied hypotheses 1 and 2, by showing that it is possible to develop a

representation and algorithm that allows problems to be solved without the need for

further domain information. That it works for a complex domain like SQL shows

promise that it will be applicable to a wide range of domains.

94

95

6 Problem generation

The student model in SQL-Tutor is an overlay of the domain model consisting of a

tally of how many times each constraint has been satisfied or violated. This is

currently used to select the next problem, by choosing one where a target constraint is

relevant. The target is the constraint that has been most violated. In this section we

propose an alternative: generating a new problem tailored to the current situation.

Most ITSs do not generate their own problems, but choose from an enumerated

set. However, some exceptions do exist. The Demonstr8 authoring tool (Blessing

1997) facilitates automatic problem generation but the domain (arithmetic) is very

simple: the system merely selects random numbers from predefined ranges. XAIDA

(Hsieh, Halff and Redfield 1999) is an example of problem generation in the more

complex domain of device maintenance training. It generates four types of instruction:

physical characteristics of a device, theory of operation, operating and maintenance

procedures and troubleshooting. Each is supported by a separate “ transaction shell” ,

which is tailored to the particular type of instruction. In the “Physical Characteristics”

section, XAIDA randomly selects pairs of attributes for the device currently being

examined and then (again randomly) chooses a question schema that fits the

characteristics of the attributes chosen. Such attributes may be parts of the device,

values related to parts (e.g. volume of storage tank) etc. Information about the device

and its parts are stored in a semantic network. Exercises for “Theory of operation” are

similarly derived from a knowledge base about the device being learned. In this case,

the knowledge base contains causal rules relating the state of certain components to

the corresponding state of others. The author then generates a set of “cases”—

combinations of device attributes and values that are instructionally useful. The

system derives the “actions” (i.e. all of the consequences for other parts/attributes of

96

the device) based on the causal model. However, this is not really automatic problem

generation since the “cases” define the structure of each problem. The “Procedures”

section requires the author to model entire procedures, which XAIDA then randomly

quizzes the user on. “Troubleshooting” is represented internally by a “ fault tree” ,

which is randomly instantiated to depict a particular fault.

The systems described above perform some form of problem generation; however

the problem they create is not structured. That is, they are limited to selecting a

combination of values, instructional schemes etc, perhaps inferring some details of the

solution from the underlying model (e.g. the “actions” in the XAIDA “ theory of

operation” module). In our case, we wish to take problem generation one step further:

to generate a complex, structured problem (i.e. an SQL statement) without any

problem-specific information being provided by the author. A comparable example

from XAIDA would be if it could generate the valid “cases” for the theory of

instruction based on the underlying model of device operation. Systems that use some

sort of template to define the structure of the problem, such as XAIDA, run the same

risk as manually authored problems: that the problem (or template) set is too small.

Animalwatch (Arroyo, Beck, Beal and Woolf 2000), a system for teaching

mathematics via word problems, similarly uses templates to generate new exercises,

where the system simply instantiates numbers to create a new problem. Although

Animalwatch contains 600 templates, students still complained of receiving the same

problem twice but with different numbers.

SINT (Mitrovic 1996) is possibly a close comparison. This system teaches

symbolic integration, using the student’s current behaviour to target a particular

integration operator that the student has not learned. It then tries to construct a

suitable example by inductive learning (Michalski 1983). This involves generalising

the current exercise by climbing a directed graph of operators, where edges model

dependencies, until an operator is reached for which all dependent others are still not

learned. The tree is then descended, selecting appropriate operators and initialising

constants, until a complete problem is built. The major difference is that the

constraints in a CBM model are not related to each other explicitly. Rather, they are

related implicitly in that making constraint C1 relevant may also render some other

constraint C2 also relevant. For example, in SQL if constraint C1 requires that the

97

solution have a WHERE condition (because the data being selected needs to be

constrained in some way), the constraints concerning the syntax of such conditions

now also come into relevance, and hence they are implicitly related to C1. The

problem solver must use these implicit connections to build a new solution, and hence

a new problem. We explore this possibility and propose the following hypothesis:

Hypothesis 3: CBM can also be used to generate new problems that fit the

student’s current model, and this is superior to selecting one from a pre-defined

list.

6.1 Motivation

In SQL-Tutor there is no guarantee that an unsolved problem exists that matches the

target. To overcome this, we propose generating a new problem using a procedure

similar to problem solving. The steps are: (1) identify the target constraints; (2)

produce a set of solution fragments from the relevance condition of the target

constraints; (3) pass the fragments through the problem solver, generating a complete,

novel solution; (4) convert the solution into natural language for presentation to the

student. These steps are now described.

6.2 Identifying the target constraint

Previously, a single constraint has been chosen as the target. However, constraints are

highly specific: in many cases a single concept will span multiple constraints. We

have developed a method of automatically identifying the set of suitable target

constraints from the student model using machine learning (Martin and Mitrovic

2000b). This algorithm uses the student model to classify all constraints as “ learned”,

“not learned” or “unknown”, based on the recent history of their application. A

modified version of the PRISM machine learning algorithm (Cendrowska 1988) is

then applied, which induces “ rules” for the first two sets based on the text of the

feedback message attached to each constraint. The rules induced for “not learned”

describe the target constraints. Note that the target set may now also include

constraints that have not been relevant yet, but which (according to their feedback

98

messages) are conceptually similar to failed constraints and so are unlikely to be

known. This gives us a set of valid targets for any concept from which we may choose

one or more as the basis for the new problem, allowing greater variability in problems

we might generate. This algorithm is now described.

6.2.1 Motivation

In SQL-Tutor the student model is an overlay of the domain model. Each constraint

has three counters: the number of times the constraint was relevant for the student

solution, the number of times it was relevant for the ideal solution, and the number of

times it has been violated by the student. These scores are used to select the next

problem to present. The system currently chooses the constraint that has been violated

most often, and picks an unsolved problem for which this constraint is relevant. This

is adequate for problem selection but is constrained by the low-level nature of the

individual constraints. We propose using machine learning to induce higher-level

groups of constraints, which can add power and flexibility to the student model.

6.2.2 Increasing the knowledge depth

There is no point in adding information to a student model if it cannot be used to

further guide the pedagogical process (Self 1990). The desire to add knowledge depth

to the constraint-based model is motivated by the following:

� To improve the selection of the next problem to present. SQL-Tutor has

only the individual violated constraints available to make this choice, and so

can only present new problems if they use the actual target constraint. This

artificially limits the pool of potential problems at each step;

� To help the teacher understand the student’s progress. Constraints are

such a specific representation of the problem domain that it is difficult for a

human to gain an overall understanding of the student’s competency or

progress. A higher-level description of the areas of difficulty might be helpful

to both teacher and student;

� To aid feedback. A system that can determine the concept behind an error can

provide help about that concept, not just the particular instance at hand.

99

To this end, we propose that the inclusion of high-level concepts will increase the

power of the constraint-based model to guide the pedagogical process.

6.2.3 Manually adding the concept hierarchy

We evaluated the possibility of adding a constraint hierarchy (Martin 1999) by

creating one by hand for the set of semantic constraints in SQL-Tutor. Recall that

semantic constraints compare the student’s answer to an ideal solution to ensure that

they have satisfied the question. An example of a semantic constraint is:

(p36
 " You need t o or der t he r esul t i ng t upl es - speci f y t he ORDER BY
cl ause"
 (mat ch I S ORDER- BY (?what 1 ?*))
 (mat ch SS ORDER- BY (?what 2 ?*))
" ORDER BY")

This constraint checks that if the ideal solution has used an ORDER BY clause to

sort the result, the student solution must do the same. To create a concept hierarchy

the constraints were grouped into basic concepts of the SQL query language. These

sets were then repeatedly partitioned into groups of constraints that share common

sub-concepts, producing a tree with individual constraints as leaf nodes. The highest-

level nodes in the tree (apart from the root) represent fundamental principles of SQL

queries, such as “all tables present” , “use of negation” and “sorting” . Figure 8

illustrates the portion of the hierarchy that represents “all tables present,”

encompassing all constraints that check that the appropriate database tables have been

referenced in the answer.

We formatively tested the proposed method by analysing the logs of students from

an evaluation study of SQL-Tutor, and observing how they related to the proposed

hierarchy. The participants were all volunteers, and had attended several lectures on

SQL in a university database course. We observed from each log the set of problems

the student attempted, and determined which constraints were relevant for each

problem, and which were violated. A “hit list” was built up for each constraint, where

a “�” indicates the constraint was satisfied, and a “�” indicates that it was violated.

100

All Tables
Present

None Extra None
Missing

FROM

WHERE
(nested)

FROM WHERE
(nested)

Nesting in
Student Soln

Nesting in
Ideal Soln

Nesting in
Student Soln

Nesting in
Ideal Soln

55

236 237

10

221 222

To allow for temporal variations in the student’s knowledge, each constraint was

classified as “LEARNED” or “NOT LEARNED” based on just the last four “hits” as

follows:

� Any pattern containing “��” indicates that the concept has been LEARNED;

� A constraint with only a single “�” is (tentatively) considered to be
LEARNED;

� A constraint with no hits is not labelled;

� Any other pattern indicates that the constraint is NOT LEARNED.

These heuristics were obtained by analysing the failure patterns of a population of

students from their logs. We observed that the probability of satisfying a constraint

rises exponentially with the number of previous successes, and after two consecutive

successes the probability of satisfaction is nearly 100%. We assume that any

subsequent failures after that are “slips” .

The semantic constraint hierarchy was then pruned for each student so that the

resulting hierarchy represents the concepts the student has failed to learn as generally

as possible. Pruning was carried out as follows:

� Classify each constraint as described above;

Figure 8. Concept hierarchy for “all tables present”

101

� For each constraint classified as “NOT LEARNED”, ascend the tree towards

the root until a node is reached where there are one or more nodes below it

that are classified as “LEARNED”;

� Backtrack to the node below. This is the most general node that describes the

concept that was not learned. Label this node “NOT LEARNED” and discard

all nodes below it;

� Continue for all other constraints labelled “NOT LEARNED” that have not

yet been discarded;

� Discard all nodes that have not been labelled “NOT LEARNED”, and do not

have any nodes labelled as such below them.

This procedure was carried out for three students in the study who had solved at least

15 problems each, and who had failed many, average and few constraints. The

resulting pruned hierarchies were collapsed into categories, where each is described

by the labels of all nodes from the root down to each leaf. The results were as follows:

Student A failed many constraints, over a wide range of concepts, and appeared to

still have much to learn about SQL. The pruned hierarchy contained the following

categories:

� Sorting

� Aggregate functions

� Grouping

� NULLS - attributes

Student B failed fewer constraints than A, and attempted harder problems. Their

pruned hierarchy contained just two highly specific categories:

� All tables present – none missing – nested SELECTs

� Negation – correct attributes

Student C fell somewhere between the other two, in that while their list of unlearned

areas is longer than that of student A, more of them are very specific. For example,

whereas student A still needed to learn “grouping” in general, student C was only

102

having problems with two smaller sub-areas. They attempted more questions, and

more difficult ones, but failed quite a large number of constraints. Their categories

were:

� Sorting

� Negation – correct attributes

� Grouping – attributes

� Grouping – existence – HAVING clause

� Expressions – arithmetic

� Expressions – non-arithmetic – DISTINCT

� All tables – none missing – nested SELECTs

We found that the results from the hierarchy appeared to be a good representation

of the areas the students demonstrably had problems with. For the advanced student

the hierarchy returned a small number of highly specific descriptions corresponding to

a low number of constraints that were yet to be learned. For the less advanced student

the hierarchy returned a set of very general descriptions (such as “grouping” and

“sorting”), representing large numbers of potentially unlearned constraints. For the

moderate student a larger set of reasonably specific descriptions were returned,

indicating a good basic understanding of SQL but still quite a few specific areas to be

mastered. Note that the hierarchy tells us nothing about what the student does know.

For example, student B did not attempt any sorting problems, so the absence of any

categories relating to sorting does not imply that it is learned. It would be possible to

build another collapsed tree that represented the learned concepts in the same way,

but this is dangerous. For example, if a student has correctly used just one SORTING

constraint out of 11, it is not correct to say they have learned the concept of sorting,

whereas if they have only encountered that same single constraint and violated it, it

seems reasonable to assume they need to learn more about that concept.

It may seem odd that student C finished (after 25 problems) with so many discrete

areas that they were having difficulty with, which suggests they moved on from

concepts they were struggling with, or that they were attempting problems involving

many concepts that they had not yet learned. In fact, both of these were true, for two

103

reasons. First, SQL-Tutor contains a fairly limited problem set—the largest problem

set for a single database contained just 38 problems. Second, problems were selected

according to the currently most violated constraint. This strategy can easily fail

because there may not be another problem for which the same constraint is relevant.

This is exacerbated by the specificity of the constraints. If a problem involving a

similar constraint could be used, the system would more successfully focus on the

target concept . This highlights the need for a more general view of the constraint set.

Also, this approach gives no control over the number of new concepts introduced.

Therefore, although the student is currently focussing on one aspect, such as sorting,

the system might inadvertently introduce another new concept, such as grouping.

6.2.4 Inducing the student model using machine learning

The results for the hand-coded hierarchy were encouraging. However, there are two

disadvantages. First, the hierarchy, like the constraint set, must be maintained. Any

new constraints that are not added to the hierarchy will not be visible to processes that

rely on it. If more than one person maintains the system, it is probable that new

constraints could “slip through the cracks.” Second, the hierarchy represents just one

way of looking at the constraints: there may be others that are equally valid. More

importantly, the same hierarchy may not fit all students. For example, the structure

used in (Martin 1999) is heavily based around functional features such as “sorting” ,

“grouping” , “ tables” , “expressions” etc. Details such as nested queries or name

aliasing are “hidden” lower down in the hierarchy. However, a particular student may

have mastered the basics of SQL but repeatedly have problems with nesting queries.

The relevant constraints for this type of problem are scattered throughout the

hierarchy. Using Machine Learning would overcome both of these difficulties,

making the student model more flexible and easier to maintain.

As described earlier, the hand-coded constraint set was produced by repeated

partitioning of the constraint set based on key concepts such as “grouping.” These

concepts were determined by examining each constraint to identify its main function.

However, the constraints already contain a description of what they do: the feedback

message attached to each constraint is a concise description of the underlying concept

being tested. We therefore propose that we can use Machine Learning to induce a

104

hierarchy from the basic student model using the feedback messages as input. This is

an example of student model induction from multiple behaviours (Sison and Shimura

1998).

We analysed the text of the feedback messages for the set of semantic constraints

and determined which words were likely to be keywords. In practice we kept all

words except those that were highly likely to be superfluous, such as “a” , “ the” , “and”

etc. Some parsing of the messages was also necessary to remove suffixes. The

resulting set of words formed the set of attributes, where each attribute has a value of

“present” or “not present.” The set of “Not Learned” constraints was then converted

into the set of positive examples, with attribute values determined according to which

words were present. Similarly, the “ learned” constraints formed the negative example

set. These two sets were then combined to produce a training set.

We then induced modular rules for the class “Not Learned” using a similar

algorithm to PRISM (Cendrowska 1988), except we only considered the attribute-

value pairs with value “present” , because the absence of a word does not necessarily

imply that it is not relevant. Each candidate attribute was given a score based on

simple probability, i.e.

 Score =
np

p

�
 (3)

where p is the number of positive examples where this attribute has the value

"present", and n is the number of negative examples for this attribute value.

The set was then partitioned according to the attribute with the highest probability

and coverage. If the probability is less than unity, those instances with a 0 for this

attribute are removed, and the process repeated until unity is obtained, and the rule is

now fully induced. All instances covered by the rule are now removed and the

probability score for the remaining attributes is then recalculated, and the next rule

induced. The process is repeated until no positive instances remain.

The resulting rule set describes the “Not Learned” constraints and is used to

classify the constraints that have not yet been used by the student. If a constraint

satisfies one or more rules, it is likely the student has not learned the underlying

concept yet. For example, from the induced rules Student A is unlikely to have

105

learned any constraint that contains any of the following terms in the feedback

message:

� “ORDER BY”, or;

� “ function” , or;

� “GROUP BY”, or;

� “Grouping” , or;

� “NULL”, and “condition” .

6.2.5 Evaluation

If the rules we have induced represent concepts that a student has not learned, we

expect each student’s “Not Learned” constraints to be grouped together such that

those constraints that are described by each rule are related and are unlikely to have

been learned by the student, given their observed behaviour. In the case of the hard-

coded hierarchy, this appeared to be the case. We therefore used the results from

(Martin 1999) as a benchmark for this evaluation.

We produced rules for the same three students as were used in (Martin 1999), and

used them to classify the remaining unused constraints. We then compared the results.

Table 3 illustrates the results obtained. “ Induced rule” shows the rule induced using

the Machine Learning method, compared to “Hierarchy category” , which is the most

similar node from the hard-coded hierarchy, in terms of the name of the category and

the constraints it represents. “Correctly classified” indicates the number of constraints

that were not labelled (i.e. they had not been relevant) that the induced rule included,

which were the same as constraints in the hard-coded category. Note that a “0” in this

column indicates that neither the induced rule nor the hierarchy category generalised

beyond the constraints the student had violated. “Missing” indicates constraints that

the hierarchy category covered, which not covered by the induced rule, and “Extra”

displays the number of additional constraints covered by the induced rule that were

not included in the hierarchy category. In most cases, the induced rules represented

the same constraints as those suggested by the hierarchy. However, there was one

case where the outcome was not the same: for student A the set of constraints

represented by “Function” contained twelve extra constraints and was missing six

compared to the hand-coded hierarchy.

106

The extra constraints arose because there were twelve more constraints concerning

aggregate functions that were “hidden” in another part of the hand-coded hierarchy

(“comparisons with constants”), and so were not included by it. This highlights the

problem of having a single view of the constraints. The induced rule set is therefore

superior to the hierarchy in this respect. However, the missing constraints are a

genuine problem. Because categories are induced from free-format text, there is no

guarantee that a consistent terminology will have been adopted. In this case the word

“ function” was used in most, but not all, of the constraints concerning aggregate

functions. Hence, some constraints were missed.

Student Induced rule Hierarchy category Correctly
classified

Missing Extra

A ORDERBY Sorting 10 - -
 Function Aggregate Functions 38 6 12
 GROUPBY Grouping 2 - -
 Grouping Grouping 0 - -
 NULL +

condition
Null / attributes 3 - -

B Place Negation / correct

attributes
0 - -

 Another +
table

All tables used /
none missing /
nested selects

0 - -

C Arithmetic Expressions /

arithmetic
5 - -

 DISTINCT Expressions /
DISTINCT

0 - -

 Grouping Grouping / exists /
having

0 - -

 Another +
table

All tables used /
none missing /
nested selects

0 - -

 GROUPBY +
Check

Grouping / attributes 0 - -

 NOT+right Negation / attributes 0 - -
 Need +

resulting
Sorting / existence 0 - -

Table 3. Results for three students

107

Overall, the method performs quite well. The induced rules are very similar to

those obtained by the hand-coded hierarchy and should be useful for problem

selection. The lack of consistent terminology in the feedback messages poses a

genuine threat to this method. However, its effect seems to be fairly small: some

relevant constraints have been missed, but no constraints were incorrectly included. In

any case a perfect result is not essential, since the effect of missing or adding extra

constraints will at worst be a degradation of the gains in performance of problem

selection.

The hand-coded hierarchy has clear benefits in other areas. Because the hierarchy

was carefully chosen to be a meaningful abstraction of the constraints, it could be

presented to the student to illustrate the structure of the domain, and similarly the

student model could be presented to help both student and teacher understand where

the problem areas lie. However, the induced rules are based purely on regularities in

the textual feedback messages so the results are not always understandable in

isolation: “Grouping” and “NULL” are understandable; “Place” is not.

Finally, both the hand-coded hierarchy and the induced rules might be used to

select high-level feedback. In the case of the hierarchy, each node could have an

appropriate message attached to it, which is displayed when the node describes the

student’s behaviour. For the induced rules, a pool of extra messages could be

provided at varying levels of generality. Then, as well as producing classification

rules for “Not Learned”, a rule set could be produced for “Learned.” If a high-level

message matches a rule for “Not Learned”, but does not match any for “Learned,” it is

probably relevant to this student. Conversely, a message that matches both rule sets is

probably too general.

6.2.6 Selecting the target constraints

We suggested that by inducing high-level concepts a student’s misconceptions could

be determined from the text of the constraints they violated. This allows us to identify

those concepts a student is finding difficult. These can then be used to guide the

pedagogical process by aiding tasks such as next problem selection. We have shown

that in the case of SQL-Tutor, the induced rules appear promising compared to the

hierarchy we previously hand-coded, although further evaluation is required to verify

108

the method’s performance. The set of constraints represented by the induced rules

may now form the target set. Further, if a curriculum structure exists this might be

used to reduce the target set to an individual concept, for example by only permitting

constraints for a particular clause.

6.3 Building a new ideal solution

Each pattern match in the relevance condition of the target constraint corresponds to a

fragment of the solution that must be present for this constraint to be relevant. We

therefore begin by inserting these fragments into our (currently blank) ideal solution.

Since the pattern matches may contain variables, these must be instantiated. In SQL-

Tutor these variables may correspond to database table or attribute names, literals,

relational operators etc. In some cases the value will be constrained by tests in the

constraint, which resolve to a set of allowed values. For example, a variable

representing a relational operator must contain a member of the set (>, <, <=, >=, =,

<> or !=), so the algorithm may instantiate the variable to a random element of the set.

A variable representing a database table will be similarly constrained to a member of

the list of valid table names. In other cases (e.g. literals) there is no such set.

However, such variables cannot be simply assigned a random value: in any given

instance some values will be sensible, others will not. For example, if the subject of

the database being queried is movies, the condition “Ti t l e = ' Spar t i cus' ”

would be sensible, but “Ti t l e = ' sekf gdvf v ' ” would not. To overcome this

problem we introduce a small set of instantiation constraints, which further restricts

the value of such literals. These constraints are used only during the production of

new problems.

The instantiation constraints also ensure that semantic consistency is maintained,

and may check that the new problem does not increase markedly in difficulty during

the next phase (building a complete solution). As an example of the former, the

movies database contains information about who stars in each film. A new problem

might independently add two fragments for comparisons with a literal: one for the

title of the movie and one for the name of the role being played by a particular star. A

constraint is necessary to ensure we do not build obviously artificial conditions such

109

as in the following example, where the role of “Noddy” does not exist in the film

“Star Wars” , so this problem would seem nonsensical to a movie-going student:

 WHERE t i t l e = ’ St ar War s’ and r ol e = ’ Noddy’

An example of where problem difficulty might escalate is in the (random)

assigning of database attribute names to variables: each attribute could potentially

come from a different database table. This would require the joining of many tables,

which is one of the most difficult aspects of SQL. Therefore in the absence of a JOIN

in the target constraint set, all attributes should come from a single table. Instantiation

constraints achieve this. The following is an example of an instantiation constraint

and its accompanying macro:

(I 8
" Ensur es t hat l i t er al st r i ng compar i sons i n WHERE ar e wi t h val i d st r i ngs"

(mat ch SS WHERE (?* (^at t r i but e- i n- f r om (?name ?at t r ?t abl e))
 (^ r el - p ?op) (^sql - st r i ngp ?st r) ?*))

(t est SS (^val i d- st r i ng (?at t r ?t abl e ?st r)))

" WHERE")

(^val i d- st r i ng (??at t r i but e ??t abl e ??st r i ng) =
 (t est ?? ((
 (" l name" " di r ect or " " ' Kubr i ck ' ")
 (" l name" " di r ect or " " ' Spi el ber g' ")
 (" f name" " di r ect or " " ' St anl ey' ")
 (" f name" " di r ect or " " ' St even' ")
 (" t i t l e" " movi e" " ' St ar War s' ")
 (" t i t l e" " movi e" " ' Bl azi ng Saddl es' ")
 . . .
 (??at t r i but e ??t abl e ??st r i ng))
)
)

Other instantiation constraints match multiple strings. For example, one constraint

ensures that if di r ect or . f name and di r ect or . l name are both present, they

are a matched pair such as ' St anl ey' and ' Kubr i ck ' . Another ensures that stars'

names and their roles are consistent.

At this stage our new potential ideal solution consists of a set of disjoint

fragments, which may or may not be valid SQL. They are now passed through the

problem solver, which corrects any errors leaving a valid SQL solution. The algorithm

used is identical to that designed for problem solving that was described in section 4.

However, in this case only the syntactic constraints are used.

110

6.4 Controlling problem difficulty

The new problem must also be of appropriate difficulty. Brusilovsky (Brusilovsky

1992) suggests that tasks may be selected according to the combination of two

independent measures: structural complexity and conceptual complexity. Structural

complexity is a measure of how difficult a problem is per se. Brusilovsky defines it as

the number of steps to solve a problem. Conceptual complexity is a measure of how

much this problem requires the use of concepts the student has not yet mastered. He

defines this as the number of “not quite learned” knowledge elements from the

domain model.

To determine the next best problem to select, ITEM/IP (Brusilovsky 1992) adds

two variables to the student model: the current optimal structural complexity, and the

current optimal conceptual complexity. Both are dynamic: if the student solves a

problem, the student model complexities are set to the maximum of the current values

and those for the newly solved problem; if the problem is not solved, they are

reduced. To select the next problem ITEM/IP first compiles a list of problems that are

eligible (i.e. all of the skills are learned sufficiently to be ready to practice, and at least

one is not fully learned yet). It then selects the best one by minimising the difference

between problem complexity and the student’s current optimal complexity. This

difference is defined as:

� � � � � �ErrWCCCCWSCSCWDiff spsp 32
2

1 ����� (4)

where SCp and SCs are the structural complexities for the problem and student

respectively, CCp and CCs are the corresponding conceptual complexities, and Err is

the number of erroneous tasks required, i.e. those that are not relevant to the current

curriculum topic. Although Brusilovsky does not specify the weights, it is clear that

the structural complexity is the dominating term. He reports that the described method

has been used in systems for both first year university students and 14 year-old school

pupils. In both cases the students found the task sequencing strategy “seemed

intelligent, and they usually agreed with the system’s choice” (Brusilovsky 1992). We

set the values of the three weights empirically, by trying different values and

111

observing how well the system stayed on a concept for which errors had been made,

how quickly it moved on to a new concept once it was mastered, and how many new

concepts it introduced at a time. For SQL-Tutor we used W1=1, W2=5 and W3=10,

making a single failed constraint the equivalent of five known ones, and favouring

staying on the current failed constraint over moving to a new (previously not

encountered) constraint.

In SQL-Tutor there is no concept of number of problem-solving steps required.

Instead the domain model is built around the underlying domain concepts that are

involved in a problem’s solution, which translate into constructs present in the

completed solution. We therefore use this as a basis for computing complexity.

Factors that might affect structural complexity are therefore:

1. The total number of constructs involved;

2. The number of new constructs;

3. The number of not learned constructs (i.e. those the student is likely to fail,

based on previous experience);

4. The complexity of each construct in (1, 2, and 3).

Note that a much simpler scheme for calculating structural complexity might be to

count the number of terms in the solution. However, this ignores the fact that a single

complex term (such as a JOIN or nested select) is likely to add much more difficulty

than, say, three WHERE conditions involving straightforward comparisons with

literals.

ITEM/IP uses simple counts of the number of tasks. In the case of SQL-Tutor the

complexity of each construct must also be taken into account, since not all constructs

are the same. There are two ways we could assign difficulty to the constructs

associated with constraints: by manually assessing difficulty, or by automatically

assigning a value for each constraint. Since we are trying to minimise the work

required to build tutors, we chose the latter, although we concede that this is a

compromise, since some constructs may be considerably more difficult to build than

their surface complexity implies. We calculate the complexity of each construct from

its size: the larger the construct, the more difficult it is likely to be. We use the sum of

terms squared as the complexity measure, the same as Brusilovsky, i.e.

112

Difficulty = 2n (5)

where n is the number of terms introduced, which is equal to the number of non-

wildcard elements in the MATCH fragment(s) added as a result of this constraint. The

difficulty is computed continually as the solution is built up: when new fragments are

added, the complexities for the added fragments are added; when fragments are

deleted, they are subtracted. A TEST modification is equivalent to a MATCH with

one term.

Conceptual complexity measures the degree to which the student is likely to

struggle with the new concepts introduced in this problem. Again Brusilovsky used

the number of tasks required that have not been learned yet. Instead, we use the total

complexity of new constraints introduced that are from the target constraint set. For

the measure of “erroneous” concepts, we total the complexity of all relevant

constraints that have never been encountered before. Conceptual complexity is

measured in the same way as structural complexity but only those constraints that

have previously been violated are used in the summation process, which continues

until the solution is empty or the candidate constraints have been exhausted.

Whereas ITEM/IP records the student’s ideal conceptual and structural

complexities in the student model, we record a single value of optimum difficulty and

compare the difficulty of each problem with respect to the student model to this value.

For a new student model the target difficulty is set to an initial value, which depends

on the competency level the user selects when they log in. To determine what value to

set each competency level, we computed the difficulty of the existing authored

problem set. This set ranged in difficulty from 6 to 1084, with a mean of 240 and

standard deviation of 264. We adjusted these figures slightly so that the existing

problem set was partitioned sensibly, to give default difficult difficulties of: Novice =

0, Average = 250 (approximate mean), and advanced = 500 (approximately the mean

+ 1 SD).

The student’s target difficulty value is updated each time they complete a

problem-solving activity. If the student successfully solved the problem without help,

the variable is incremented by a constant amount, K1. Similarly, if the student fails,

113

the system decreases their levels by K2. The values of K1 and K2 were ad hoc, being

K1 = 50, and K2 = 10. This means that the target complexity rises quickly if the

student answers a problem correctly, but falls slowly if they fail consecutive ones.

This ensures that the difficulty of problems being set does not trend too quickly to

zero because a student is struggling with some concept.

 Problems are constructed to match the target complexities as follows:

� A target constraint is selected. To ensure that difficulty is appropriate, we

select the simplest target constraint that meets or exceeds the student’s

ideal conceptual complexity. The complexity for the solution so far is then

updated according to the number of unmatched terms in the added

fragment. If the most complex target constraint fails to meet the required

complexity, further constraints are added in the same manner, until the

desired conceptual complexity is reached. If, at the end of this procedure,

the problem is still not sufficiently complex, we select the next target

constraint set, and continue until either the desired complexity is reached,

or the set of target constraint sets has been exhausted;

� Further constraint fragments are added from the set of learned constraints.

Each time a new construct is included, its complexity is added to the total,

i.e. the square of the number of terms in the total fragment;

� During the final building of a correct SQL statement, the same scheme is

applied, i.e.

o Every time a fragment is added, the complexity for the extra terms

is added to the total;

o Every time a fragment is deleted, the complexity for the removed

fragment is deducted.

Note that the third step (building a complete solution) may further increase the

structural and conceptual complexities of the solution. This is minimised by the

instantiation constraints, which attempt to keep the overall structure of the solution as

simple as possible while satisfying the target constraint(s).

114

6.5 Conver ting to natural language

The final step is to produce a natural language problem statement for which the newly

generated SQL statement is a correct answer. Again a small set of constraints is used,

which maps constructs in the SQL statement to a Natural Language representation of

the problem to be solved. As before, multiple ways of representing any part of the

problem are catered for, allowing variation in problem phrasing. The problem

statement is structured in a similar fashion to an SQL query, in that each will contain

a phrase that describes the attributes to be selected, another for which entity(ies) these

attributes belong to etc. These phrases are concatenated to give the complete problem

statement. For example, the following three constraints help generate the first phrase,

i.e. which attribute(s) to retrieve:

(NLP1 " sel ect s a r andom i nt r o f or t he ATTRI BUTES phr ase"
(mat ch I S SELECT (?what ?*))
(mat ch PROBLEM ATTR- HDR
 ((" Li st al l ") (" Pr oduce a l i s t of ") (" what i s t he")) ?headi ng)))
" ")

(NLP2 " t r ansl at es al l at t r i but es i n t he SELECT cl ause i nt o a
sui t abl e synonym"
(mat ch I S SELECT (?* (^at t r - synonym (?n ?s)) ?*))
(mat ch PROBLEM ATTRI BUTES (?* ?s ?*))
" ")

(NLP3 " Makes sur e t her e i s a comma bet ween at t r i but es"
(and (mat ch PROBLEM ATTRI BUTES (?* ?s1 ?s2 ?s3 ?*))
 (not - p (t est PROBLEM (“ , ” ?s1))) (not - p (t est PROBLEM (" , "
?s2)))
)
(and (mat ch PROBLEM ATTRI BUTES (?* ?s1 “ , ” ?s2 ?s3 ?*))
 (not - p (mat ch PROBLEM ATTR (?* ?s1 ?s2 ?s3 ?*)))
)
" ")

The number of NLP constraints will depend on the complexity of the domain and the

flexibility in language required. For example, the following SQL problem could be

stated in several ways:

SELECT l name, f name
FROM st ar
WHERE bor n >= 1920 and bor n <1930

This could be mechanically translated into “List the last name and first name of all

stars where born is at least 1920 and less than 1930”. However, a more natural

115

statement for this problem, which would “give away” less of the solution, is “What

are the names of all stars born in the twenties?” The latter would require a

considerably more sophisticated constraint set to cope with for example, the fact that

the attribute “born” is now being used as a verb. We estimate that SQL-Tutor would

require a minimum of around 25 constraints to mechanically translate queries into

SQL, and at least 100 to demonstrate suitable flexibility to be able to recreate the

current human-authored problem statements. Both would also require taxonomies to

translate attribute names, table names, comparison operators etc into natural English.

6.6 Problem generation example

During the study described in (Martin 1999), we examined the state of several

students at the conclusion of a two-hour session with SQL-Tutor. Student A was

found to be still failing constraints concerning sorting, aggregate functions, grouping

and null attribute tests. Suppose we wish to generate a new problem to test sorting.

We select a constraint at random from the induced target set, for example:

(378
" Check whet her you shoul d have ascendi ng or descendi ng or der i n t he
ORDER BY cl ause. "
(and (mat ch I S ORDER_BY (?* ?n " DESC" ?*))
 (mat ch SS ORDER_BY (?* ?n ?*))
)
(mat ch SS ORDER_BY (?* ?n " DESC" ?*))
" ORDER BY")

From this constraint, we obtain the fragment ORDER_BY (?n DESC) . Student A

is an average student, so we need to increase the difficulty of the problem to her level.

We randomly select one or more constraints that she has already learned, for example:

(175
" Check you ar e compar i ng t he st r i ng const ant t o t he r i ght at t r i but e
i n WHERE. "
(and
 (mat ch I S WHERE (?* (^at t r - name (?n1 ?a1 ?t 1)) (^ r el - p ?op1)
(^st r i ngp ?c)
 ?*))
 (mat ch SS WHERE (?* (^at t r - name (?n2 ?a2 ?t 2)) (^ r el - p ?op2) ?c
?*))
)
(t est SS (^same- at t r i but es (?a2 ?t 2 ?a1 ?t 1)))
" WHERE")

116

Because this is a semantic constraint, we use the first ideal solution match, which

adds a comparison between an attribute and a string. At this stage the attribute

variable will be randomly instantiated to a valid attribute and the relational operator

will similarly be instantiated to one of the relational operators. The string cannot be

instantiated yet. This partial solution is then passed to the instantiation constraints.

Since the FROM clause is empty, it is instantiated to a random valid table name. Now

the attribute in the WHERE clause must be a valid attribute from that table, so it is

modified if necessary. Finally the attribute/string pair must be a valid pairing as

defined in the instantiation attributes. The solution thus far is now (for example):

FROM cust omer
WHERE l name = ’ Par ker ’
ORDER_BY ?n DESC

This partial solution is now passed to the problem solver, which uses the syntactic

constraints to build a valid SQL solution:

SELECT number
FROM cust omer
WHERE l name = ' Par ker '
ORDER_BY number DESC

Note that on completion of this stage it is possible that the generated solution will

violate the instantiation constraints (for example, by introducing an additional table

name) and/or alter the difficulty of the problem unacceptably by adding or removing

fragments. It is therefore necessary to re-test both of these aspects. In the case above,

no further modification is necessary.

Finally, the generated ideal solution is converted into a natural language problem

statement using the constraints designed for this purpose, for example:

List all numbers of customers whose last name is Parker. Order the results by

descending customer number.

6.7 The problem generation algor ithm

In the preceding sections, problems were generated online each time the student

concludes an exercise. The high-level algorithm is:

117

1. Update the student model complexity variables according to the student’s

performance on the latest exercise;

2. Use the ML algorithm to induce a new set of target constraints;

3. Choose a target constraint, and insert its corresponding fragment(s) into

the (currently blank) new ideal solution;

4. Choose additional constraints, and insert their fragments, until the desired

level of difficulty has been achieved;

5. Test the solution against the instantiation constraints;

6. Build a complete solution, using the problem solver;

7. Convert to a natural language problem statement;

8. Present to the student.

This approach has one major disadvantage: it requires that both the solution and

problem generation algorithms be fail-safe. As seen in Chapter 5, this is not an easy

task. For solution generation, testing the constraint set to ensure that all incorrect

solutions will be corrected is difficult if not impossible. In problem generation, the

problem is worse. First, we are now considering building SQL without a clear

semantic requirement, so it is even more likely that the algorithm will generate

mistakes that a student is highly unlikely to do. Second, to avoid nonsensical

questions the initialisation constraints also need to be infallible. Finally, generating

plausible natural language queries that do not make the solution obvious is difficult.

In solution generation, the most common problem is that the algorithm fails to

terminate. This can be trapped and the fallback position adopted where the ideal

solution is simply used. There is no such parallel in problem generation: how can the

system trap a nonsensical problem?

An alternative is to perform problem generation offline. In this scenario the

problem generation algorithm is used to (try to) create n problems per constraint. On

completion, a human teacher assesses the generated problems and decides which ones

to keep, and which to discard. She may also alter some problems to improve their

semantics. The created problem set is then used. Problems are now selected (rather

118

than generated) by comparing all problems to the student model to determine their

conceptual difficulty, as described previously. Whichever is the closest fit is selected

for presentation. During generation the difficulty of each problem may be controlled

as described previously to ensure sufficient spread of difficulties. Alternatively, the

problems can simply be built with no regard to difficulty, relying instead on the

variation in constraint difficulties to ensure an even spread. In our experiments we

chose the latter.

The algorithm loops through each of the constraints trying to build n new

problems. Note that some constraints test for the absence of erroneous constructs, so

can never be successfully turned into problems. Rather than waste time determining

that this is the case, these are explicitly excluded from processing. We add a fragment

for each constraint based on either the relevance condition, or a prototype. Some

constraints test only a very small part of a larger construct. To build a full SQL query

for such a constraint relies on the other constraints for this construct being

successfully applied. However, because the original fragment is such a small part of

the construct, it may fail to be correctly identified by the constraint set, which may

turn it into a different construct, or possibly delete it. Consider the following

constraint:

(439_A

 " Make sur e you ar e usi ng t he r i ght k i nd of JOI N. "
 (and
 (mat ch I S FROM (?* ((" LEFT" " RI GHT") ?j t 1) ?*))
 (mat ch SS FROM (?* ((" FULL" " LEFT" " RI GHT") ?j t 2) ?*))
)
 (t est SS ((" LEFT" " RI GHT") ?j t 2))
 " FROM"
)

This constraint tests that the correct type of JOIN is being used. However, it only

specifies the type of join and nothing else in the tests of the ideal solution in the

relevance condition. It therefore adds only the fragment (for example) “LEFT” to the

FROM clause. This by itself is not valid and, since the instantiation constraints favour

a single table over multiple ones, the lone “LEFT” is assumed to be a mistake and

deleted by another constraint. To overcome this, we add the following prototype to

the constraint, which builds a complete JOIN condition:

119

; PROTOTYPE
(and
 (mat ch I S FROM (?* ?t 1 ((" LEFT" " RI GHT") ?j t)

" JOI N" ?t 2 " ON" ?* ?n1 " =" ?n2 ?*))
 (t est I S (^ j oi n- f i el ds (?n1 ?t 1 ?n2 ?t 2)))
)

)

Note that prototypes are not strictly necessary: we could also make the ideal

conditions of the relevance conditions more stringent and achieve the same end. For

example, in the constraint given we might ensure that the test of the ideal solution

contains a full JOIN construct, since it would be incorrect without it anyway.

However, for some constraints this is not such an obvious step, and it confuses the

tasks of writing the constraints and facilitating problem generation. We began using

this latter method, but found it much simpler to use prototypes. Of the 819 constraints

in SQL-Tutor, 312 have prototypes. However, many of the prototypes are identical.

For example, there is a prototype for building a nested query with appropriate

attributes and tables that is used 54 times.

For those constraints without a prototype, the relevance condition is used. For

semantic constraints we are interested only in the ideal solution, so we rename all IS

(ideal solution) matches and tests to SS (student solution) for passing to the problem

solver, and delete all the original student solution tests. Syntactic constraints are tested

verbatim. A summary of the algorithm is given in Figure 9.

120

6.8 Evaluation

The motivation for Problem Generation was to reduce the effort involved in building

tutoring systems by automating one of the more time-consuming functions: writing

the problem set. Three criteria must be met to achieve this goal: the algorithm must

To gener at e a set of pr obl ems
Open l og f i l e
Open pr obl em f i l e

I nst ant i at e a l i s t of const r ai nt s t hat ar e never r el evant i f t he
sol ut i on i s cor r ect

For al l const r ai nt s (except t hose i n t he not - r el evant l i s t)
 Tr y t o gener at e a pr obl em f r om t he const r ai nt
 I f successf ul (r el evant t o t he const r ai nt)
 Wr i t e out t o t he pr obl em f i l e
 ELSE
 Repor t t hat i t f ai l ed t o r esol ve t o a pr obl em

Cl ose t he f i l es

To gener at e a pr obl em:
Add a f r agment f or t he const r ai nt i nt o t he (cur r ent l y bl ank) sol ut i on

Tr y t o cor r ect t he sol ut i on usi ng sol ut i on gener at i on al gor i t hm, but
al t er nat i ng t est i ng t he i nst ant i at i on const r ai nt s and synt act i c
const r ai nt s, i nst ead of t he semant i c and synt act i c const r ai nt s.

To add a f r agment :
t r y 20 t i mes max:
I f t he const r ai nt has a pr ot ot ype, set CONDI TI ON t o t hat
ELSE
set CONDI TI ON t o t he r el evance condi t i on

I f t he const r ai nt i s semant i c, r ename al l I S t est s i n CONDI TI ON t o be
SS t est s, and del et e t he SS t est s

Set bi ndi ngs t o be a def aul t r oot (i . e. t he def aul t bi ndi ng f or a
successf ul eval uat i on, wher e no var i abl es wer e encount er ed)

Eval uat e CONDI TI ON as t hough i t i s a sat i s f act i on condi t i on

I f t her e ar e cor r ect i ons t o be per f or med
 act i on t hem
ELSE
 Ret ur n t he sol ut i on unchanged

Figure 9. Problem generation algorithm

121

work (i.e. it must generate new problems); it must require (substantially) less human

involvement than traditional problem authoring; and the problems produced must be

shown to facilitate learning to at least the same degree as human-authored problems.

These criteria form the basis of three hypotheses that must be supported by empirical

evidence before we can be satisfied that the method is worthwhile. Additionally, if the

method works, it should be possible to generate large problem sets, which will have

the benefit of greater choice when trying to fit a problem to the user’s current student

model. Also, the new representation allows us to measure the structural difficulty of

each problem as previously described. This allows us to measure the conceptual

difficulty of each problem in relation to the student model, and thus to choose the best

problem for this unique student model, rather than simply basing our choice on the

student’s aptitude level. We might therefore expect that, given a suitable problem

selection strategy, a system using the generated problem set would lead to faster

learning than the current human-authored set and high-level problem-selection

strategy. This gave us four hypotheses to test:

Hypothesis 6.1: That the algorithm successfully generates new problems;

Hypothesis 6.2: That generating new problems is easier than authoring them

manually;

Hypothesis 6.3: That using generated, rather than human-authored, problems does

not significantly degrade performance of the ITS;

Hypothesis 6.4: That by using a problem selection routine that takes advantage of

the new representation’s ability to calculate conceptual difficulty,

the new problems (plus the new selection routine) may lead to an

increase in learning performance.

We tested the first two hypotheses in the laboratory, while the last two were evaluated

using a university class.

6.8.1 Testing of hypotheses 6.1 and 6.2

The SQL-Tutor ITS was used as the basis for all testing of Problem Generation. The

knowledge base created for problem solving in Chapter 5 formed the basis for testing.

122

Additionally, 66 instantiation constraints were added for controlling the semantics.

The problems were generated in batch using the algorithm described in Section 6.7.

At this stage, the natural language converter was not implemented, so human

intervention was necessary to produce the text message for each problem. To keep the

number of problems manageable, the batch run was limited to one problem per

constraint. We generated a total of 819 problems.

We then checked each problem for sensibility and, if accepted, authored the

problem text message. Of the 819 problems, approximately half emanated from

semantic constraints, with the other half being syntactic. Because of time constraints,

we elected to use only those from the semantic constraints. Of these, 200 were chosen

that had sensible semantics and were not duplicates, or around 50%. In practise,

nearly all of the rejections were because the generated SQL was nonsensical. Some

examples of reasons for rejection are:

� The problem contained illegal combinations of literals, caused by

deficiencies in the instantiation constraints;

� The structure of the problem was unrealistic (e.g. double negatives);

� The problem was testing some unusual construct that was unlikely to teach

anything useful;

� The ideal solution was identical to another;

� The problem when converted to text would have been identical to another

(i.e. the ideal solution was different but the semantics were the same).

The process of vetting the problems and producing text input for all of the

problems took a total of approximately three hours, compared to many days to author

the 82 problems manually in SQL-Tutor, so it took much less time to produce 200

problems in this way than to manually author 82. Note that this rate of authoring is

atypical: this author produced these problems, so had the benefit of deep immersion in

both the domain and the generation process, and had knowledge of the types of

problems that would be generated, and likely difficulties with them. Further, simple

123

deficiencies (such as problems involving double negatives) appeared in large blocks

because the constraints tend to be grouped by function. For example, there is a large

block of constraints that deals with NOT. Thus, double negatives tended to appear

close together. Finally, there was a reasonable level of structural similarity between

blocks of problems, for example many problems dealing with nested queries were

grouped together. This may not always be typical of a domain knowledge base. In

spite of these caveats, we still believe problem generation will save a significant

amount of time when authoring other domains: the author of the original problem set

(Mitrovic) was similarly immersed in both the subject: she is a teacher of database

material, and she authored the original SQL-Tutor system.

The generated problems were used successfully on a university class (see next

section). Hypotheses 6.1 and 6.2 are therefore supported in the SQL domain: the

algorithm worked, and it took substantially less time to author problems using it than

creating them manually.

6.8.2 Classroom evaluation of hypotheses 6.3 and 6.4

To test hypotheses 6.3 and 6.4 it is necessary to demonstrate that a system using

generated problems performs as well as or better than a system using human-authored

exercises. We modified SQL-Tutor for this purpose and evaluated it for a six-week

period. The subjects were stage two university students studying a databases paper. At

the end of the study the students were required to sit a lab test about SQL as part of

their assessment, so they were motivated to use the system if they considered it might

improve their performance.

We partitioned the students into three groups. The first used the current version of

SQL-Tutor, i.e. with human-authored problems. The second group used a version

with problems generated and selected using the algorithms described. The third group

used a variant containing other research (student model visualisation) that was not

relevant to this thesis. Each student was randomly assigned a “mode” that determined

which version of the system they would use. Before using the system each student sat

a pre-test to determine their existing knowledge and skill in writing SQL queries.

They were then free to use the system as little or as often as they liked over a six week

124

period. At the conclusion of the evaluation they sat a post-test. Appendix A contains

the pre- and post-test scripts.

When the study commenced approximately 60 students had signed up and

performed the pre-test, giving sample sizes of 20 per group. During the evaluation this

swelled to around 30 students per group as new students requested access to the

system. At the conclusion of the study some students who signed up had not used the

system to any significant degree. The final groups used for analysis numbered around

20 students each. The length of time each student used the system varied greatly from

not using it at all to around twenty hours, with an average of two-and-a-half hours.

Consequently the number of problems solved also varied widely, from zero to 98,

with an average of 25. Thus, an average student might expect to learn the domain in

under three hours, with struggling students taking considerably longer. Three of the

students in the evaluation study solved more than 82 problems, the total number

available to the control set. These figures are discussed in more detail in Section 6.8.4.

At the end of the six-week period we closed the student logs and analysed the results.

We recorded the following information in the logs:

� A timestamp for each action;

� The problem number;

� The student’s attempt;

� A list of the violated and satisfied constraints;

� On selection of a new problem, the student difficulty and the difficulty of

the chosen problem;

� On aborting a problem, the reason for failing to finish (if entered by the

user).

From this information we deduced summary information such as the status of each

constraint over time, the time spent on each problem attempt and the number of

attempts per problem. We used these results to analyse how each version of the

system supported learning.

There are several ways we can measure students’ performance while using each

system. First, we can measure the means of the pre-test and post-test to determine

whether or not the systems had differing effects on test performance. Note however,

that with such an open evaluation as this it is dangerous to assume that differences are

125

due to the system, since use of the system may represent only a portion of the effort

the student spent learning SQL. Nevertheless, it is important to analyse the pre-test

scores to determine whether the study groups are comparable samples of the

population.

Second, we can plot the reduction in error rates as the student practices on each

constraint. Each student’s performance measured this way should lead to a so-called

“Power law” (Newell and Rosenbloom 1981), which is typical when the underlying

objects being measured (in this case constraints) represent concepts being learned.

The steepness of this curve at the start is a rough indication of the speed with which

each student is learning new constraints. Since each constraint represents a specific

concept in the domain, this is an indication of how quickly the student is learning the

subject. We can then compare this learning rate between the two groups.

Third, we can measure how many new constraints the student is introduced to, and

masters, each time they solve a new problem. The higher the number, the more likely

that the student is learning faster. If the problems are well suited to the student’s

current abilities, the system should be able to introduce more new material without

overloading the student, because the new material is relevant to what the student

already knows and is of an appropriate level of difficulty.

Finally, we can look at how difficult the students found the problems. This is

necessary to ensure that the newly generated problems did not negatively impact

problem difficulty (either by being too easy or too hard). There are several ways we

can do this. First, we can measure how many attempts the student took on average to

solve a problem and compare the means for the control and test groups. Second, we

can measure the time taken to solve each problem. Note however, that this is an

extremely crude measurement, since it does not take into account any “ idle” time

Note, however, that it does not include idle time at the end of the session, since this is

not followed by a solution being submitted, so is not counted. Finally, students may

abort the current problem, citing one of three reasons: it was too easy, it was too hard

or they wanted to try a problem of a different type. If the proportion of problems

aborted rises or the ratio of “ too hard” to “ too-easy” problems is very different to 1:1,

we might conclude that problem difficulty has been adversely affected.

126

In this study, we measured all of the above. We used the software package SPSS

to compare means and estimate power and effect size, and Microsoft Excel to fit

power curves. We now present the results.

6.8.3 Pre- and post-test per formance

Each student was given a unique (anonymous) username, which was used to correlate

the pre- and post-tests. Unfortunately, not all students who used the system provided

their username on the post-test, so the sample sizes were reduced to 12 and 14,

respectively. We measured the means for the pre-test, post-test and the gain (i.e. the

difference between the pre- and post-test results. Table 4 lists the results (standard

deviations are in parentheses). We measured significance using an independent

samples T-test (two-tail). These indicate there was no significant difference in

performance between the groups for either the pre-test or the post-test, nor in the gain

observed for each student. As already mentioned, such an open evaluation is unlikely

to show significant results because we do not know what other effort the students

expended to learn SQL. Also, since the pre- and post-tests were different, it is

possible that they are not comparable, e.g. the post-test may be much harder or may

favour a particular type of problem that one system set more problems on. However,

because the pre-test means were not significantly different, we can assume that the

samples are comparable, which validates the rest of this study.

6.8.4 Problem difficulty

We measured problem difficulty both subjectively and objectively. We obtained

Group Sample Pretest Posttest Gain
Control 12 4.41 (1.24) 6.42 (1.38) 2.00 (1.34)
Probgen 14 5.21 (1.31) 6.79 (1.37) 1.57 (2.31)
Significant? No (p = 0.12) No (p = 0.50) No (p = 0.56)

Table 4. Test score results

Group Aborted
(%)

Too hard
(%)

Too easy
(%)

Diff Type
(%)

Responded
(%)

Control 26 24 42 34 84
Probgen 26 22 42 35 62

Table 5. Aborted problems

127

subjective results by logging when students aborted a problem and recording their

reason. If the problems were (overall) of a suitable difficulty, we would expect the

ratio of claims of “ too hard” to “ too easy” to be approximately 1:1. Any significant

move away from this ratio would indicate we have adversely affected problem

difficulty. Further, the percentage of problems aborted should not rise significantly.

Table 5 lists the results. “Aborted” indicates the proportion of all problems attempted

that were aborted. “Too hard” , “Too easy” and “Diff type” give the proportion of

aborted problems for which the reason given was the problem was too hard, too easy,

or the student wanted a problem of a different type, respectively. “Responded”

indicates the proportion of aborted problems for which the student gave a reason. This

last measure was different for the two groups, with a lower response rate for the

Problem Generation group. We do not know why this difference occurred, since the

interface was the same, and the other factors were not changed.

These results suggest that for both groups the problems set are more often too easy

than too hard. The percentage of problems aborted in each group was exactly the

same, at around 26% of all problems. The ratio of too easy to too hard for the two

groups is nearly identical, as is the proportion of problems aborted because the student

wanted a problem of a different type. It therefore appears that the generated problems

had no effect on difficulty as perceived by the students.

Next we measured the number of attempts taken to solve each problem. This gives

an objective indication of how hard students found the problems. Table 6 lists the

results. “Solved/student” indicates the average number of problems completed

correctly. “Total time” is the average time spent at the system. This figure records the

time that the user was actively using the system, from when they first logged in to

when they last submitted an attempt. Thus it excludes idle time where the user has

forgotten to log out. “Attempts per problem” is the ratio of submitted attempts to

solved problems for all attempts, including those for problems the student abandoned.

The rationale is that attempts at unsolved problems still constitute a learning effort, so

should be counted as effort towards the problems that were actually solved.

“Time/Problem” similarly records the total time spent on the system divided by the

number of problems solved, using the same rationale.

128

There was no significant difference in the objective measurement of problem

difficulty: students took approximately the same amount of time and number of

attempts in both groups. The number of problems solved and average total time spent

on the system was also almost the same for the two groups, suggesting that students

did not favour either system.

6.8.5 Learning speed

We observed the learning rate for each group by plotting the proportion of constraints

that are violated for the nth problem for which this constraint is relevant. This value is

obtained by determining for each constraint whether it is correctly or incorrectly

applied to the nth problem for which it is relevant. A constraint is correctly applied if

it is relevant at any time during solving of this problem, and is always satisfied for the

duration of this problem. Constraints that are relevant but are violated one or more

times during solving of this problem are labelled erroneous. The value plotted is the

proportion of all constraints relevant to the nth problem that are erroneous. The value

for n=1, therefore, is the ratio of constraints that were erroneously applied to the first

problem to the number of constraints that were relevant to one or more problems: the

value for n=10 is the ratio of erroneous to total constraints relevant for 10 or more

problems, and so on.

If the unit being measured (constraints in this case) is a valid abstraction of what

is being learned, we expect to see a “power curve” . In (Mitrovic and Ohlsson 1999)

this has already been shown to be the case. We therefore fitted a power curve to the

each plot, giving an equation for the curve where the initial learning rate is

determined by the slope of the power curve at X=1. Note that as the curve progresses,

learning becomes swamped by random erroneous behaviour such as slips. In other

words, the plot stops trending along the power curve and levels out at the level of

random mistakes. This is exacerbated by the fact that the number of constraints being

Group Solved/
Student

Total Time
(hrs)

Attempts/
problem

Time/Problem
(mins)

Control 23 2:37 3.96 (1.89) 6:14 (3:58)
Probgen 26 2:31 3.45 (1.23) 5:50 (3:20)
Significant? No (p = 0.31) No (p = 0.71)

Table 6. Attempts per problem

129

considered reduces as n increases, because many constraints are only relevant to a

small number of problems. We therefore use only the initial part of the curve to

calculate the learning rate. Figure 10 and Figure 11 show two such plots, where each

line is the learning curve for the entire group on average, i.e. the proportion of

constraints that are relevant to the first problem that are incorrectly applied by any

student in the group. The first uses a cut-off of n=40, to illustrate how the curve tapers

off. For the second, the cut-off was chosen at n=5, which is the point at which the

power curve fit for both groups is maximal.

Both groups exhibit a very good fit to a power curve. The differing slope of the

curves suggests a difference in learning rates between the problem generation and

control groups. To determine whether this difference is significant, we plotted curves

for each student and used this to measure their individual initial learning rates. This

increases the effect of errors even further, so we determined empirically the best cut-

off point for each group, which was found to be n=4. Figure 12 shows some of the

plots obtained, ranging from very good power curve fit to poor. Low power curve fit

almost always coincided with low learning performance.

We calculated the learning rate at n=1 for each student, and calculated the mean

and significance. Table 7 summarises the results. These results suggest the learning

rate for the experimental group was around double that for the control group. The

effect is significant at 	=0.05, p=0.01. A further test of the results is effect size and

power. Using type 3 sum of squares testing (Chin 2001) we are striving for an effect

size of 0.2, and a power (repeatability) of 0.8, i.e. an 80% likelihood of reproducing

this result using the same experimental conditions. We obtained an effect size (omega

squared) of 0.21, with a power of 0.794 at 	=0.05, which is a very respectable result.

130

Probgen

y = 0.2192x-0.4161

R2 = 0.6595

Control

y = 0.0847x-0.4752

R2 = 0.7272

0

0.05

0.1

0.15

0.2

0.25

1 5 9 13 17 21 25 29 33 37

Times Relevant

V
io

la
te

d
 %

Control Probgen
Power (Probgen) Power (Control)

Figure 10. Learning curves, cut-off = 40 problems

Probgen

y = 0.2262x-0.5319

R2 = 0.9791

Control

y = 0.1058x-0.5691

R2 = 0.9697

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5

Problems

V
io

la
te

d
 %

Control Probgen
Power (Probgen) Power (Control)

Figure 11. Learning curves, cut-off = 5 problems

131

A potential problem with comparing the control and experimental groups is that

the constraint set is not the same, there being two significant differences. First, the

control group uses a constraint set where around 80 of the constraints are trivially

relevant. Of these, many are trivially true. For example:

' (p 364
 " You have used t he backquot e char act er (`) i n
 SELECT. I f you want t o speci f y a const ant , use
 a quot e i nst ead (') . "
 t
 (nul l (sear ch " ` " (sel - t xt ss) : t est ' equal p))
 " SELECT")

This constraint is trivially satisfied, unless the student specifically uses a back quote.

y = 0.2056x-0.7104

R2 = 0.8451

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4

Series1

Power
(Series1)

y = 0.0772x-0.5752

R2 = 0.4652

0
0.01
0.02
0.03
0.04
0.05
0.06
0.07
0.08
0.09
0.1

1 2 3 4

Series1

Power
(Series1)

y = 0.2459x-0.4926

R2 = 0.968

0

0.05

0.1

0.15

0.2

0.25

0.3

1 2 3 4

Series1

Power
(Series1)

y = 0.1131x-0.6592

R2 = 0.4531

0

0.02

0.04

0.06

0.08

0.1

0.12

0.14

0.16

1 2 3 4

Series1

Power
(Series1)

Figure 12. Examples of individual learning curves

Group Slope Fit (R2)
Control 0.07 (0.04) 0.63 (0.29)
Probgen 0.16 (0.12) 0.68 (0.30)
T-test significant? Yes (p = 0.01) No (p = 0.61)

Table 7. Learning rates for individual students

132

In the experimental group, such constraints were rewritten such that by default they

are not relevant. The effect is that there is a large body of constraints that are almost

always satisfied in the control group irrespective of the student’s behaviour, while in

the experimental group they are absent. This may have an effect on the slope of the

power curves. To verify that this is not the case, we removed all of these constraints

and plotted the curve for the experimental group again. Figure 13 illustrates what

happens: the control group curve shifts upward and becomes less smooth because the

body of trivially true constraints normally has a smoothing effect. However, the slope

of the curve is unchanged.

A second difference is that there are more constraints in the model for the

experimental group, because it includes new ones added for solution generation. This

would only be a problem if the new constraints were more likely to be violated than

the rest of the set on average. In fact, most of the new constraints cover rare situations

that only occur during problems or solution generation as a consequence of erroneous

structures being built during correction, such as the existence of both the correct and

incorrect versions of some construct. They are therefore unlikely to be relevant to a

student solution, and so will fail to have any significance effect on the curves. We

tentatively tested this assumption by running the answers submitted by the control

group through the constraint evaluator for the experimental group, thus measuring the

Control

y = 0.1645x-0.3094

R2 = 0.8639

Probgen

y = 0.2262x-0.5319

R2 = 0.9791

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5

Control Probgen

Power (Control) Power (Probgen)

Figure 13. Error rates excluding constraints that are always true

133

students’ progress in ability by exactly the same means as was used for the

experimental group. Figure 14 shows the resulting learning curves for each group as a

whole. The curve for the control group still has a lower initial slope than the

experimental group, although the difference is less (0.12 for the experimental group,

0.078 for the control group). The power curve fit has also deteriorated. This is

probably because the differing constraint sets means that the feedback received by the

student no longer matches the constraints violated, hence there is some level of

randomness creeping in. However, the fact that the experimental group still displays a

higher initial learning rate indicates that the effect is not simply due to the differing

constraint sets.

Finally, we recalculated the mean initial slope and fit from individual curves,

again using the new evaluator. Note that the number of participating students for the

control group shrank from 16 to 10, and the number of problems per student also

shrank, because the system for the experimental group was implemented for one

domain (MOVIES) only due to time constraints, hence problems for other domains

(and all problems after one for another domain) were deleted from the logs. This

accounts for the decrease in the average goodness of fit of the power curves (from

0.64 down to 0.54).

Once again, there is a statistically significant difference in the initial learning rate

between the control and experimental groups at 	 = 0.05 (p = 0.04), summarised in

Table 8. In fact, this result is very similar to that achieved when the control group

used the original constraint set. We can therefore assert with confidence that the

difference is not because of the constraints.

A further indication of increased learning is the rate at which new constraints are

introduced and successfully applied by the students. Figure 15 plots the number of

constraints each student has demonstrated they have mastery of, versus the number of

problems they successfully completed. In each case, the first plot shows the full curve,

Group Slope Fit (R2)
Control 0.07 (0.07) 0.54 (0.30)

Problem Generation 0.16 (0.12) 0.68 (0.29)
T-test significant? Yes (p = 0.04) No (p = 0.27)

Table 8. Learning rates for individual students: new constraint set

134

while the second is cut off at the point where the number of constraints introduced per

problem suddenly tapers off. This effect occurs because the system has run out of

problems of sufficient difficulty to give the student. The curves suggest that the

generated problems successfully introduce more constraints per problem that the

student is able to master.

To determine whether this effect is significant, we calculated the average number

of constraints learned per problem per student for each group (after subtracting the X

intercept from the above regressions), and calculated the significance. Table 9

summarises the results. They suggest that the generated problems introduced more

constraints that were mastered per problem, although the results were not statistically

significant at 	 = 0.05 (p = 0.113).

Control

y = 0.1766x-0.4444

R2 = 0.836

Probgen

y = 0.2262x-0.5319

R2 = 0.9791

0

0.05

0.1

0.15

0.2

0.25

1 2 3 4 5

Instances

E
rr

o
r

(%
)

Control

Probgen

Power
(Control)

Power
(Probgen)

Figure 14. Learning Curves using the new evaluator for both groups

Group Constraints per Problem
Control 2.51 (3.11)
Experimental 3.94 (1.30)
Significant? No (p = 0.113)

Table 9. Constraints mastered per problem

135

6.9 Discussion

We presented four hypotheses for testing: two weak (6.1 and 6.3), which verify that

Problem Generation works and does not degrade system performance, and two strong

(6.2 and 6.4), which would suggest that Problem Generation is beneficial. We used

static tests to gauge the practicality of Problem Generation, and found that even in the

rudimentary version used for the evaluation (i.e. no natural language generation,

errors/incompleteness in the instantiation constraints), the algorithm is effective and

leads to a drastic reduction in the time taken to author new problems. We then

obtained results from the classroom evaluation that showed no discernible detriment

Control - full plot

0

50

100

150

200

250

300

1 8 15 22 29 36 43 50 57

Problems Solved

C
o

n
st

ra
in

ts
 L

ea
rn

ed

Control - first 40

y = 3.1092x + 36.528
R2 = 0.8359

0

50

100

150

200

250

1 6 11 16 21 26 31 36
Problems Solved

C
o

n
st

ra
in

ts
 L

ea
rn

ed

Probgen - full series

0

50

100

150

200

250

300

1 12 23 34 45 56 67 78 89

Problems Solved

C
o

n
st

ra
in

ts
 L

ea
rn

ed

Probgen - first 60

y = 4.0583x + 23.328
R2 = 0.9512

0

50

100

150

200

250

1 7 13 19 25 31 37 43 49

Problems Solved

C
o

n
st

ra
in

ts
 L

ea
rn

ed

Figure 15. Constraints mastered per problem

136

in performance as a result of utilising the artificial problems. We propose, therefore,

that hypotheses 6.1, 6.2 and 6.3 have been met.

The classroom analysis also showed that the rate at which learning occurs, i.e. the

rate at which students reduce the number of errors they make per concept, was

significantly higher when the generated problems were used. Efforts to find

explanations for this effect, such as differences in the constraint sets, failed to explain

the effect. Analysis of the difficulty of problems set also found no significant

difference. We therefore conclude that the use of problem generation, coupled with

the revised problem selection algorithm, leads to an increase in learning performance.

The generated problems themselves are unlikely to lead to such an effect.

However, the fact that there are more problems and, in particular, that there is a larger

number of more difficult problems, increases the likelihood that the new algorithm is

able to find a problem of appropriate difficulty. Recall that the new algorithm

measures the difficulty of each problem relevant to the student model. In the control

group, the difficulty of each problem was a static value provided by the author.

Problems may therefore be of appropriate structural difficulty for this student’s

aptitude, but be made up of inappropriate concepts. The effect of computing the

conceptual difficulty is to raise the difficulty of the problem by some unknown

amount depending on the concepts involved, and the student’s grasp of them. Further,

depending on the student’s performance, it is possible that the control system might

arrive in the position whereby there are no suitable problems because, when the

conceptual difficulties are included, the problems all become too hard. Conversely, an

advanced student may quickly exhaust a small problem set. The more problems there

are covering many different subsets of the constraint set, the more likely one can be

found for a given situation. Figure 16 illustrates the number of problems available for

a given difficulty range.

It is clear that the increase in the number of problems leads to a better range of

difficulties being available. For the authored problems, at a level above 300 (an

average user) there are only one or two problems available at each level. For the

generated problems, however, there are up to 20 problems at the 700 level (advanced

users), with a trough in the middle. Although there is not an even spread of problems

across all difficulties, there are at least a reasonable number of problems for advanced

137

students. For the control group, in contrast, it is more likely that the system will run

out of problems of appropriate difficulty. When it does so, it reverts to simpler

problems, until all problems are solved. At this stage learning is probably negligible.

To determine whether or not this occurred we analysed the individual logs to observe

whether problem difficulty decreased below the student’s proficiency level. For the 27

students in the control group who completed one or more problems, six of them ran

out of problems, and the system began working backwards through simpler ones. In

the worst case, the student completed 13 problems of lower difficulty because the

system had no more difficult ones to offer. Further, six students exhausted the

problem set completely. In contrast, for the experimental group, only four ran out of

problems of suitable difficulty, and only after completing more than 80 problems.

None of the students in the experimental group exhausted the entire problem set. This

probably accounts for the graphs in Figure 15. The amount of learning that occurred

once the system had run out of suitable problems is highly likely to have decreased.

We may also look at the number of problems per constraint, which gives an idea

of how well the problem set covers the target domain. For the control group there is

an average of 3 problems per constraint, with 20% of the constraint set being covered

by one or more problems. In other words, on completion of all problems, the student

will have covered 20% of the domain. For the experimental group, there are 7

0
10
20
30
40
50
60
70
80
90

100

10
0

30
0

50
0

70
0

90
0

11
00

Difficulty (Max)

P
ro

b
le

m
s

Control

Probgen

Figure 16. Problems available by difficulty

138

problems per constraint, also covering 20% of the constraint set. Note that 100%

coverage is not achievable, since around 50% of the constraints are syntactic, and are

therefore dependant on how the answer is encoded, while approximately 50% of the

remainder test for the absence of problems. We would therefore only expect around

25-30% coverage at most. These figures show that for each individual constraint

(domain concept) there are twice as many problems available to cover them, so twice

the likelihood that a problem can be found to teach a given constraint.

Finally, the two systems tested used a very different basis for selecting the next

problem. The control group chooses a target constraint and selects the best problem

for which that constraint is relevant. Problem Generation simply chooses the problem

that best fits the model, regardless of what the previous concept being taught was. It is

possible that the improvement observed comes from this change of tack: perhaps the

“ target constraint” method is too narrow and leads to excessive repetition. However,

the effect of this method is more likely to be the reverse: because there may not be

any more problems using this exact constraint, problem selection may often be

uncontrolled. Whatever the reason for the observed improvement, the fact that

problem generation allows a large number of problems to be authored quickly means

that any problem selection algorithm will have more problems available to select

from, which will allow it to more closely match problems to student models. We

therefore submit that Hypothesis 6.4 is supported: that the problem generation and

problem selection algorithms presented together lead to an increase in learning

performance.

Recall, also, that the number of problems generated was limited to one per

constraint to reduce the (initially unknown) effort required to vet the problems and

translate them into English. Given how little time was required to perform this task,

there is no reason why we could not have generated say, five problems per constraint,

which would have made the problem set size even more favourable. Also, we were

fairly ruthless in our elimination of unsuitable problems, throwing away 75 percent of

the generated problems. Instead, we could have corrected these problems, which

would have given a larger problem set. Finally, the instantiation constraints were

fairly hastily arrived at, and were the chief cause of errors in the generated problems.

Correcting these would have yielded a larger problem set. Therefore, the effects seen

139

here are merely an indication of how problem generation can improve an ITS: in

practice the potential gains may be higher.

140

141

7 An author ing system for CBM tutors

The ultimate aim of any improvements to the efficiency of ITS production is to

develop an authoring tool that permits rapid deployment of future systems with

minimal duplication of work. There are two strategies for authoring: macro-level

architectures, and micro-level tools. These approaches are complementary.

At the macro-level, a “black box” performs tutoring functions for multiple

systems. All domain-specific information such as the name of the system, the

knowledge base, the problem set and input-processing instructions are supplied as

input to the system, which then presents problems and processes user input as

required. This system may be in the form of an ITS generator, where the input is used

to build a new tutoring system that runs as a separate executable, or an ITS engine,

where the domain-specific information for multiple tutors is used to direct a single

ITS process, which runs all the tutors in a single process. We have adopted the latter

of these two approaches to develop a web-based ITS engine, which is further

described in Section 7.2. This engine can serve multiple tutors over the internet, just

as a single web server may serve up information from multiple sources.

At the micro-level, authoring tools are provided that allow a teacher to generate a

new tutor with a minimum of effort. The problem generator described in Chapter 6 is

an example of such a tool: given a domain knowledge base plus some additional

information, the problem generator can produce an arbitrary set of problems that the

author can then refine. Further, solution generation enables thorough testing of the

constraint set: it generates many possible solution fragments that are considered valid

with respect to one or more constraints, so may appear in student solutions. Finally,

the new constraint representation has a heavily restricted syntax, which lends itself to

a constraint editor to facilitate the writing of the knowledge base, or a constraint

inducer that builds new constraints from examples of problems and solutions supplied

142

by the author. These tools are described in Section 7.3. Both the ITS engine and the

authoring tools explore our final hypothesis:

Hypothesis 4: Because the new representation is domain-independent, it may

form the basis of an ITS authoring tool that supports the development of new

CBM tutors.

7.1 Existing author ing systems

Many ITS authoring systems have been developed, using a variety of approaches.

However, none have been built for CBM tutors. We describe some of the major

achievements in ITS authoring.

7.1.1 REDEEM: adding instructional planning to CAI

The REDEEM authoring system (Major, Ainsworth and Wood 1997) is designed to

allow teachers to build or customise their own computer-based coursework. Whereas

conventional computer-aided instruction (CAI) generally presents educational

material in a non-adaptive fashion, REDEEM allows individual teachers to overlay

their strategies by categorising the material and describing key features about it such

as familiarity, difficulty, generality, passiveness, questioning style and level of

hinting. They may also add questions (and answers) associated with each page of

material. They then describe the teaching strategy to be used for a given group of

students such as level of student choice over presentation, teaching versus testing,

generality of material to be chosen and hinting/feedback levels. All quantitative

features (e.g. level of generality) are specified via a GUI interface by moving sliders

to the appropriate position.

REDEEM also contains a tutoring shell, which presents the material to students

using the information provided during the authoring phase. Students are assigned to

one of the strategy groups, which determine how they should be taught. REDEEM

also contains a pedagogical “black box” , which makes further fine-grained decisions,

such as when to move from general to specific material, based on hard-coded rules

derived from interviewing real teachers.

143

In a formative analysis (Ainsworth, Grimshaw and Underwood 1999) Ainsworth

et al. found that teachers were able to easily tailor existing CAI material to their own

teaching strategies. Variation between different teachers’ strategies (plus the feedback

given by the teachers) also indicated that being able to modify the strategies was

worth the effort required. Two teachers with no previous experience of REDEEM or

computer-based training completed a six to eight hour teaching session in around ten

hours, much less than the 200 hours per hour of training estimated to create tutors

from scratch (Woolf and Cunningham 1987). However, the time to create the

coursework in the first place has not been considered. While prior coursework would

benefit the creation of any ITS, in REDEEM the material can be used directly.

REDEEM was designed specifically for use by teachers to rapidly create or

customise new courseware, and so is both easy to use and very general: any domain

that can be taught using a storybook approach can be authored using REDEEM.

However, the resulting system is shallow in that it does not contain a domain model

with which it can provide detailed feedback or plan teaching operations (such as

which problem to present next) to any fine degree.

7.1.2 Demonstr8: programming by demonstration

At the other end of the spectrum is Demonstr8 (Blessing 1997), an authoring tool for

model tracing tutors. This system provides assistance in the creation of deep systems

but for a limited domain set. It may currently be used only to generate arithmetic

tutors, although Blessing claims the approach should be general enough to lend itself

to other domain types. However, he says this would require the creation of new

authoring systems. It aids tutor production at both the macro-level—by including the

main components of a model-tracing tutor such as the model tracer, student model,

and user interface—and at the micro level, by assisting the authoring of the

underlying domain model. In Demonstr8, the author first uses GUI tools to define the

interface using specialised widgets whose behaviour is domain-dependent. They then

define the underlying declarative chunks or working memory elements (WMEs) by

grouping together elements from the interface. For example, in a subtraction problem

WMEs are created for each column of the problem/solution area by grouping together

cells that are aligned vertically, and for problems by grouping together columns. Such

144

WMEs may be made directly from the interface components (e.g. grouping cells into

columns) or by grouping other WMEs together (e.g. grouping columns into

problems). The author must also define knowledge functions, i.e. functions relevant to

the domain that the student would need to be able to perform. In subtraction for

example, the student needs to be able to subtract two digits, so the tutor must also

contain this function.

The most powerful part of Demonstr8 is the procedure-inducing tool. This uses

programming by demonstration (Cypher 1993) to infer the procedural steps being

carried out by the author as they demonstrate the solving of a problem in the domain:

each time the author takes a step (i.e. changes a value in the interface), they either

communicate to the tool how they did it (e.g. they add “5” to the rightmost column of

a subtraction problem, by invoking the subtract function) or they simply carry out the

step and leave the system to infer what they did, based on the WMEs and knowledge

functions available. In Demonstr8 all actions are assumed to be the result of applying

a knowledge function. If more than one function may have been applied, the author is

asked to choose the correct one. Demonstr8 now builds a default production rule

based on what it believes to be the conditions currently applying to the problem that

are relevant to the step just taken, and the function used to take it. For example:

For t he r i ght most col umn C whose answer cont ai ns BLANK

I f

t he t op and bot t om el ement s of C ar e appl i ed t o t he SUBTRACT
f unct i on

THEN
t he r esul t can be pl aced i n t he answer f i el d of col umn C.

By default, Demonstr8 applies the heuristic that the production being created for the

current situation should be generalised in one dimension. For example, the procedure

previously given may have been generated while subtracting numbers in column 3,

yet the production generally applies to any column.

Many tasks require the modelling of subgoals. In subtraction for example, a

subgoal may be the “carry procedure” . In Demonstr8, it is up to the author to decide

when to form a subgoal, and inform the system by providing the name of the subgoal.

Authoring then proceeds as usual until the author indicates that the subgoal is

145

complete. A final task is to specify what the “skills” of the domain are for

presentation by a skillometer. These are a high-level summary of the domain: each

production is labelled according to what skill (or skills) is being utilised.

Once the procedures have been learned Demonstr8 now contains all the

information necessary to function as a tutor in the specified domain. It includes a

problem generator, which by default provides random numbers for problems. The

generator can be constrained so that for example, only subtractions not requiring a

“carry” are presented by ensuring the range of numbers available for the second row

are always less than those for the top row. Demonstr8 provides a standard interface

for the student in which they drag items (numbers) from a “palette” into the cells of

the problem.

Within the context of arithmetic tutors, Demonstr8 has been shown to

dramatically reduce the effort required to build a new tutor: 10 minutes versus many

hours for a from-scratch implementation. However, this does not take into account the

time spent building the authoring system and how many tutors would need to be built

to recoup this effort. Although Blessing contends that the approach used in

Demonstr8 could be broadened to other domains, the current system can only author a

limited domain set. It contains many components that are specific to arithmetic

domains, including the interface widgets, standard arithmetic knowledge functions

(addition, subtraction, decrementing) and the problem generator. We do not know the

effort required to build these, so are unable to judge whether it would have been

quicker to simply author tutors directly in the arithmetic domain, perhaps building one

and then copying and modifying it to produce others.

Finally, a considerable level of expertise (over and above domain knowledge) is

required to build a tutor using Demonstr8. During the authoring session, many steps

that may seem obvious to an expert in model tracing are not at all intuitive to domain

experts. For example, how would an arithmetic teacher understand that they need to

group cells into columns and problems in order that Demonstr8 can generate the

necessary WMEs to represent the required procedures? In this regard many of the

tools in Demonstr8 (including the WME generator) might be thought of as high level

programming tools rather than end-user systems. A programmer is probably still

required to build much of the system.

146

7.1.3 Teaching by simulation: RIDES

A very different type of tutor is based on simulation, where the student is given an

artificial world in which they may carry out tasks in the chosen domain. RIDES

(Munro, Johnson, Pizzini, Surmon, Towne and Wogulis 1997) is an authoring tool for

automating the development of such tutors. As such, it falls somewhere between the

extremes of REDEEM and Demonstr8: while the type of delivery is limited to

simulation, the set of domains that may be taught in this way is more diverse than

Demonstr8 (currently arithmetic), although not as broad as what may be taught by the

story-book approach of REDEEM. Further, RIDES provides support for domain

modelling, although the depth to which simulations are modelled is fairly low, hence

it falls short of Demonstr8’s ability to generate models to arbitrary complexity. As

with both Demonstr8 and REDEEM, RIDES is both an authoring system and a shell:

as well as providing help for generating the tutor, it runs the resulting system.

Authors generate tutors for procedural domains in RIDES by building a

simulation of the procedure to be taught. RIDES provides a set of editors for creating

the graphical components necessary to portray the domain and specifying how these

objects behave. For example, a switch may have an attribute “State” , whose value is

toggled between the values “off” and “on” as the result of a mouse click. Similarly, a

light may have a control “colour” which is set to “ red” or “green” depending on the

value of an attribute of another object (e.g. “green” if the “value” attribute of the

“ temperature gauge” object is 90 or less, otherwise “ red”). The author then simulates

the procedure to be learned by simply carrying it out, while RIDES records the

actions taken.

RIDES automatically offers three modes of tutoring: demonstrate, practise and

test. All three play back the simulation, but they vary in how this is controlled. In

“demonstrate” mode, the simulation is simply played back verbatim, with the

student’s control being limited to pacing the display via mouse click. In “practise” ,

the student is required to perform the necessary actions in response to the prompt

“perform the next action” . If they get it wrong, they are so informed and required to

try again. After three attempts they are told what they should have done and the

relevant item in the simulation is highlighted. In “ test” , RIDES behaves similarly to

the previous mode except the student is immediately told whether or not each action is

147

correct, but are not told why they are wrong. RIDES records their actions and the state

(right or wrong) of each.

RIDES greatly reduces the effort required to build tutors by heavily scaffolding

the simulation authoring process, and automating the entire tutoring session. Sundry

items such as text to be presented to the student before, during and after a procedure

are created from “canned” text, such as “you shoul d have set <OBJECT>

t o <ATTRI BUTE- VALUE>.” Control of the session is also fixed, both at the

procedural level (display initial text, step through the procedure, display final text)

and at the session level. RIDES also automates the student modelling and presentation

process: given a list of “objectives” and the mapping between objectives and

procedures, RIDES decides which procedure to present next and when to move on to

the next objective. However, the author may override many of these items using

further editors to modify text, adjust the flow of a simulation, add new components to

a simulation etc. Thus the authors of RIDES have overcome the dilemma of ease-of-

use versus flexibility by providing two tools targeted at different audiences.

Like Demonstr8, RIDES uses a (basic) form of programming by demonstration to

author the procedures. The main difference is that Demonstr8 tries to infer new rules

based on incomplete information about why the user has carried out the step. Further,

it tries to generalise the actions performed to other, similar actions. In contrast,

RIDES simply records exactly what has been carried out and makes no inferences

about it. Thus, whereas Demonstr8 tries to infer a deep, detailed model of the domain,

RIDES creates models that by default are very shallow: in RIDES a particular step is

necessary because the teacher performed that step. In contrast, an action in

Demonstr8 may be applicable because the appropriate conditions have been met that

make it valid to perform next.

In spite of the shallow modelling abilities of RIDES, it has been a very popular

tool for simulation-based tutoring. This has been partly because the simulation tools

themselves are so powerful that it has been integrated into other systems where

simulation is required. It can also be used to generate tutoring environments, where

the student is free to “play” in the domain and observe the consequences, rather than

being required to follow a rigorous procedure. For example, a tutor for injection

moulding gives the student the tools necessary to “create” a part, for which the system

148

then develops a mould to illustrates to the student the consequences of their design

decisions (e.g. by combining two simple shapes into one, the mould now requires five

parts whereas two separate moulds would only require two each). What is not clear is

how well the intelligent tutoring parts of RIDES support learning.

7.1.4 Support for author ing the domain model

The domain model is generally the most difficult part of an ITS to build, so is a prime

candidate for authoring aids. There are two major approaches: assisting the editing

and visualisation of the model, and knowledge induction.

Demonstr8, described in the previous section, is an example of both approaches. It

provides domain knowledge induction using programming by demonstration, with the

output of the induction step being a default set of production rules for the actions

taken. Demonstr8 also provides GUI editors for the creation of knowledge chunks

(WMEs) and the creation/editing of production rules. In this system the user never

directly modifies the code of the WMEs or production rules, but rather interacts with

a dialog that is an abstraction of the underlying element. However, Demonstr8 still

requires the author to identify working memory elements, decide how to use them to

solve the problem and identify sub goals. Further, to date Demonstr8 has not been

shown to be effective beyond the authoring of arithmetic tutors, nor is it obvious that

the effort required to build the tool in the first place is justified. Importantly, it is not

clear how it would fare for more complex domains.

Using a totally different approach, DNA (Shute, Torreano and Ross 1999)

provides dialogues for extracting the important knowledge elements of a domain from

a domain expert but does not encode it in any machine-useable way. A knowledge

engineer is still required to encode the resulting domain model. However, DNA’s

approach may still be useful, since often the hardest part of developing a domain

model is not deciding how to encode it, but rather what to encode. DNA makes

explicit the kinds of knowledge required by defining the domain knowledge along

three axes with associated dialogues for each. Procedural knowledge elements (PK)

are lists of steps to be carried out, where each step can be further divided into sub-

procedures analogous to goals and sub goals in ACT-R. Symbolic knowledge

elements (SK) describe static facts, such as the definition of the term “mean” in

149

statistics. Conceptual knowledge elements (CK) describe relationships between SKs,

such as how the mean relates to the shape of the underlying distribution. In a trial

evaluation Shute et al. found that DNA allowed three people conversant in statistics

(but not in ITS) to provide 62% of the knowledge elements needed for a statistics

tutor (Stat Lady (Shute and Gawlick-Grendell 1993)) in only nine combined hours. A

further aim of DNA is to produce a semantic network that captures the knowledge

elicited, but for now this remains a major task.

Other authoring tools provide knowledge visualisation and editing functions.

LEAP (Sparks, Dooley, Meiskey and Blumenthal 1999) builds systems that teach

customer contact employees (CCEs) the skills for effectively responding to customer

requests. The essential nature of a course unit is a dialogue between the CCE and the

system (an artificial customer). LEAP allows for great variation and flexibility in how

dialogues unfold. Authoring of such dialogues is supported by an array of GUI tools.

A Script Editor provides the basic mechanism for developing a dialogue. In this editor

the author creates each step in the dialogue, filling in the main attributes and leaving

the rest to the system. The Subdialogue Graph Editor provides a graphical overview

of the entire dialogue as dialogue nodes and transition nodes. Items may be added,

deleted or expanded using this editor. The Transition Editor is for adding or

modifying the details of a transition node, such as what response is required before

the call can proceed from “discuss problem” to “determine problem”. The Node

Editor and Action Editor are similar screens for entering the details of these

components. LEAP thus provides a rich, multi-level means of editing and visualising

the domain model, but does not help to induce its content. Other examples of this

approach are IDE (Russell, Moran and Jordan 1988), Eon (Murray and Woolf 1992),

and CREAM-Tools (Nkambou, Gauthier and Frasson 1996).

7.2 WETAS: A web-enabled CBM tutor author ing system

While CBM reduces the effort of building domain models for ITS, the task of

building a new system is nevertheless still large. Several tutors we implemented in

CBM share in common a textual user interface. To reduce the authoring effort, we

have developed WETAS (Web-Enabled Tutor Authoring System), a web-based

150

tutoring engine that performs all of the common functions of text-based tutors. To

demonstrate the flexibility of WETAS we have re-implemented SQL-Tutor (Mitrovic

1998), and developed a new ITS for teaching English Language skills (LBITS).

Although these domains share the property of being text-based, they have very

different problem/solution structures. WETAS is based on constraint-based

modelling. It utilises the new constraint representation described in Chapter 4 to

maximise the work performed by generic code. The architecture borrows heavily from

SQLT-WEB, the web-based SQL-Tutor system (Mitrovic and Hausler 2000), with

two main differences. First, the new constraint representation is utilised, along with a

new constraint evaluator. This significantly reduces the amount of domain-dependent

code in the solution evaluation part of the system, and cleanly separates the

constraints from the evaluator. Second, a further “ layer” of data input is added: as

well as splitting the domain into problem subsets (“databases” in the case of SQLT-

WEB), the system now further splits the overall tutoring information into domains.

Thus, a problem presented to the student now belongs to a particular subset (e.g.

database) of one of several domains. The constraint evaluation process has access to

all of these things, so that constraints can be specific to individual problems

(although, in practice, they never are), subsets (for example, in SQLT-WEB when

testing for a valid attribute, the answer depends on which schema is currently active),

and the domain being taught. The overall architecture is depicted in Figure 17.

7.2.1 Scope

(Murray 1999) divides systems for creating ITS into “authoring tools” and “shells” . The

former provide extensive aid in developing ITS, while the latter are merely a

framework for building tutors, and so they support low-level tasks (such as interface

development and data storage), while failing to decrease the effort involved in

developing the “ intelligent” aspects of the tutor. We consider WETAS to be an

authoring tool (as well as a shell) because it provides many of the adaptive functions

required of an ITS (problem selection, evaluation, feedback, student modelling, etc).

It also provides custom representation for easily describing the problem set and the

domain model. We now describe the scope of WETAS with regard to the four main

151

functions of an ITS: the student interface, domain model, pedagogical module and

student model.

Student inter face. WETAS completely automates the student interface. The layout

is fixed, consisting of four panels: problem selection, problem/solution presentation,

Figure 17. WETAS architecture

Web
browser

Web server
(Allegroserve)

Session Manager Student
Logs

Student Modeller
Pedagogical

Module

Student
Models

Constraints

Problems

Domains

Domain Loader

Domain
Info Base

Domain-
specific files

Subset-
specific files

Student

152

scaffolding and feedback. Further, all but the scaffolding panel are driven

automatically from the data.

Domain model. In WETAS authoring of the domain model is supported insofar as a

language is provided for constructing the domain including macros for sub-rules. This

language simplifies the creation of the domain model by removing the need to learn a

complex programming language. WETAS also provides a generic domain modeller,

in the form of the constraint evaluator. No further support is currently provided for

writing the domain model, however we have undertaken some preliminary

investigation into constraint editing and induction. This is discussed in Section 7.3.

Pedagogical module. Instructional planning in WETAS is fixed. All domains

supported by WETAS are of the “ learning by doing” kind. WETAS chooses the next

problem to solve by evaluating the structural and conceptual difficulty (Brusilovsky

1992) of each candidate problem, and choosing the one that best fits the student’s

current knowledge state and level of ability. The problems themselves may be hand-

written, or generated from the domain model using the algorithm described in

Chapter 6.

Student model. Like most other authoring systems (Murray 1999), WETAS uses an

overlay student model: each constraint includes a count of the number of times it has

been relevant and how many times it has been violated, plus a trace of the behaviour

of this constraint over the life of the model. The last four “hits” are used to decide

whether the state of the constraint is currently “not learned” or “ learned”, with two

successes in a row indicating that the constraint is learned. This information is used to

calculate the conceptual difficulty of each problem, by increasing the difficulty by a

constant amount for every relevant constraint that is not learned. Similarly, we

increase the conceptual difficulty by another constant for every constraint relevant to

this problem that has never previously been relevant. These constants are currently set

to 5 and 10 respectively, i.e. a constraint that has been seen but not learned adds five

times the difficulty to the problem as one that has been mastered, while a constraint

that has never been seen adds ten times the difficulty. These constants were obtained

empirically by using the system and observing which problems were selected. In

153

practise WETAS is not overly sensitive to these values. The difficulty each constraint

adds to the problem is determined automatically by tallying up the number of terms in

the constraint’s match patterns, giving a measure of the effort required to complete the

minimum parts of the solution necessary to satisfy this constraint.

When building ITS authoring systems, there is inevitability a trade-off made

between flexibility (or generality) and depth (Murray 1999). The WETAS system

supports deep tutoring by providing a robust constraint evaluator, student modelling

functions and problem selection. It provides flexibility by supporting any domain

where the problem and solution can be represented as (structured or unstructured)

text. Further, it is possible to extend WETAS’ capabilities to graphical domains,

provided the problem and solution can be sufficiently described using text (see

Section 7.2.9). The main trade-off is that WETAS does not currently provide

flexibility of the student model and teaching strategy. However, the advantage of this

is that the author is freed from such considerations. In the future we may modify the

system to allow such components (or parts of them) to be provided by the author as

“plug-ins” , which is the case for scaffolding information now.

7.2.2 Implementation of WETAS

WETAS is a web-based tutoring engine that provides all of the domain-independent

functions for text-based ITS. It is implemented as a web server, written in Lisp and

using the Allegroserve Web server. WETAS supports students learning multiple

domains at the same time; there is no limit to the number of domains it may

accommodate. Students interact through a standard web browser such as Netscape or

Internet Explorer. Figure 18 shows a screen from SQL-Tutor implemented in

WETAS. The interface has four main components: the problem selection window

(top), which presents the text of the problem, the solution window (middle), which

accepts the students input, the scaffolding window (bottom), which provides general

help about the domain, and the feedback window (right), which presents system

feedback in response to the student’s input.

 WETAS performs as much of the implementation as possible in a generic

fashion. In particular, it provides the following functions: problem selection, answer

evaluation, student modelling, feedback, and the user interface. The author need only

154

provide the domain-dependent components, namely the structure of the domain (e.g.

any curriculum subsets), the domain model (in the form of constraints), the

problem/solution set, the scaffolding information (if any) and, possibly, an input

parser, if any specific pre-processing of the input is necessary. Each of these is now

described.

The domain structure

All of the domain information in WETAS forms a hierarchy, where the top-level

structure is the domain record. There is a domain record for each domain that the

system supports. This record tells the system the name of the domain, the directory

name where files relating to that domain may be found, where to find the scaffolding

information for this domain, the name given to problem subsets, and the parser (if

needed) for parsing the student’s input prior to evaluation.

Exercises in each domain may be partitioned into subsets. For example, in SQL-

Tutor the student may choose to answer questions that require queries to be written

pertaining to one of several relational databases. Some information required by the

system (including the problem set) is subset-specific, so each domain record includes

Figure 18. WETAS interface (SQL domain)

155

a list of subset records containing this information. Also, the domain model may vary

for each subset, so this is also stored at the subset level. Finally, each subset has its

own list of problems. Figure 19 depicts the structure of the data input.

The domain model

The domain model is implemented as a modular set of constraints using the

representation described in Chapter 4. Each domain may record constraints at two

levels: those that are common to all subsets are stored at the domain level, while

subset-specific constraints may also be provided. This allows the constraint set to vary

Figure 19. WETAS input files

Domains file

<domain 1>
directory

<domain n>
directory

Constraints Taxonomy
(macros) Subset

files

Subset 1
files

Subset n
files

Subset 1
Constraints

Subset 1
Taxonomy

Subset 1
Problems

Subset 1
Statistics

WETAS
directory

156

between subsets if needed without duplicating the common ones. For example, in the

Language Builder domain, the puzzle “Rhyming Pairs” requires the answer to be two

words that rhyme, as well as having the correct meaning. A constraint specific to this

subset tests for rhyming pairs of words, while the words themselves and their

meanings are stored at the domain level.

Many constraints require enumerations of the allowed values of a term in a match

pattern. For example, a constraint in SQL that tests a table name is valid for the

current database requires a list of all valid table names for that database. Further,

some general concepts, such as “arithmetic symbol” , are also encoded by enumerating

the list of valid values. Thus each domain requires a taxonomy that describes the

atoms of the domain. However, some elements of the taxonomy are also subset

dependent, such as “valid table” just described. The taxonomy is therefore also

recorded both at the domain level (for domain-wide atoms such as “arithmetic

symbol”) and at the subset level. The taxonomy is recorded as a set of macros, using

the same representation as the constraints.

Problem Representation

As stated earlier, CBM critiques the student’s attempt by comparing it to an ideal

solution. Each problem is therefore represented by the text of the problem plus the

ideal solution. In WETAS problems and their solutions may be structured. In SQL-

Tutor each problem consists of a text message describing the database query that must

be written, while the solution consists of each of the six possible clauses of an SQL

query (SELECT, FROM, WHERE, GROUP-BY, HAVING and ORDER-BY). In the

Language Builder domain each problem consists of a set of clues, where the student

must provide an answer for each clue (for example, they must type the plural version

of each clue word). WETAS caters for different problem/solution structures by

allowing a problem to have any number of clauses. Each clause nominally consists of

the clause name, a text string that represents an ideal solution for that clause, an

(optional) additional clue for that clause and the default input for that clause.

However, the solution part of the clause may itself be a list of sub clauses again

containing the sub clause name, ideal solution, a clue and the default field value. This

157

structuring may occur to any depth. In the Language Builder domain for example,

nesting occurs to one level (see Section 7.2.5).

Scaffolding and parsing

Before a solution is fed to the constraint evaluator, it may require parsing to convert

the text input into a list of words (or terms) that the pattern matcher can use. A default

parser is provided, which splits text into words using white space and non-

alphanumeric symbols as boundaries. However, some domains may have other

parsing requirements. Each domain record contains a field that identifies the parser,

which may be NULL (no parsing required), DEFAULT or the name of a LISP

function that accepts the text input and returns the parsed result in a list. Similarly,

domains may optionally provide scaffolding information. WETAS allows the author

to specify either static HTML pages or dynamic functions.

WETAS has been implemented in prototype form and used to build two tutors to

explore its capabilities and evaluate its effectiveness in reducing the ITS building

effort.

7.2.3 Building an ITS using WETAS

Because WETAS is data driven, authoring a new ITS consists entirely of creating the

data files needed to instruct it how to operate. The steps involved are:

1. Create the domain record;

a. Decide upon the domain to be taught, and give it a name;

b. Create the domain record (in domains.cl), including the definitions

for any subsets;

c. Create a directory that will hold all the files for this domain, as a

subdirectory of the WETAS main directory.

2. Create the problem set;

a. Decide how the problem will be presented, i.e. how it will be

broken up. For SQL-Tutor, the exercises are split into the six

clauses of a SELECT statement; for Language Builder, they are

represented by repeated clues;

158

b. Create the file <subset-name>.probans for each subset, containing

the problem definitions for that subset.

3. Create the domain knowledge base;

a. Create the semantic and syntactic constraints that are valid for the

entire domain, and the top level taxonomy (files constraints-

semantic.cl, constraints-syntax.cl, and taxonomy.cl);

b. Create any subset-specific constraints and taxonomies, if necessary

(constraints-semantic-<subset-name>.cl, constraints-syntax-

<subset-name.cl>, taxonomy-<subset-name>.cl).

4. Create optional components;

a. Create a parser, if necessary;

b. Create the scaffolding web page and/or functions, if necessary.

5. Create the login page for this domain;

6. Run the newly created ITS.

a. Run “ load-domains” to load the new domain;

b. Restart the WETAS web server.

The main steps are now described in more detail.

1. Create the domain record

The file WETAS/ DOMAI NS. CL contains the definitions of each domain supported by

WETAS. Each entry includes the domain short and long names, the scaffolding type

(FILE, COMPUTED or NIL), the generic name given to subsets, the name of the

parser (if any) and a list of all subsets. Each subset entry contains the subset long and

short names, The size of the field(s) that will accept the answer and the default

problem text. The latter is used when there is no specific textual problem statement

for each exercise. In Language Builder for example, the problem is specified at a

lower level by a series of clues, so the top-level problem statement is blank. The

default problem statement is therefore used to provide a general message about

solving the problem. Figure 20 shows a domain file with just a single domain

159

(Language Builder), which contains two subsets: “Scrambled words” and “Last two

letters” . The comments indicate what each field represents.

2. Create the problem set

As described in 7.2.2, each solution is represented as a set of clauses where each

clause may either be a single text string or a list of subclauses, which themselves can

consist of further subclauses nested to any depth. Problem text can be attached at any

level. In the two domains described, we have used fairly simple representations: SQL-

Tutor uses a set of six text clauses, while Language Builder consists of a single

clause—“clues”—for which there are a number of subclauses, together with a clue for

each. Figure 21 shows problem entry 202 for the Language Builder domain, for the

(set q * domai ns*
 ' (
 ; domai n r ecor d
 (
 " Language Bui l der " ; l ong name
 " LBI TS" ; shor t name
 NI L ; scaf f ol di ng t ype
 NI L ; scaf f ol di ng name
 " puzzl e" ; what you cal l a subset
 NI L ; par ser name

 ; subset s
 (
 (" Scr ambl ed wor ds - unscr ambl e t he l et t er s t o make a wor d
 t hat mat ches t he c l ue" ; l ong name
 " SCRAMBLED- WORDS" ; shor t name
 20 ; answer s i ze
 " unscr ambl e t he l et t er s i n t he br acket s t o make a wor d
 t hat mat ches t he c l ue. " ; def aul t pr obl em t ext
)

 (" Last Two Let t er s - each wor d begi ns wi t h t he l ast t wo
 l et t er s of t he answer bef or e i t . "
 " LAST- TWO- LETTERS"
 20
 " Each wor d begi ns wi t h t he l ast t wo l et t er s of t he
 answer bef or e i t . "
)
)
)
)
)

Figure 20. DOMAINS.CL

160

“ last two letters” subset. Each numbered line is a separate clue. The first string in each

clue is a number that identifies this clue. Next is the answer for this clue, e.g.

“SHADE”. The third string is the text of the clue itself, e.g. “Out of the sun (5)” . The

last string, which in this case is used only for the first clue, is used to initialise the

answer field.

Although WETAS is design to accept free-form text, it is possible to use the

structured nature of problem specifications to allow other types of interface. Consider

the domain of Lewis diagrams in chemistry. The problem might be presented as a

textual question (e.g. “what is the Lewis diagram for methanol?”) where the student is

required to draw the corresponding diagram. WETAS could do this by using the

nesting ability of the problem specification to represent the problem solving interface

as a grid of character fields, where the student enters the appropriate chemical

elements and bond symbols. Figure 22 gives an example of such a problem statement.

Each entry, labelled “1” through “5” , is a line of a 7x5 grid. Each cell within this line

(labelled “1” through “7”) is a single cell in this row of the grid. Each cell is either

empty or contains a symbol. Figure 23 illustrates how this would appear on the

screen. Note that there is no requirement for the problem structure to be static across

domains or subsets; each problem could be structured differently according to the

needs of the question being asked.

3. Create the domain knowledge base

The knowledge base consists of the constraints for the domain, any subset-specific

constraints and the taxonomies for the domain and subset. First, the pedagogically

(202
 NI L ; no t op- l evel pr obl em t ext
 (
 (" CLUES"
 ; i d answer c l ue def aul t i nput
 (" 1" " SHADE" " Out of t he sun (5) " " SH")
 (" 2" " DEAL" " Hand out t he car ds (4) ")
 (" 3" " ALI VE" " Not dead yet (5) ")
 (" 4" " VEI L" " Cover (4) ")
)
)
)

Figure 21. Example problem from LBITS/LAST-TWO-LETTERS.PROBANS

161

significant states are decided upon. Constraints fall into two broad categories—

semantic and syntactic—and there is a file for each. Syntactic constraints are authored

by deciding what are the important principles of constructing any solution in this

domain. In SQL-Tutor these relate to syntax and grammar rules for constructing an

SQL query. In Language Builder they are mostly related to spelling.

Figure 24 gives an example of syntactic constraint from each domain. In the

constraint for Language Builder, the relevance condition first extracts the clause

Figure 22. Screen appearance of Lewis diagram question

(1
 " Dr aw t he Lewi s di agr am f or met hanol . "
 (
 (" DI AGRAM"
(" 1"
 ((" 1" " ") (" 2" " ") (" 3" " H") (" 4" " ") (" 5" " ") (" 6" " ") (" 7" " "))
)
(" 2"
 ((" 1" " ") (" 2" " ") (" 3" " | ") (" 4" " ") (" 5" " ") (" 6" " ") (" 7" " "))
)
(" 3"
 ((" 1" " H") (" 2" " - ") (" 3" " C") (" 4" " - ") (" 5" " O") (" 6" " - ") (" 7" " H"))
)
(" 4"
 ((" 1" " ") (" 2" " ") (" 3" " | ") (" 4" " ") (" 5" " ") (" 6" " ") (" 7" " "))
)
(" 5"
 ((" 1" " ") (" 2" " ") (" 3" " H") (" 4" " ") (" 5" " ") (" 6" " ") (" 7" " "))
)
)
)
)

Figure 23. Example of a Lewis diagram problem Figure 22. Example of a Lewis diagram problem

Figure 23. Screen appearance of Lewis diagram question

162

number and answer word from a clause in the student’s answer. Then, it uses

TEST_SYMBOL to test the letters within the word for “ i ” and “e” , and binds

?l et t er to the preceding letter. The relevance condition then checks that the

preceding letter is not a “c” . If it is, the constraint has been violated.

Semantic constraints relate the student's solution to the ideal solution in order to

determine whether the question has been answered. They must be suitably flexible

that they permit correct solutions that differ from the ideal solution. In SQL-Tutor the

semantic constraints check that all of the necessary entities are present (tables, and

attributes) and that they have been processed in the correct way, e.g. that conditions

represent the same subset of records as those in the ideal solution. In Language

Builder they check that the answers given have the same meaning as the clues. Figure

25 is an example of a semantic constraint for each domain.

The distinction between semantic and syntactic constraints can sometimes be

blurred. In Language Builder constraints that test for appropriate letter groups in the

answer are classed as syntactic because they are primarily checking that the word has

been spelled correctly, yet they could also be called semantic since they are

comparing the student and ideal solutions.

163

; synt act i c const r ai nt f r om SQL- Tut or
(61
 " A subquer y i n t he HAVI NG cl ause must be encl osed wi t hi n
br acket s. "

 (mat ch SS HAVI NG (?* " SELECT" ?*))

 (mat ch SS HAVI NG (?* " (" " SELECT" ?* " FROM" ?* ") " ?*))

 " HAVI NG"
)

; synt act i c const r ai nt f r om LBI TS
(103
 " Remember : I bef or e E except af t er C! "

 (and
 (mat ch SS CLUES (?num ?* ?wor d ?*))
 (t est _symbol SS ?wor d (?* ?l et t er " i " " e" ?*))
)

 (not - p (t est SS (" c" ?l et t er)))
 " CLUES"
)

Figure 24. Examples of syntactic constraints

164

; semant i c const r ai nt f r om SQL- Tut or
(55
 " You do not need al l t he t abl es you used i n FROM. "

 (and (not - p (mat ch SS WHERE (?* " SELECT" ?*)))
 (or - p (mat ch SS FROM (?* (^name ?t) ?* " ON" ?*))
 (and
 (not - p (mat ch SS FROM (?* " ON" ?*)))
 (mat ch SS FROM (?* (^name ?t) ?*))
)
)
)

 (or - p
 (mat ch I S WHERE (?* " FROM" ?* ?t ?*))
 (mat ch I S FROM (?* ?t ?*)))

 " FROM")

; semant i c const r ai nt f r om LBI TS
(2002
 " The wor ds ' wear ' , ' war e' , ' wer e' and ' wher e' mean di f f er ent
 t hi ngs. Have you used t he r i ght one?"

 (and
 (mat ch I S CLUES (?num ?wor d1 ?*))
 (mat ch SS CLUES (?num ?wor d2 ?*))
 (t est I S ((" wear " " war e" " wer e" " wher e") ?wor d1))
 (t est SS ((" wear " " war e" " wer e" " wher e") ?wor d2))
)

 (t est SS ((?wor d1) ?wor d2))
 " CLUES")

Figure 25. Examples of semantic constraints

4. Create optional components

If the domain requires any special parsing of the input (e.g. SQL parses

TABLE.ATTR into the list (" TABLE" " . " " ATTRI BUTE")), a custom parser

must be written. It may be either written in LISP, or callable from the LISP code. The

standard parser, which splits a text string by white space and symbols, can be used as

a guide.

Scaffolding information may also be provided. This can be either a collection of

HTML documents or a function. For the former, the author provides a list of

filenames to be published as URLs, where the file relating to the first member of the

165

list will be displayed in the scaffolding window, and the other members are assumed

to be linked to it. If the scaffolding is provided by a function, this must be written in

LISP or callable from the Allegroserve server.

5. Create the login page

Each domain has its own HTML login page. Any format is acceptable provided it

passes the domain name, student login name and student difficulty level to the server

by posting the URL WETAS/LOGIN. The login page must be located in the domain

subdirectory and be named LOGIN.HTML. A template page is provided.

6. Run the new ITS

WETAS has now been provided with everything it needs to tutor in the new domain.

The function LOAD-DOMAINS reads the domain file, including the new domain

entry, and loads all the other files associated with each domain. It builds a domain

entry in memory containing all the information from the domain file plus the problem

and constraint sets for each domain. It also calculates the problem selection statistics

for all domains by calculating the structural difficulty of each problem and the

conceptual difficulty that would be added by each constraint. Finally, the WETAS

server is restarted and the new domain is published along with all existing domains.

The new ITS is ready for use.

We now describe two domains that we have implemented in WETAS.

7.2.4 Example domain 1: SQL-Tutor

SQL-Tutor (Mitrovic 1998) teaches the SQL database query language using

Constraint-Based Modelling. It is available to the general public on the web

(http://ictg.cosc.canterbury.ac.nz:8000/sqlt-web-login), and is used at Canterbury

University in second and third year database courses. Students are given a textual

representation of a database query that they must perform and a set of input fields

(one per SQL clause) where they must write an appropriate query. This system was

implemented in 1998 as a standalone tutor, in 1999 as a Web-enabled tutor, and has

been re-implemented in WETAS.

Figure 18 (Section 7.2.2) shows a screen shot of WETAS running SQL-Tutor.

When WETAS is first run it loads the domain information for all supported domains,

166

including the domain model and the set of problems to present. The student first logs

on via a hard-coded HTML page that is specific to this domain. Once the student has

entered their username and submitted the form, WETAS creates (if this is the first

time the user has used this domain) or loads their student model and generates a

student record stating which domain this student is currently using. After logging on,

the user may select one of available databases on which they can practise queries;

each database is a separate subset as described in Section 7.2.2. The student may

change subsets at any time. WETAS stores a separate student model for each domain

that this student is studying, and the current subset (i.e. database) is stored in the

student model. The initial logon page is one of the few domain-specific parts of the

WETAS system: nearly all functions are generic and data-driven from the student

model, domain model and problem sets.

WETAS then selects a problem using the method described in Section 7.2.2 and

presents it to the student. They then enter their solution and submit it for evaluation.

The solution is first passed to an SQL-specific parser, which separates the input text

into words. It then post-parses any qualified names (i.e. TABLE. FI ELD) into LISP

lists (i.e. (TABLE " . " FI ELD)) so that the constraints may test the individual

parts of the name. The constraint evaluator compares the solution to the ideal solution

using the constraint set for this domain and subset. In the SQL-Tutor domain there are

no subset (i.e. database)-specific constraints as such, however around half of the

macros (such as “valid_table” and “attribute_of”) are database-specific. Based on the

results of this evaluation the feedback panel then conveys appropriate feedback, such

as a success message, a list of error messages (obtained directly from the violated

constraints) or the correct solution to the problem. The feedback types provided are

the same as the original SQL-Tutor (see Section 2.4.5).

WETAS provides two mechanisms for scaffolding information: the author may

provide either an HTML page or a LISP function that generates the information

dynamically. In SQL-Tutor the latter is used to provide multiple levels for

information about the database, from a description of each table to detailed help about

field data types.

We have successfully reimplemented SQL-Tutor in WETAS with no difficulties

arising. The only domain-specific parts of the system are the constraints, the problem

167

set, the login page, the scaffolding information and the parser. Of these, only the

constraints may be considered an “ intelligent” component. Thus, the author is freed to

concentrate on the most complex part, namely development of the domain model.

7.2.5 Example domain 2: Language Builder ITS (LBITS)

Language Builder is an existing paper-based teaching aid that is currently being

converted to a computer system. It teaches basic English language skills to elementary

and secondary school students by presenting them with a series of “puzzles” such as

crosswords, synonyms, rhyming words and plurals. For a subset of these puzzles, the

general form is that of a set of clues where the student must perform some action on

each clue to obtain the result, e.g. provide a word starting with “bl” that matches the

meaning of the clue or provide the plural of the clue word. Figure 26 shows LBITS in

action.

We created an ITS from Language Builder (LBITS) by adding a domain model so

that feedback could be expanded from a simple right/wrong answer to more detailed

information about what is wrong, such as that the meaning of their answer didn’ t

match the meaning of the clue or they have got the letters “ i” and “e” reversed. No

special parser was required for this domain, nor was any scaffolding information

Figure 26. WETAS running the Language Builder (LBITS) domain

168

needed. Since the problems were already provided in paper form, the authoring task

was limited to producing instantiations of the problems, encoding them in a suitable

form and writing the constraints that form the domain model. For the latter we used a

standard school spelling reference book (Clutterbuck 1990). Most of the constraints

came directly from this resource book. For example, Clutterbuck groups words by

letter groupings, such as those containing “able” . For each group we wrote a

constraint that tests that if the ideal solution contains this pattern of letters, so does the

student’s answer. Other constraints checked for commonly confused homonyms, such

as “ lose” and “ loose” . We then added a few general constraints, such as one for each

letter of the alphabet, to check the student had not missed any letters.

A problem consists of a list of clues, each requiring a word to be filled in. To

achieve this, we took advantage of the ability to nest structures, as described in

Section 7.2.2. For example, the problem specification for the exercise being solved in

Figure 26 is:

(1
 ; I S - (# answer c l ue def aul t - i nput)
 ((" CLUES"
 (" 1" " r oad" " l ong st r eet " " r o")
 (" 2" " advent ur e" " exci t i ng j our ney" " ")
 (" 3" " r est " " st op f or a whi l e" " ")
 (" 4" " st one" " smal l r ock" " ")
 (" 5" " nest " " home f or a bi r d" " ")
)
)
)

In this puzzle the user must enter a word that has the same meaning as the clue,

where the first two letters of each answer is the same as the last two letters of the

previous word. There is only one clause (“CLUES”), but this clause, instead of having

a single text answer (as is the case for SQL), consists of a set of clues, each with their

model answer and the default value for the solution. WETAS thus presents this

structure as a table of clues with one entry field per clue for the answer.

 Language Builder includes other puzzles, however these are graphical in

nature, and are currently beyond the scope of WETAS (see section 7.2.8). The puzzles

we have so far implemented are:

1. Scrambled Words. The student is presented with a set of letters and a clue.

They must use the clue to build a word from the letters;

169

2. Last two letters. For each clue, think of a word that has the same

meaning, where the first two letters of the word are the same as the LAST

two of the answer to the previous clue;

3. Plurals. Produce the plural of each clue word, e.g. “oxen” for “ox;

4. Rhyming word pairs. Given a clue phrase, produce a pair of rhyming

words that have the same meaning, e.g. for “beautiful energy” , an answer is

“ flower power” .

For the evaluation, we authored problems for the first two types of puzzle:

“Scrambled letters” , and “ last two letters” . For “scrambled words” the problems were

created by calculating the structural difficulty of each word using the algorithm

described in Section 6.4. The words were then sorted by difficulty and grouped into

sets of around five, each of which forms a single problem, giving a total of 200

problems. A clue was then written for each word. For “ last two letters” we used

generated sets of (up to six) words that met the “ last two letters” rule plus an

additional rule that no words be repeated. This yielded 22 problems.

LBITS makes use the hierarchical nature of constraints but not of the taxonomy,

since the “world” from which answers may be drawn is the same for all puzzles, i.e.

an English vocabulary suitable for the target audience. Examples of subset-dependant

constraints are: in “Rhyming word pairs” each pair must rhyme; in “scrambled words”

each word must use the letters provided; in “ last two letters” each word must begin

with the last two letters of the previous answer. The system consists of between 20

and 200 problems per puzzle and a total of 315 constraints.

7.2.6 Evaluation

To determine how WETAS supports ITS building we rebuilt SQL-Tutor and built the

Language Builder ITS. We tested LBITS in an elementary school classroom of nine

children aged 11 and 12 from Akaroa Area School, to evaluate whether or not it was

an effective learning tool. This trial was formative only: we were interested in what

the students attitude was towards the system and whether or not their performance

indicated that learning took place during the trial. To test the system subjectively we

requested that each student fill out a questionnaire at the conclusion of an initial one

170

hour evaluation session (see Appendix B). At the end of the evaluation we plotted the

constraint error rates for the group, in the hope of attaining the expected “power

curve” . Table 10 summarises the evaluation session. “Attempts” is the total number of

attempts made to solve a problem during the 50 minute session. “Problems

completed” is the number of problems the student answered correctly, irrespective of

whether or not they required help. “Attempts/problem” is the number of attempts for

each solved problem (i.e. excluding attempts for the last problem, which they

abandoned at the conclusion of the session). “Final score” lists the difficulty rating for

each student at the end of the session. The last row lists the averages of these figures,

with standard deviations in parentheses. The nine students solved an average of just

over seven problems each, (SD=4.2), taking an average of 3.2 attempts per problem.

Two students (4 and 6) performed much worse than the others, while students 1 and 3

seemed to find the problems the easiest. This corroborates with observations during

the session.

The students were very positive towards the LBITS tutor. Table 11 summarises

their responses to the survey. Note that the first columns do not add up to nine

because some participants ticked more than one box. Column one shows which

Log Attempts Problems
completed

Attempts/
Problem

Final score

1 32 11 2.6 860
2 60 12 4.7 860
3 19 6 2 920
4 1 1 1 600
5 26 6 3.7 620
6 3 0 N/A 440
7 37 7 4.4 680
8 44 12 3.6 920
9 35 9 3.3 680

Average 28.6 (17.8) 7.1 (4.2) 3.2 (1. 2) 731 (158)

Table 10. Summary data for the LBITS evaluation

Which Puzzle Difficulty Ease of use Enjoyable? Learned?
Scrambled: 9 Too easy: 2 Easy: 9 Fun: 8 A lot: 7
Last two: 2 About right: 8 Okay: 0 OK: 1 A little: 2

 Too hard: 2 Hard: 0 No: 0 None: 0

Table 11. LBITS survey results

171

problems the students attempted (“scrambled words” or “ last two letters”). The

second column indicates how difficult they found the problems (one student ticked all

three boxes, while another ticked both “ too easy” and “ two hard” , to indicate that

some problems were too simple and others too difficult). Columns three and four

indicate how easy they found the interface to use and whether they thought using the

system was fun. The last column indicates how much they thought they learned.

These results indicate that on the whole the students enjoyed using the system, felt

that the difficulty of the problems was about right and felt they had learned a

substantial amount. All of them found the interface easy to use. Note that it is not

possible to determine the relationship between performance (table 10) and subjective

evaluation (table 11) because there was no way to identify which participant was

which.

We plotted the probability of failing a given constraint as a function of the number

of problems attempted for which this constraint is relevant, in the same manner as

described in Section 6.8.5. Figure 27 shows the result obtained. It suggests that no

learning took place. However, a number of the constraints arguably do not represent

principles of the domain. Constraint 9000 checks that the student has filled in an

answer, yet their failure to do so is most likely because they do not know the answer,

rather than because they did not realise that one was necessary. It therefore does not

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 10

Problems

E
rr

o
r

ra
te

Figure 27. Error rate for raw constraint data

172

represent a knowledge structure that the student is trying to learn. Similarly,

constraints 201 to 226 test that each letter of the alphabet is present if it is required.

Again, these constraints will be failed if the student fails to fill in the answer, yet this

is probably because they failed to recognise the required word as a whole, rather than

because they failed to notice that this particular letter is required. In other words, the

situations in which a student failed to fill in a particular are probably not

pedagogically equivalent, which is a fundamental requirement of constraints. This is

particularly true for “scrambled words” because students are given the letters as part

of the clue. In contrast, if a student fails to recognise the required word from the

letters provided, it is possibly because they are weak on words of that form, which are

represented by the constraints that test for common letter patterns, such as “ough”.

We tested this by removing constraints 9000 and 201 to 226, and plotting the error

curve again. Figure 28 shows the result. We now see the familiar “power curve” , with

a good degree of fit (R2 = 0.83). This suggests that the students learned the domain

with respect to these constraints during the session. Note that, as described in section

6.8.5, the power curve degrades as the number of attempts increases, because of the

decrease in data volume. The graph in figure 28 is cut off at the point where the power

curve fit is maximal.

173

7.2.7 Conclusions

Constraint-Based Modelling (CBM) is an effective approach that simplifies the

building of domain and student models. We have developed a prototype authoring

system called WETAS for web-enabled tutors using constraint-based modelling,

which we intend to use to develop further tutors for continued research into CBM and

for release into classrooms. Of the two tutors built using WETAS so far, SQL-Tutor is

a mature ITS that has been used in the classroom for two years and will continue to do

so. Language Builder has been implemented in prototype form and evaluated on

elementary school students. The evaluation demonstrated that LBITS, a system that

was built in a very short time, is a usable, effective ITS. The reimplementation of

SQL-Tutor under WETAS was straightforward, and the conversion of Language

Builder from a paper-based instructional system to a full ITS has been similarly

efficient, with the only major effort being the construction of the domain model.

However, even this later task is made easier by the simple pattern matching language.

By building an effective authoring tool using the constraint representation introduced

in Chapter 4, we have satisfied Hypothesis 4.

y = 0.3349x-0.9598

R2 = 0.8331

0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

1 2 3 4 5 6

Problems

E
rr

o
r

ra
te

Figure 28. Error rate for revised constraint set

174

WETAS draws upon the strengths of CBM, plus research carried out to date in

practical implementations of CBM. It appears to be a promising tool for easier

development of new tutors and a useful step towards the large-scale deployment of

Intelligent Tutoring Systems.

7.2.8 Further work

The problem set used in any tutor supported by WETAS is currently static. We have

developed an algorithm for generating new problem sets automatically from the

domain model, however this is currently an offline process that requires human

intervention. We are investigating expanding this algorithm to be able to generate new

problems from the student model on the fly. Such an approach would allow the fit

between problem selection and student knowledge to be controlled to a very fine

degree. The major obstacle is the potential for the generated problems and their

solutions to be incorrect or semantically unsuitable because of errors or

incompleteness in the domain model. However, this approach is practical for simpler

domains, such as LBITS.

When authoring an ITS the most difficult task is creating the domain knowledge

base. Although the modular nature of constraints reduces the complexity of the model

and our constraint representation simplifies the mechanics of encoding the constraints,

nevertheless the complex task of determining what should be in the model and how to

represent it remains. We discuss two possible solutions in Section 7.3.

WETAS currently only supports text-based problem solving. However, this

limitation is only imposed because of the standardised user interface: as long as it is

possible for the requirements of the problem and solution to be represented using text,

the CBM approach is still valid (e.g. KERMIT, a CBM-based ITS for entity-

relationship modelling (Suraweera and Mitrovic 2001)). We would like to extend

WETAS to include tutors with graphical interfaces, possibly via plug-in interface

modules.

Finally, the student model and teaching strategy in WETAS are fixed. We would

like to be able to specify these as “plug-ins” such that different strategies might be

tried and, more importantly, that individual domains may have different strategies and

associated models.

175

7.2.9 Other domain paradigms

The domains described so far are all text-based, which is a limitation of the user

interface. The constraint representation has no such limitation: all that is needed is an

appropriate representation of the problem and solution such that constraints may be

written that can critique the student’s answer.

Consider an ITS for database design, such as KERMIT (Suraweera and Mitrovic

2001). The problem is set as a textual description and the answer entered as a

diagram, from which key information is used to populate structures that represent

each graphical object, such as entities and relationships. To be included in WETAS,

some form of graphical editing facility would need to be provided, which is beyond

the scope of what is discussed here. However, once the solution has been obtained it

is a simple matter to convert the resulting data structures into strings, where each

string represents some facet of the solution (e.g. “ENTITIES”) and the values consist

of an identifier followed by the various data fields from the original structure. The

constraints can then test against these field values by matching against some sort of

delineator, the identifier and the field value being tested. For example, consider the

following (abridged) constraint from KERMIT, which checks that all entity and

relationship names are unique:

I d = 10
Rel Cond = " t "
Sat Cond = " uni que(j oi n (SSE, SSR)) "
Feedback = " Check t he names of your ent i t i es and r el at i onshi ps.
 They must be uni que"

Suppose that entities are represented by a clause “ENTITIES”, and relationships

similarly in “RELATIONSHIPS”. The above constraint could now be encoded as in

Figure 29.

7.3 Prospective author ing tools

The authoring system described so far focuses on the delivery of intelligent tutoring,

and provides a substantial framework for authoring new domains. The other approach,

as already mentioned, is to provide micro tools for building the various components.

We now describe two possible additions to the authoring system.

176

7.3.1 Constraint learner

Although encoding an individual constraint is relatively straightforward, building an

entire domain model is difficult and time-consuming. There are two main problems

that can arise. First, the model may be missing one or more constraints and so the set

of solutions that it describes will include some that are incorrect. When adding new

problems, it is hard to evaluate the existing model to determine which necessary

constraints already exist and which need to be added. We might achieve this by trying

incorrect solutions and seeing if the constraint set detects the error. However, this is a

very time-consuming task. Also, since the set of incorrect solutions to a given

problem is large (if not infinite), it is highly unlikely that all potential (or even likely)

problems will be found.

Second, an existing constraint may be too specific and so a valid answer to a new

problem may be rejected. This too is difficult to detect. For example, the most

obvious French translation to an English sentence may be accepted but an equally

acceptable alternative rejected because a constraint has been too specific in detailing

the equivalent meaning in French.

The modularity of constraints makes it possible to add new constraints

individually provided that they aren’ t duplicated. Each constraint is a “ truth” in its

own right. This property suggests that it might be practical to learn constraints

(10
" Check t he names of your ent i t i es and r el at i onshi ps. They
 must be uni que"
(or - p
 (mat ch SS ENTI TI ES (?* ?name ?*))
 (mat ch SS RELATI ONSHI PS (?* ?name ?*))
)

(or - p
 (and (mat ch SS ENTI TI ES (?* ?name ?*))
 (not - p (mat ch SS ENTI TI ES (?* ?name ?* ?name ?*)))
 (not - p (mat ch SS RELATI ONSHI PS (?* ?name ?*)))
)
 (and (mat ch SS RELATI ONSHI PS (?* ?name ?*))
 (not - p (mat ch SS RELATI ONSHI PS (?* ?name ?* ?name ?*)))
 (not - p (mat ch SS ENTI TI ES (?* ?name ?*)))
)
" ENTI TI ES- RELATI ONSHI PS"
)

Figure 29. Constraint for checking uniqueness of relationship names

177

automatically. A machine learning tool for constraint acquisition might provide three

of the types of assistance that an authoring tool can offer: (Murray 1997)

1. Make knowledge/data entry more efficient;

2. Help the author articulate implicit knowledge, and;

3. May create new knowledge beyond what the expert might know or deduce.

We now describe an application of machine learning to constraint model acquisition.

Automating the Acquisition of Constraints

A constraint is a generalised form of a problem and solution. We could trivially build

a domain model that consists of a set of patterns that represent problems and their

(single) solutions, for example:

(" You have t r ansl at ed t he sent ence i ncor r ect l y . Pl ease t r y agai n. "
 (MATCH PROBLEM " My name i s Suky")
 (MATCH SOLUTI ON " Je m’ appel l e Suky")
)

Such a model is not very helpful because it cannot give the student any reasons for

mistakes. Furthermore, it will reject alternative answers. One solution is to generalise

each problem/solution pair such that it tests some underlying concept of the domain

that is relevant to this problem. For example, we could generalise the previous

example by ignoring all but the proper noun and replacing the value of the proper

noun with a test for nouns, giving:

(" You have used a noun whi ch i s not speci f i ed i n t he pr obl em. "
 (MATCH SS (?* (! noun ?n) ?*)
 (MATCH I S (?* ?n ?*)
)

Assuming that some of the underlying concepts such as “noun” already exist, we

could automate the process of generalising the “ trivial” constraint represented by the

problem and solution by systematically generalising combinations of terms. Each

potential constraint could then be compared against the existing set to ensure it is not

a duplicate of an existing constraint. Finally, all possible problem/solution pairs could

be generated which satisfy the constraint, with a human teacher evaluating them to

determine whether or not they are valid.

178

Unfortunately this approach is vastly inefficient. First, the potential search space

is immense. In the previous simple example, we would need to test a problem/solution

pair for every proper noun, which could easily be dozens, if not more. The more

generalised terms in the constraint, the larger the set of combinations is. Second, there

will be many duplicate candidate constraints generated using this method, which will

then need to be tested against the existing set and deleted. To overcome these

problems, we look to the field of machine learning.

Learning by Asking Questions

MARVIN (Sammut and Banerji 1986) is a machine learning system that learns new

concepts by generalising examples using existing knowledge. A teacher provides

MARVIN with an example of each concept to be learned. MARVIN then uses its

existing knowledge to generalise the example and produce a new trial concept. It then

tests the trial by constructing an example, which is presented to the teacher. If the

example is negative, the concept is incorrect and is either specialised or discarded.

Conversely if the example was correct, the trial concept is still consistent and is

subjected to further generalisation. Once this process has been exhausted the new

concept is complete. It is then named (by the teacher) and added to MARVIN’s long-

term memory. Other concepts may now be built which include this latest one.

This approach is similar to that described in the previous section. However,

MARVIN uses some heuristics to guide the search for the concept. First, MARVIN is

able to specialise as well as generalise. If only generalisation were possible, MARVIN

would only be able to make new trials involving a single extra concept, since it

generalises one aspect at a time. However, there may be cases where a term in the

example can be generalised provided that a conjunction of one or more already known

concepts is true. This allows it to make generalisations that would otherwise be

impossible. Specialisation is performed by looking for further concepts that match at

least one of the original problem predicates that was discarded in the generalisation

process. This heuristic efficiently searches the set of possible conjunctions of concepts

to find those that are most likely to yield a consistent new one.

The second heuristic caters for the problem of enumerating and testing all possible

instances of the new concept. MARVIN creates just a single critical example, which

179

has a high likelihood of failing if the concept is inconsistent. To do so, it creates the

list of all elaborations of the initial example, i.e. the list of all known predicates which

are true for the example. Next, it does the same for the trial concept. The critical

example is then built, which is a valid example of the trial concept, but which does

not satisfy any predicates for the initial example which are not valid for the current

trial concept, i.e. it does not satisfy any conditions of the set

(All_Elaborations(Example) – All_elaborations(Trial))

Any such example has a high likelihood of being incorrect if the trial concept is

inconsistent. For example, suppose we are trying to learn the concept “stackable” ,

where stackable objects are blocks. We have a simple domain theory, and present a

single example of a stackable object as follows:

Domai n Theor y:
 Any_shape(X) : - r ect angl e(X) .
 Any_shape(X) : - squar e(X) .
 Any_shape(X) : - t r i angl e(X) .

 Bl ock(X) : - r ect angl e(X) .
 Bl ock(X) : - squar e(X) .

St ackabl e exampl e: r ect angl e(A) .

MARVIN first elaborates the example, by building a list of all matching

predicates, giving:

All_elaborations(Example) = { rectangle(A), block(A), any_shape(A).

The most general possible trial concept is any_shape(A). This is now elaborated,

however no other predicates apply, so the elaboration set is just:

All_elaborations(Trial) = { any_shape(A)} .

Finally, MARVIN creates a crucial example, i.e. an example of the new trial that

is not a member of { rectangle(A), block(A)} . The only possible example is

180

“ triangle(A)” . MARVIN presents this example to the teacher, who rejects it.

MARVIN now repeats the exercise for the trial concept “block(A)” , and presents

“square(A)” . This is accepted, so the concept “stackable(X) :- block(X)” has been

learned.

In MARVIN this algorithm is performed recursively for each new example given

to it, and so each example generates a single new concept. In the case of learning

constraints, each example may embody multiple constraints. The task therefore is to

construct as many valid concepts as possible from each example. Some parts of the

example will be superfluous to each concept to be learned, while others will be

critical. Further, whereas MARVIN can add the newly learned concept to the domain

theory and use it to generate others, a constraint is the end of the line: constraint-based

models are non-hierarchical. Finally, MARVIN uses first order predicate logic to

define concepts, whereas we use pattern matches to define constraints. We therefore

need a modified version of the MARVIN algorithm.

Learning constraints

We use a variation of the MARVIN algorithm to learn as many constraints as possible

for each example by generalising combinations of terms in the problem text and

finding the corresponding pattern for the solution text. A heuristic is used to try to

limit the number of combinations: a combination is only valid if the terms are all

adjacent. For example, in the problem text “ I am called Suky” , “am called” is a valid

test combination, while “ I called” is not. Each combination is then subjected to

generalisation.

Unlike a concept in MARVIN, which is represented by (potentially) a single

condition, a constraint is always represented by a conjunction of the relevance and

satisfaction condition, i.e. a correct problem/solution example that is relevant to this

constraint will satisfy both conditions. Both the relevance and satisfaction conditions

can refer to either the problem or the solution. Finally, a constraint can represent a

very loose concept, which is suitable for pedagogical purposes but of limited value in

checking the correctness of the answer. Other constraints will be needed that are more

specific versions of these weaker ones. In this discussion, we limit the constraints we

are trying to learn to those where:

181

1. Each constraint is the most specific test required, and;

2. The relevance condition refers to the problem specification only, and the

satisfaction condition refers to just the solution.

Both of these restrictions affect the heuristics used to guide the algorithm. By

limiting the generated constraints to the most specific only, we are able to be concise

in what we want from the teacher: given a particular example, is it likely that the

solution fragment shown is both required and correct. The second restriction guides

how we generalise the examples. For any constraint, we want the most general

relevance condition possible so that the constraint is maximally applicable. Therefore

if a trial constraint turns out to be too general, we begin by trying to specialise the

satisfaction condition. Only if that fails do we resort to specialising the relevance

condition.

We begin by selecting the combination of words in the problem text that we wish

to try to generalise. At this stage we don’ t know which corresponding terms are

relevant in the solution, so we begin by finding this out from the teacher. Next, we

begin generalising. As with MARVIN, we start by listing the set of all elaborations of

the problem and solution. Next, we choose the first elaboration for each of the

problem and solution text, and use them to create a trial concept. Since there may be

many, we adopt a generality bias and pick the concept with the largest number of

members. We then produce a critical example and present it to the teacher. If it is not

correct, we refine the trial concept until we either exhaust the possibilities or the

concept is consistent, in which case we build a constraint from it. We then move on to

the next combination of terms, and try to build another constraint. At all times we first

check whether the target constraint already exists before presenting an example to the

teacher.

Example

Suppose we are trying to build a tutor for teaching French to English-speaking

students. The concepts that we have already encoded are:

Pr onoun_Engl i sh(v1) : = (I , you, he, she, we, t hey) (v1)

Pr onoun_Fr ench(v1) : = (Je, t u, i l , el l e, nous, vous, i l s ,
 el l es) (v1)

182

Fi r st _Per son_Engl i sh(v1) : = (I , my) (v1)

Fi r st _Per son_Fr ench(v1) : = (j e, ma, mon) (v1)

Tr ansl at i on(v1, v2) : = ((Je, I) , (t u, you) , (i l , t hey) , (el l e,
t hey) (vous, you) , (nous, we) , (vous, you) , (ma, my) , (mon, my) , (not r e,
our) , (i l s , t hey) …) (v1, v2)

At this stage we have no constraints in the system. We now present the following

problem and solution:

" I am cal l ed Suky" " Je m’ appel l e Suky"

We begin by taking the first problem term, “ I” . We ask the teacher which of the

solution terms relates to “ I” , and are told “Je” . We now attempt to generalise. We

begin by building the set of all possible elaborations for “ I” and “Je” . In MARVIN’s

terminology, this set appears as follows:

I (X) (1) Je(Y) (2)

Pr onoun_Engl i sh(X) (3) Pr onoun_Fr ench(Y) (4)
Fi r st _Per son_Engl i sh(X) (5) Fi r st _Per son_Fr ench(Y) (6)
Tr ansl at i on(Y, X) (7)

The most general substitutions are (3) and (4), and so we pick them. Note that (7)

is directional, i.e. Translation (Y, X) means that Y is a translation of X. Therefore,

this represents all translations of “ I” , not all possible translations of a term X, so it has

only one member, “Y=je” . The trial concept is now:

Pr onoun_Engl i sh(X)
Pr onoun_Fr ench(Y)

A critical example is now built, by finding an example that is a member of the trial

concept, but does not satisfy ANY of the other conditions from the original, fully

elaborated set. In other words, it must be a pronoun, but not first person, the French

word must not be a translation of the English. We then present it to the teacher, for

example:

“ you” “ I l ”

This is incorrect: “ il” means “he” , which is not a valid example of the concept, so

the trial concept is too general. We now attempt to correct the generalisation. As

mentioned earlier, we first try to make the satisfaction condition (i.e. the conditions

183

for the solution) more specific. As for MARVIN, we select another elaboration that

was lost in the first generalisation. The most general we can choose is

First_Person_French, giving:

Pr onoun_Engl i sh(X)
Pr onoun_Fr ench(Y)
Fi r st _Per son_Fr ench(Y)

We again construct a critical example. Again the trial is too general, so we add a

further condition, Translation(Y,X). However, we now find that we cannot construct a

critical example: There is no English pronoun that is not in the first person, for which

there exists a French translation which is a pronoun in the first person. We are

therefore forced to backtrack and drop the condition First_Person_French(Y). The

process continues by trying the next most general condition, i.e. Translation(Y, X).

The trial is now:

Pr onoun_Engl i sh(X)
Pr onoun_Fr ench(Y)
Tr ansl at i on(Y, X)

A new critical example is made, i.e. one which satisfies the trial, but does not

contain “ I” or “Je” , for example:

“ you” “ t u”

This is correct. The teacher now helps to build a new constraint from the trial

concept, by adding an appropriate message, and the system translates the new rule

into pattern matches and tests, for example:

(“ You ar e mi ssi ng a r equi r ed pr onoun. ”
(MATCH PROBLEM (?* (^pr onoun_engl i sh ?p1) ?*)

(AND
 (MATCH SOLUTI ON (?* (^pr onoun_f r ench ?p2) ?*))
 (TEST SOLUTI ON (^ t r ansl at i on (?p2 ?p1))
)
)

Correcting Overspecialisation

A problem with the generalise-and-test method as described is that it only tests that a

constraint is not too general. In MARVIN’s case, overspecialisation is unfortunate but

184

not catastrophic, because we can simply add an alternative concept later, such that

satisfying any description of concept C implies that the new example is an instance of

the concept. In our case, this is true of the relevance condition. However, if the

satisfaction condition is too specific, the constraint will reject valid solutions.

To overcome this problem, each new training example is first tested against the

current set of constraints. If a constraint is violated, it must be reviewed and corrected

or rejected. From the above example, suppose we wish to allow any valid French

phrase that represents the problem statement, including the following. This example

will violate the previously learned constraint:

“ I am cal l ed Suky” “ Ma nom est Suky”

Suppose that we wish the above to be accepted. The previously constructed constraint

will fail for this input, so must be refined. To do this, we first select the relevant part

of the problem, and ask the teacher which parts of the solution are relevant, giving:

 “ I ” “ Ma”

Next, we build the elaboration list for this example:

I (X) (1) Ma(Y) (2)
Pr onoun_Engl i sh(X) (3) Fi r st _Per son_Fr ench(Y) (4)
Fi r st _Per son_Engl i sh(X) (5)

We now build a rule as before. We find that there is no correct solution that can be

built using (3), so we are forced to backtrack and consider the next most general

clause, First_Person_English(X). This finally yields a new trial of:

Fi r st _Per son_Engl i sh(X)
Fi r st _Per son_Fr ench(Y)

A crucial example is now constructed. To ensure that we do not accidentally pick

an example that satisfied the original constraint (and hence this one might be similarly

flawed), we add the extra restriction that the example must not satisfy any satisfaction

conditions of the original constraint that are not conditions of the new one. In this

example, the term Y must not be a pronoun and must not be a translation of X. The

example created is:

185

 " I " " Mon"

This is accepted, so the constraint is complete. A new constraint is now built that

replaces the old:

(" The sent ence i s i n t he f i r s t per son. Pl ease check t hat your s i s
t oo. "

(MATCH I S (?* (^ f i r s t _per son_e ?p1) ?*)
 (MATCH SS (?* (^ f i r s t _per son_f ?p2) ?*))
)

Conclusions

Using a machine learning algorithm to learn domain constraints such as that described

might enables teachers to build constraint-based models by example. It would remove

the burden of being able to program constraints and provide a consistent means of

reviewing the domain model and making refinements.

We have described how the MARVIN algorithm might be adapted to learn

constraints and given a very simple example of how it might work. There are still

many questions that must be answered, for example:

� How easy is it for the teacher to comprehend what they are trying to

achieve? The example given was for a semantic constraint involving a

single term. What about multi-term constraints and syntactic constraints?

Can a teacher be reasonably expected to understand and be competent at

such a task?

� Is the "build-by-example" approach appropriate? Would it be easier to

learn how to write constraints and do that instead?

� What happens when the underlying concept information is incomplete?

Does the system simply produce a greater number of more specialised

constraints or does it fail altogether?

� Is the method of correcting overspecialisation sufficient or could it cause

the system to "flip-flop" between two or more constraint definitions, none

of which are satisfied for all possible solutions to the problem?

186

� It might be more efficient to allow the teacher to enter a list of alternative

questions and answers, all with the same meaning, for which any pairing is

correct. Could the algorithm be modified to deal with multiple examples at

the same time?

� Is it better to train the system on a problem-by problem basis to accept a

desired set of problems, or to train it concept-by-concept?

� We have used language translation as an example. Does the approach

make any sense in other domain types?

These questions need to be answered before the approach can be considered

useful. However, it appears possible for at least some domains.

7.3.2 Constraint editor

The constraint representation introduced in Chapter 4 is a simple language that

contains only six constructs: the MATCH function for general pattern matching, the

TEST function to test an individual variable value, the TEST_SYMBOL function for

performing general pattern matching within a single symbol (rather than a clause) and

the logical connectives “AND”, “OR” and “NOT”. Each of the three specialised

functions has a fixed set of arguments, and thus a fixed syntax. The AND, OR and

NOT connectives have the same syntax as their LISP counterparts.

The match pattern argument to the MATCH and TEST_SYMBOL functions (and,

to a lesser degree, the TEST function) also has a restricted syntax. A match pattern is

a list of match elements, where each may be a literal, a list of literals, a

comparison/assignment of one variable to another and a macro call. Similarly, macros

have a single fixed syntax, where the “body” of the macro follows the same syntax as

a constraint condition.

Because the language is so restricted, it is highly deterministic. It would therefore

be feasible to construct a language-sensitive editor to aid the writing of constraints.

This could be similar to the interface used in the LISP tutor, in that it could provide a

template for a new constraint, which is expanded by the user. As the author proceeds,

new templates are added, for example:

<CONSTRAI NT>

187

expands to

<NUM>
<FEEDBACK>
<REL CONDI TI ON>
<SAT CONDI TI ON>
<CLAUSE>

If the user types MATCH in the <REL CONDI TI ON> slot, it is expanded to

(MATCH <SOLUTI ON> <CLAUSE> <PATTERN>)

Scaffolding information could also be provided. For example, the names of all

macros could be listed such that these can be “pasted” into the constraint at any time,

and doing so would result in a template being provided that is specific to the chosen

macro. For example, selecting ^at t r i but e- name in SQL-Tutor would yield:

(^name (<??n> <??a> <??t >))

Ideally the constraint editor could itself be an ITS, so that it also provided

adaptive help when an author was making errors. In any case, it could test authored

constraints and macros for syntactic correctness.

188

8 Conclusions

Constraint-Based Modelling is a promising new method for representing domain and

student models in Intelligent Tutoring Systems. Its efficacy has been demonstrated in

the implementation, evaluation and, in some cases, deployment of several CBM tutors

including SQL-Tutor, CAPIT and KERMIT. However, CBM tutors have lacked some

of the features of the state of the art ITS method, Cognitive tutors. In particular, they

are unable give the student specific, tailored advice on how to proceed when she has

made an error because they lack a problem solver. Also, building CBM tutors (like all

ITS) is hard.

We have explored ways of making CBM tutors more powerful and easier to

implement. In doing so we have made several contributions to the field of ITS. Our

contributions are now summarised.

8.1 New representation

Ohlsson left open the problems of implementing CBM tutors. In particular, he does

not specify how to represent the domain knowledge beyond the basic constraint

schematic of { relevance condition, satisfaction condition and feedback} . We have

developed a representation for the relevance and satisfaction conditions that is purely

pattern matching and have shown its effectiveness in encoding domain models for two

domains: SQL and English Language. Further, we have discussed how it might be

applied to other domain types such as procedural and graphical domains. The

language is complete in that all aspects of the domain model should be able to be

encoded using it without the need for external calls. For example, tests for set

membership (e.g. checking whether a word in English has been spelled correctly) can

189

be encoded using macros in the same language. Functions such as arithmetic can be

similarly encoded by enumerating the inputs and outputs.

The use of a pattern matching language has several advantages. First, the language

is quite simple, consisting only of the three functions MATCH, TEST and

TEST_SYMBOL, the logical connectives AND, OR and NOT, and the syntax for

defining macros (macro name, arguments, expression). This makes learning the

language fairly straightforward and simplifies the authoring of constraints. Second,

pattern matching is fast. During evaluation, SQL-Tutor had no problems coping with

the demands of multiple users (up to fifteen simultaneously), despite running on a

relatively modest server (300MHz PC with 64Mb of memory, running Microsoft

Windows NT 4.0). Most student answers are evaluated in under a second. Further

improvements could be obtained by compiling the constraints into a dedicated

structure such as a RETE network (Forgy 1982). Finally, the new representation is

designed to be transparent to the system such that it may reason about the constraints

in other ways than simply evaluating them.

8.2 Solution generation

We identified that a shortcoming of our existing CBM tutors was the inability to solve

problems, which means that feedback, in terms of “what to do next?” is limited to

showing part or all of an ideal solution that may not coincide with the student’s

attempts. At worst, partial feedback is inconsistent with the student’s partially correct

answer, and leads to abandonment of the problem.

We designed and implemented an algorithm for generating a correct solution

using the constraints. For a null state, this equates to a problem solver. For a student’s

partial (or incorrect) solution, this algorithm generates a correct solution that is very

similar to their attempt. In particular, it employs the same problem solving strategy as

the student, thus coping with variations between the student’s chosen strategy and the

author’s. We demonstrated in a complex domain (SQL) that this algorithm was able to

correct all erroneous solutions from an evaluation study.

A possible drawback to using constraints in this manner is that it imposes the onus

of completeness and correctness: if the constraint set is not sufficiently complete and

190

correct, the problem solver may produce erroneous solutions or fail to terminate. We

found that for SQL a considerable amount of work was necessary to attain sufficient

correctness/completeness to perform problem solving. However, many of the

problems were picked up while using the algorithm to simply build a solution from

scratch. Once this was achieved, we tested the algorithm on a small set of student

logs. Having corrected the problems encountered with this first set, the number of

subsequent corrections/additions necessary to the constraint set to deal with

subsequent incorrect solutions was very much smaller. Further, having attained the

necessary level of completeness/correctness to deal with a subset of the evaluation

students, very few changes were needed to cope with the rest of the students, or

indeed a different evaluation population. This suggests that it is feasible that after

observing the system for some time and making necessary corrections, the constraints

would be sufficient to render the probability of failure negligible.

Finally, while the task of improving the constraint set may seem onerous, a

positive side effect is that a more complete constraint set catches more problems and

so the tutoring performance of the system might be expected to increase. The reason

there were so many additional constraints needed to perform problem solving was

chiefly that exhaustively testing the constraint set is a prohibitively large job and had

thus never been performed. From our evaluation it appears that in attaining a level of

constraint completeness that allowed problem solving, we found and eradicated a

large proportion of the omissions in the constraint set. This was demonstrated in the

reduction in the number of problems misdiagnosed, from 4.6% to less than 1%.

Implementing the problem solver has therefore provided us with a valuable method of

testing the completeness of the constraint set.

8.3 Problem generation

A problem affecting all ITS with static problem sets is that they can run out of

exercises to present to the student. In CBM tutors the problem is ensuring that the

entire curriculum (i.e. all of the constraint set) is covered by problems. Further,

problems need to be set over a range of difficulties for all possible combinations of

constraints, such that a suitable problem can always be found that fits the student

191

model. In a domain with a large number of constraints such as SQL this is a huge

undertaking.

We have overcome this problem by implementing an algorithm that automatically

builds problems from the constraint set. This is an extension of the problem-solving

algorithm. Starting with a partial solution that is relevant to a particular constraint (or

set of constraints), it applies the problem-solving algorithm and generates a novel

SQL statement. An author then produces a natural language problem statement for

this new “ ideal solution” , and the problem is now suitable for presentation to the

student. We showed how this algorithm was used to generate 200 problems in the

SQL domain in around three hours, a much shorter time than the many days that it

took to manually author the 82 problems previously in SQL-Tutor.

There are many different ways to select the next problem to present based on the

student model. The method originally used in SQL-Tutor was to select a problem for

which the most-often violated constraint was relevant. However, constraints are

extremely specific, and there was a high likelihood that no problem would be suitable.

We proposed a method for automatically inducing a more high-level student model by

identifying groups of constraints of similar meaning, which were either violated or not

yet learned. This increases the single violated constraint to a pool of similar

constraints, and thus increases the likelihood that a suitable problem can be found.

An alternative strategy is to assess the difficulty of each problem according to

how it fits the student model as a whole. We developed an algorithm for doing this,

which calculates the overall relative difficulty of each problem as the sum of

structural (how many concepts are required) and conceptual (what is the student’s

understanding of each of these concepts) difficulties. We evaluated a version of SQL-

Tutor where we used the generated problem set together with this new method of

problem selection, and determined that—based on the rate at which constraint errors

are reduced—students learn faster using this system. However, we did not determine

whether the improvement was due to the problem selection method or because there

were more problems to choose from.

192

8.4 Author ing

Building ITS is hard. Previous CBM tutors built by our group were created from

scratch. In SQL-Tutor the constraints were implemented in LISP and supported by a

substantial body of domain-dependent functions. The tutor engine and domain model

were heavily intertwined. CAPIT and KERMIT were written in Visual Basic.

KERMIT similarly used custom functions to parse solutions and evaluate constraints,

while CAPIT used a generic pattern matcher. However, the problems and solutions in

CAPIT are of a very simple structure.

The new constraint representation makes the division between the tutor and the

domain knowledge more clearly defined, and arguably reduces the complexity of code

(in the pattern matching language) that must be written to specify the constraints and

their supporting functions (macros). We took advantage of this to turn SQL-Tutor into

an authoring tool, WETAS, for CBM tutors in text-based domains. We generalised

the code of the web version of SQL-Tutor by separating out the other domain-

dependent parts and making the interface functions data-driven. We demonstrated the

flexibility of WETAS by implementing two very different domains: SQL-Tutor and

LBITS (in the domain of the English Language). We found that WETAS was suitable

for implementing SQL-Tutor and enabled us to rapidly deploy the new LBITS ITS for

English. We evaluated LBITS on an elementary school class, who found it easy to use

and effective. In future, we would like to include the problem and solution generation

algorithms in WETAS.

Finally, we have made initial investigations into induction of Constraint-Based

Models using a machine learning algorithm based on MARVIN. While this idea is at

a very early stage, it does show some promise and may develop into a useful

authoring tool.

8.5 Concluding remarks

The ITS field is maturing, and some methods have achieved a high level of success,

such as Cognitive Tutors. These have been shown to be effective for a large number

of domains, and have a high level of cognitive fidelity. However, they are very

difficult to build and may not be suitable for some domains such as open-ended tasks.

193

Constraint-based modelling is an alternative method that, like Cognitive Tutors, is

also built upon a plausible cognitive foundation. CBM is arguably easier to develop

and appears more suitable to open-ended domains. However, current attempts have

been limited by their inability to solve problems. Regardless of the modelling method

used, building tutors is a large task.

Our aim in this research has been to reduce the effort required to build intelligent

tutors without sacrificing effectiveness. We believed CBM was a viable complement

to Cognitive tutors, however it had shortcomings that needed to be addressed. We

proposed the following four hypotheses:

� Hypothesis 1: It is possible to build a constraint-based domain model that

contains sufficient information to solve problems and correct student

solutions, by adopting a constraint representation that makes all of the

logic in each constraint transparent to the system;

� Hypothesis 2: Using the representation defined in hypothesis 1, it is

possible to develop an algorithm for solving problems and correcting

student answers, which does not need further domain information to

achieve this;

� Hypothesis 3: CBM can also be used to generate new problems that fit the

student’s current beliefs, and this is superior to selecting one from a pre-

defined list;

� Hypothesis 4: Because the new representation is domain-independent, it

may form the basis of an ITS authoring tool that supports the development

of new CBM tutors.

To a student the only major difference between current Cognitive and constraint-

based tutors is that the former can solve problems (and thus show the student what the

next step is) while the latter cannot. Hypotheses 1 and 2 aimed to show that CBM can

indeed be used for problem solving. We produced a representation and solution

generation algorithm that worked satisfactorily for two domains. We therefore

showed that hypotheses 1 and 2 are true for at least some domains. In doing so, we

194

have raised the external functionality of a constraint-based tutor to be equal to that of

Cognitive tutors.

Our other aim was to make tutors easier to build. Hypotheses 3 and 4 identify two

means of doing so: by facilitating the authoring of new problems, and by automating

as much of the tutor-building process as possible. We demonstrated that it is possible

to use the new solution generation algorithm to build novel structures in the domain

being taught, such as novel queries in the case of SQL. The WETAS authoring system

automates most of the other functions, the major exception being authoring the

domain model. The new representation simplifies this latter task, and we are

considering other tools for this purpose too, such as a constraint editor and constraint

induction. We believe we have achieved our aim of helping make CBM tutors easier

to build, making them a viable alternative to Cognitive tutors.

Intelligent tutoring systems have come a long way since the 1970s. They are now

being used in real classroom settings and are producing significant gains in student

performance. The next step is widespread deployment, but it has been held back by

the huge effort required to build effective systems. We have addressed this by

enhancing constraint-based modelling, a simple but effective method, so that it may

provide all the domain and student modelling requirements of an ITS. We have

developed algorithms and tools that make CBM tutors much easier to build, making

CBM a practical tool for ITS deployment. With the number of students ever

increasing and the internet opening up the prospective audience of education software,

ITS is poised to have an enormous positive impact on education in the near future.

195

196

Appendix A. SQL-Tutor evaluation tests

Pretest

Username

Please note down this username. You will be able to access SQL-Tutor only by identifying yourself by
this username.

Please answer the following questions, based on the MOVIES database:

1. We want to retrieve titles of all comedies and dramas. Is the following SQL statement correct?

select TITLE
from MOVIE
where TYPE = 'comedy' or 'drama';

Yes No

2. Show how many dramas were made in each of the following years: 1981, 1982 and 1983.

Which of the following statements will achieve that?

Query Yes/No

select COUNT(*)
from MOVIE
where YEAR in (1981, 1982, 1983) and TYPE=’drama’

select COUNT(*)
from MOVIE
where TYPE='drama'
group by YEAR
having YEAR=1983 or YEAR=1982 or YEAR=1981;

select COUNT(*)
from MOVIE
where YEAR>=1981 and YEAR<=1983;

197

3. What is the type of movie that had the highest number of movies made in 1980? Select ALL
correct answers.

Query Yes/No

select TYPE
from MOVIE
where YEAR=1980
group by TYPE
having MAX(COUNT(*));

select TYPE
from MOVIE
where YEAR=1980
group by TYPE
having COUNT(*) >= all (select COUNT(*)

from MOVIE
where YEAR=1980

 group by TYPE);

select TYPE
from MOVIE
where YEAR=1980 and

COUNT(*) = (select MAX(COUNT(*))
from MOVIE
where YEAR=1980)

group by TYPE;

select TYPE, MAX(COUNT(*))
from MOVIE
where YEAR=1980
group by TYPE;

select TYPE
from MOVIE
where YEAR=1980 and MNUMBER=MAX(COUNT(*));

198

Post-test

Please circle one option:

1. I have not used SQL-Tutor

2. I have used this username while working with SQL-Tutor:

3. I have used SQL-Tutor, but I do not remember my username.

Please answer the following questions, based on the MOVIES database:

4. We need to find the titles of all movies other than comedies. Will the following SQL
statement achieve that?

SELECT TITLE
FROM MOVIE
WHERE TYPE = NOT('comedy')

Yes No

5. We need to find the total number of awards won by comedies in 1983. Which of the following

statements will achieve that?

Query Yes/No

select SUM(AAWON)
from MOVIE
group by TYPE
having TYPE IN ('comedy') and YEAR=1983;

select SUM(AAWON)
from MOVIE
where TYPE='comedy' and YEAR=1983;

select SUM(AAWON)
from MOVIE
where TYPE='comedy' and YEAR=1983
group by MNUMBER;

199

6. Now, we need to find the title of the movie that has won the most awards. Select ALL correct
answers.

Query Yes/No

select TITLE
from MOVIE
where AAWON = MAX(AAWON);

select TITLE
from MOVIE
group by MNUMBER
having AAWON = MAX(AAWON);

select TITLE
from MOVIE
where AAWON = (select MAX(AAWON) from MOVIE);

select TITLE
from MOVIE
group by TITLE
having AAWON = (select MAX(AAWON) from MOVIE)

select TITLE
from MOVIE
where AAWON>=ALL (select AAWON

 from MOVIE
 where AAWON IS NOT NULL);

200

Appendix B. Language Builder survey questions

Which puzzle(s) did you play?

 Scrambled Words

 Last Two Letters

How were the questions?

 Too easy

 About right

 Too hard

How easy was the software to use

 Easy to use

 Okay

 Hard to use

Did you enjoy using Language Builder?

 Yes, it was fun

 It was OK

 No

201

How much do you think you learned

 A lot

 A little bit

 Nothing

202

Appendix C. Publications

In the course of this research we produced the following publications:

1. Martin, B. (1999). Constraint-Based Modelling: Representing Student
Knowledge. New Zealand Journal of Computing 7(2), pp. 30-38.

2. Martin, B. (2000). Learning Constraints by Asking Questions. In Beck, J.
(Ed.), Proceedings of the ITS'2000 workshop on applying Machine Learning
to ITS Design/Construction, Montreal, pp. 25-30.

3. Martin, B. and Mitrovic, A. (2000a). Tailoring Feedback by Correcting
Student Answers. In Gauthier, G., Frasson, C. and VanLehn, K. (Eds.),
Proceedings of the Fifth International Conference on Intelligent Tutoring
Systems, Montreal, Springer, pp. 383-392.

4. Martin, B. and Mitrovic, A. (2000b). Induction of Higher-Order Knowledge in
Constraint-Based Models. In Beck, J. (Ed.), Proceedings of the ITS'2000
workshop on applying Machine Learning to ITS Design/Construction,
Montreal, pp. 31-36.

5. Martin, B. and Mitrovic, A. (2001a). Increasing Help Adaptability in
Constraint-Based Modelling. In, Proceedings of the AIED2001 Workshop on
Help Provision and Help Seeking, San Antonio, Texas.

6. Martin, B. and Mitrovic, A. (2001b). Easing the ITS Bottleneck with
Constraint-Based Modelling. New Zealand Journal of Computing 8(3), pp. 38-
47.

7. Martin, B. and Mitrovic, A. (2002a). Automatic Problem Generation in
Constraint-Based Tutors. In, Proceedings of the Sixth International
Conference on Intelligent Tutoring Systems, Biarritz, Springer, pp. in press.

8. Martin, B. and Mitrovic, A. (2002b). WETAS: A Web-Based Authoring
System for Constraint-Based ITS. In De Bra, P. and Brusilovsky, P. L. (Eds.),
Proceedings of the Second International Conference on Adaptive Hypermedia
and Adaptive Web-Based Systems, Malaga, Springer, pp. in press.

203

9. Mitrovic, A. and Martin, B. (2000). Evaluating Effectiveness of Feedback in
SQL-Tutor. In Kinshuk, Jesshope, C. and Okamoto, T. (Eds.), Proceedings of
the International Workshop for Advanced Learning Technologies IWALT2000,
Palmerston North, IEEE Computer Society, pp. 143-144.

10. Mitrovic, A., Mayo, M., Suraweera, P. and Martin, B. (2001). Constraint-
Based Tutors: A Success Story. In Monostori, L. and Vancza, J. (Eds.),
Proceedings of the Fourteenth International Conference on Industrial &
Engineering Applications of Artificial Intelligence and Expert Systems,
Budapest, Hungary, Springer, pp. 931-940.

11. Mitrovic, A., Martin, B. and Mayo, M. (2002). Using evaluation to shape ITS
design: Results and experiences with SQL-Tutor. International Journal of
User Modelling and User Adapted Interaction 12, pp. in press.

Regulation 8(c) of the Degree of Doctor of Philosophy section in the 2002 University

of Canterbury Calendar states that “where the published work has more than one

author, it shall be accompanied by a statement signed by the candidate identifying

the candidate’s own contribution.” My contributions to these papers were (numbers

correspond to list numbers above):

1. The manual hierarchy was created as paid research for Dr Antonija Mitrovic.

The idea was therefore hers, but I carried out the research. Dr Mitrovic

reviewed the publication;

2. This was entirely my own research and publication;

3. This was my own research, but both the research and the publication draw

upon earlier work on SQL-Tutor by Dr Mitrovic. She also reviewed the

publication;

4. This research was drew upon on that carried for Dr Mitrovic in (1). I carried

out the research, with Dr Mitrovic providing some ideas. She also reviewed

the publication;

5. This was my own research, but both the research and the publication draw

upon earlier work on SQL-Tutor by Dr Mitrovic. She also reviewed the

publication;

204

6. This was my own research, but both the research and the publication draw

upon earlier work on SQL-Tutor by Dr Mitrovic. She also reviewed the

publication;

7. This was my own research, but both the research and the publication draw

upon earlier work on SQL-Tutor by Dr Mitrovic. She also reviewed the

publication;

8. This was my own research, but both the research and the publication draw

upon earlier work on SQL-Tutor by Dr Mitrovic. She also reviewed the

publication. Jane MacKenzie provided material for the Language Builder

domain model;

9. I carried out the analysis of evaluation data as paid research for Dr Mitrovic. I

also helped write the paper;

10. I reviewed this paper, and provided some input regarding my research;

11. I was a major co-author of this paper, and performed much of the data

analysis.

Signed: Date:

205

206

Appendix D. Example constraints for Section 5.5

(650
 " You do not have al l t he r equi r ed at t r i but es i n t he SELECT cl ause. "

 (and
 (mat ch I S FROM (?* (^ t abl e- i n- db ?t 1) ?*))
 (or - p
 (mat ch I S SELECT (?* (^at t r i but e- of (?n1 ?a1 ?t 1))))
 (mat ch I S SELECT ((^at t r i but e- of (?n1 ?a1 ?t 1)) ?*))
 (and (mat ch I S SELECT (?* ?bef or e (^at t r i but e- of (?n1 ?a1 ?t 1)) ?af t er ?*))
 (not - p (and (t est I S (" (" ?bef or e)) (t est I S (") " ?af t er))))
)
)
)

 (or - p (and
 (or - p
 (and (mat ch SS SELECT
 (?* ?bef or e2 (^at t r i but e- i n- f r om (?n2 ?a2 ?t 2)) ?af t er 2 ?*))
 (not - p (and (t est I S (" (" ?bef or e2)) (t est I S (") " ?af t er 2))))
)
 (mat ch SS SELECT (?* (^at t r i but e- i n- f r om (?n2 ?a2 ?t 2))))
 (mat ch SS SELECT ((^at t r i but e- i n- f r om (?n2 ?a2 ?t 2)) ?*))
)

 (t est SS (^same- at t r i but es (?a2 ?t 2 ?a1 ?t 1)))
)
 (or - p
 (and (mat ch SS SELECT (?* ?bef or e2 ?n1 ?af t er 2 ?*))
 (not - p (and (t est SS (" (" ?bef or e2)) (t est SS (") " ?af t er 2))))
)
 (mat ch SS SELECT (?* ?n1))
 (mat ch SS SELECT (?n1 ?*))
)
)
 " SELECT")

(462
 " Check t he compar i son oper at or you used i n t he WHERE cl ause t o compar e t he val ue of
t he at t r i but e t o a number . "

 (and (mat ch I S WHERE (?* (^at t r i but e- p (?n ?a ?t)) (^ r el - p ?op1) (^number p ?c) ?*))
 (mat ch SS WHERE (?* (^at t r i but e- p (?n1 ?a1 ?t 1)) (^ r el - p ?op2) ?c ?*))
 (t est SS (^same- at t r i but es (?a1 ?t 1 ?a ?t)))
)

(or - p
 (and (t est I S (" <>" ?op1)) (t est SS (" ! =" ?op2)))
 (and (t est I S (" ! =" ?op1)) (t est SS (" <>" ?op2)))
 (t est SS ((?op1) ?op2))
)
" WHERE")

207

(6500
 " Ar e you sur e you need al l t he at t r i but es i n t he SELECT cl ause?"

 (and
 (not - p (mat ch I S SELECT (" * ")))
 (or - p
 (mat ch SS SELECT (?* (^at t r - name (?n1 ?a1 ?t 1))))
 (mat ch SS SELECT ((^at t r - name (?n1 ?a1 ?t 1)) ?*))
 (and (mat ch SS SELECT (?* ?bef or e (^at t r - name (?n1 ?a1 ?t 1)) ?af t er ?*))
 (not - p (t est I S (" (" ?bef or e)))
 (not - p (t est I S (") " ?af t er)))
)
)

 (or - p
 (mat ch I S SELECT (?* (^at t r i but e- i n- f r om (?n ?a ?t))))
 (mat ch I S SELECT ((^at t r i but e- i n- f r om (?n ?a ?t)) ?*))
 (and (mat ch I S SELECT (?* ?bef or e1 (^at t r i but e- i n- f r om (?n ?a ?t)) ?af t er ?*))
 (not - p (t est I S (" (" ?bef or e1)))
 (not - p (t est I S (") " ?af t er 1)))
)
)

 (t est SS (^at t r i but e- i n- db (?a1 ?t dummy)))
)

 (and
 (or - p
 (mat ch I S SELECT (?* (^at t r i but e- i n- f r om (?n2 ?a2 ?t 2))))
 (mat ch I S SELECT ((^at t r i but e- i n- f r om (?n2 ?a2 ?t 2)) ?*))
 (and (mat ch I S SELECT (?* ?bef or e2 (^at t r i but e- i n- f r om (?n2 ?a2 ?t 2)) ?af t er 2 ?*))
 (not - p (t est I S (" (" ?bef or e2)))
 (not - p (t est I S (") " ?af t er 2)))
)
)

 (or - p
 (and
 ; BI M 21/ 3/ 2001 - needs t o be i n FROM f or t hi s t o be val i d
 (t est SS (^at t r i but e- i n- f r om (?n1 ?a1 ?t 1)))
 (t est SS (^same- at t r i but es (?a1 ?t 1 ?a2 ?t 2)))
)
 (t est SS ((?n2) ?n1))
)
)
 " SELECT")

(350
 " Ther e shoul d be a comma bet ween ever y t wo expr essi ons i n t he SELECT cl ause. "

(and
 (mat ch SS SELECT (?* w1 ?name1 ?name2 ?* w2))
 (not - p (t est SS (" AS" ?name1)))
 (not - p (t est SS (" AS" ?name2)))
 (or - p
 (t est SS (^name ?name1))
 (t est SS (") " ?name1))
 (and
 (or - p
 (t est SS (^aggr p ?name1))
 (t est SS ((" ABS" " SI N" " SQRT" " COS" " ATAN" " EXP" " LOG") ?name1))
)
 (not - p (t est SS (" (" ?name2)))
)
)
 (or - p
 (t est SS (^name ?name2))
 (t est SS (^aggr p ?name2))
 (t est SS ((" ABS" " SI N" " SQRT" " COS" " ATAN" " EXP" " LOG") ?name2))
 (t est SS (" DI STI NCT" ?name2))

208

 (and
 (t est SS (" (" ?name2))
 (not - p (t est SS (^aggr p ?name1)))
 (not - p (t est SS ((" ABS" " SI N" " SQRT" " COS" " ATAN" " EXP" " LOG") ?name1)))
)
)
)

(and
 (mat ch SS SELECT (?* w1 ?name1 " , " ?name2 ?* w2))
 (not - p (mat ch SS SELECT (?* w1 ?name1 ?name2 ?* w2)))
)
" SELECT")

(372
 " Check t hat you have al l t he necessar y st r i ng const ant s i n WHERE - you need t o
speci f y mor e. "
 (and (mat ch I S WHERE (?* (^sql - st r i ngp ?n) ?*))
 (mat ch SS WHERE (?* ?what ?*))
)

 (mat ch SS WHERE (?* ?n ?*))

" WHERE")

(2730
" Check whet her you ar e compar i ng t he at t r i but e t o t he r i ght k i nd of ar gument i n WHERE"

(and
 (mat ch SS WHERE
(?* (^at t r - name (?n ?a ?t)) (^ r el - p ?op) (^at t r - name (?what ?a2 ?t 2)) ?*))
 (mat ch I S WHERE (?* (^at t r - name (?n2 ?a ?t)) (^ r el - p ?op2) (^sql - st r i ngp ?what 2) ?*))
 (not - p (mat ch SS WHERE (?* ?n ?op ?what 2 ?*)))
 (not - p (mat ch I S WHERE
(?* (^at t r - name (?n3 ?a ?t)) (^ r el - p ?op3) (^at t r - name (?n4 ?a4 ?t 4)) ?*)))
)

(t est SS ((?what 2) ?what))

" WHERE")

(347
 " Check t hat you use l ogi cal connect i ves (AND, OR) bet ween condi t i ons i n t he WHERE
cl ause. "

 (or - p (mat ch SS WHERE (?* w1 (^name ?n) (^ r el - p ?op) (^sql - st r i ngp ?v) ?c ?* w2))
 (mat ch SS WHERE (?* w1 (^name ?n) (^ r el - p ?op) (^number p ?v) ?c ?* w2))
)

 (or - p
 (t est SS ((" AND" " OR" ") ") ?c))
 (and
 (mat ch SS WHERE (?* w1 ?n ?op ?v ((" AND" " OR") ?l c) ?c ?* w2))
 (not - p (mat ch SS WHERE (?* w1 ?n ?op ?v ?c ?* w2)))
)
)

" WHERE")

(454
 " You need t o speci f y an at t r i but e t o compar e t he st r i ng const ant t o i n WHERE. "

 (mat ch SS WHERE (?* ?what (^ r el - p ?op) (^sql - st r i ngp ?c) ?*))

 (t est SS (^at t r i but e- p (?what ?a ?t)))

" WHERE")

209

(20_A
" When you compar e t he val ue of an at t r i but e t o a const ant , t hey must be of t he same
t ype. "

 (and
 (mat ch SS WHERE (?* (^at t r i but e- p (?n ?a ?t)) (^ r el - p ?op) ?c ?*))
 (t est SS (^sql - st r i ngp ?c))
)

 (or - p
 (t est SS (^ t ype- p (?a " dat e")))
 (t est SS (^ t ype- p (?a " st r i ng")))
)

" WHERE")

(175
 " Check t hat you ar e compar i ng t he st r i ng const ant t o t he r i ght at t r i but e i n t he
WHERE condi t i on. "

 (and
 (mat ch I S WHERE

(?* (^at t r i but e- i n- f r om (?bi m1 ?a1 ?t 1)) (^ r el - p ?op1) (^sql - st r i ngp ?c) ?*))
 (mat ch SS WHERE (?* (^at t r - name (?bi m2 ?a2 ?t 2)) (^ r el - p ?op2) ?c ?*))
 (t est SS (^ t ype- p (?a2 " st r i ng")))
)

 (or - p
 (and
 (t est SS (^at t r i but e- i n- f r om (?bi m2 ?a2 ?t 2)))
 (t est SS (^same- at t r i but es (?a2 ?t 2 ?a1 ?t 1)))
)
 (t est SS ((?bi m1) ?bi m2))
)

" WHERE")

210

References

Ainsworth, S. E., Grimshaw, S. and Underwood, J. (1999). Teachers as Designers: Using REDEEM to

Create ITSs for the Classroom. Computers and Education 33(2/3), pp. 171-188.

Alexe, C. and Gescei, J. (1996). A Learning Environment for the Surgical Intensive Care Unit. In

Frasson, C., Gauthier, G. and Lesgold, A. (Eds.), Proceedings of the Third International

Conference on Intelligent Tutoring Systems, Montreal, pp. 439-447.

Anderson, J. R., Farrell, R. and Sauers, R. (1984). Learning to Program in LISP. Cognitive Science

8(2), pp. 87-130.

Anderson, J. R. and Reiser, B. (1985). The LISP Tutor. Byte 10(4), pp. 159-175.

Anderson, J. R. (1993). Rules of the Mind. Hillsdale, NJ, Lawrence Erlbaum Associates.

Anderson, J. R., Corbett, A. T., Koedinger, K. R. and Pelletier, R. (1995). Cognitive Tutors: Lessons

Learned. Journal of the Learning Sciences 4(2), pp. 167-207.

Anderson, J. R. and Lebiere, C. (1998). The atomic components of thought. MahWah, NJ, Lawrence

Erlbaum Associates.

Arroyo, I., Beck, J., Beal, C. and Woolf, B. P. (2000). Macroadapting Animalwatch to gender and

cognitive differences with respect to hint interactivity and symbolism. In Gauthier, G.,

Frasson, C. and VanLehn, K. (Eds.), Proceedings of the Fifth International Conference on

Intelligent Tutoring Systems, Montreal, Springer, pp. 574-583.

Ayscough, P. B. (1977). CALCHEMistry. British Journal of Education Technology 8, pp. 201-3.

Beck, J., Stern, M. and Haugsjaa, E. (1996). Applications of AI in Education. ACM Crossroads 3(1),

pp. www.acm.org/crossroads/xrds3-1/aied.html.

Beck, J. and Woolf, B. (2000). High-level student modelling with machine learning. In Gauthier, G.,

Frasson, C. and VanLehn, K. (Eds.), Proceedings of the Fifth International Conference on

Intelligent Tutoring Systems, Montreal, Springer, pp. 584-593.

211

Blessing (1997). A Programming by Demonstration Authoring Tool for Model-Tracing Tutors.

International Journal of Artificial Intelligence in Education 8, pp. 233-261.

Bloom, B. S. (1984). The 2 Sigma Problem: the Search for Methods of Group Instruction as Effective

as one-to-one Tutoring. Educational Researcher 13(6), pp. 4-16.

Bonar, J. and Cunningham, R. (1988). Bridge: An intelligent tutor for thinking about programming. In

Artificial Intelligence and Human Learning, Intelligent Computer Aided Instruction. Self, J.

A. (Ed.), London, Chapman and Hall, pp. 391-409.

Brusilovsky, P. L. (1992). A Framework for Intelligent Knowledge Sequencing and Task Sequencing.

In Frasson, C., Gauthier, G. and McCalla, G. (Eds.), Proceedings of the Second International

Conference on Intelligent Tutoring Systems, Montreal, Springer, pp. 499-506.

Brusilovsky, P. L. (2000). Adaptive Hypermedia: From Intelligent Tutoring Systems to Web-Based

Education. In Gauthier, G., Frasson, C. and VanLehn, K. (Eds.), Proceedings of the Fifth

International Conference on Intelligent Tutoring Systems, Montreal, Springer, pp. 1-7.

Burton, R. R. and Brown, J. S. (1978). A tutoring and student modelling paradigm for gaming

environments. SIGCSE Bulletin 8(1), pp. 236-246.

Burton, R. R. (1982). Diagnosing bugs in a simple procedural skill. In Intelligent Tutoring Systems.

Sleeman, D. H. and Brown, J. S. (Eds.), London, UK, Academic Press, pp. 157-184.

Carbonell, J. R. (1970). AI in CAI: an artificial intelligence approach to computer-assisted learning.

IEEE transactions on man-machine systems 11, pp. 190-202.

Cendrowska, J. (1988). PRISM: An algorithm for inducing modular rules. International Journal of

Man-Machine Studies 27(4), pp. 349-370.

Chin, D. N. (2001). Empirical Evaluation of User Models and User-Adapted Systems. User-Modeling

and User Adapted Interaction 11, pp. 181-194.

Clutterbuck, P. M. (1990). The art of teaching spelling: a ready reference and classroom active resource

for Australian primary schools. Melbourne, Longman Australia Pty Ltd.

Corbett, A. T. and Anderson, J. R. (1992). Student Modeling and Mastery Learning in a Computer-

based Programming Tutor. In Frasson, C., Gauthier, G. and McCalla, G. (Eds.), Proceedings

of the Second International Conference on Intelligent Tutoring Systems, Montreal, Springer,

pp. 413-420.

212

Corbett, A. T. and Anderson, J. R. (1993). Student modeling in an intelligent programming tutor. In

Cognitive Models and Intelligent Environments for Learning Programming. Lemut, E., Du

Boulay, B. and Dettori, G. (Eds.), Berlin, Springer-Verlag, pp. 135-144.

Cypher, A. (1993). Watch What I Do: Programming by Demonstration. Cambridge, MA, MIT Press.

Deek, F. D. and McHugh, J. A. (1998). A Review and Analysis of Tools for Learning Programming. In

Ottmann, T. and Tomek, I. (Eds.), Proceedings of the ED-MEDIA/ED-TELECOM 98,

Freiburg, Germany, AACE, pp. 320-325.

Dillenbourg, P. and Self, J. A. (1992). People Power: a human-computer collaborative learning system.

In Frasson, C., Gauthier, G. and McCalla, G. (Eds.), Proceedings of the Second International

Conference on Intelligent Tutoring Systems, Montreal, Springer-Verlag, pp. 651-660.

Eliot, C. and Woolf, B. P. (1995). An Adaptive Student Centered Curriculum for an Intelligent

Training System. User Modeling and User-Adapted Interaction 5(1), pp. 67-86.

Forbus (1997). Using Qualitative Physics to Create Articulate Educational Software. IEEE Expert

12(3), pp. 32-41.

Forgy, C. L. (1982). Rete: a fast algorithm for the many pattern/many object pattern match problem.

Artificial Intelligence 19(1), pp. 17-37.

Gilmore, D. and Self, J. A. (1988). The application of machine learning to intelligent tutoring systems.

In Artificial Intelligence and Human Learning:Intelligent Computer-Aided Instruction. Self, J.

A. (Ed.), London, Chapman and Hall, pp. 179-196.

Holt, P., Dubs, S., Jones, M. and Greer, J. (1994). The State of Student Modeling. In Student Modeling:

The Key to Individualized Knowledge-Based Instruction. Greer, J. and McCalla, G. (Eds.),

New York, Springer-Verlag, pp. 3-39.

Hsieh, P. Y., Halff, H. M. and Redfield, C. L. (1999). Four Easy Pieces: Development Systems for

Generative Instruction. International Journal of Artificial Intelligence in Education 10, pp. 1-

45.

Johnson, W. L., Rickel, J. W. and Lester, J. C. (2000). Animated Pedagogical Agents: face-to-Face

Interaction in Interactive Learning Environments. International Journal of Artificial

Intelligence in Education 11, pp. 47-78.

Koedinger, K. R., Anderson, J. R., Hadley, W. H. and Mark, M. A. (1997). Intelligent Tutoring Goes

To School in the Big City. International Journal of Artificial Intelligence in Education 8, pp.

30-43.

213

Kulik, J. A., Kulik, C.-L. C. and Cohen, P. A. (1980). Effectiveness of computer-based college

teaching: a meta-analysis of findings. Rev. Educ. Research 50, pp. 524-44.

Lajoie, S. P. and Lesgold, A. (1992). Apprenticeship Training in the Workplace: Computer-Coached

Practice Environment as a New Form of Apprenticeship. In Intelligent Instruction by

Computer. Farr, J. and Psotka, J. (Eds.), Washington D.C., Taylor and Francis, pp. 15-36.

Lajoie, S. P. (1993). Computer Envorinments as Cognitive Tools for Enhancing Learning. In

Computers as Cognitive Tools. Lajoie, S. P. and Derry, S. J. (Eds.), Lawrwnce Erlbaum.

Last, R. W. (1979). The role of computer-assisted learning in modern language teaching. Assoc. for

Literary and Linguistic Computing bulletin 7, pp. 165-171.

Major, N., Ainsworth, S. E. and Wood, D. J. (1997). REDEEM: Eploiting symbiosis between

psychology and authoring environments. International Journal of Artificial Intelligence in

Education 8, pp. 317-340.

Martin, B. (1999). Constraint-Based Modelling: Representing Student Knowledge. New Zealand

Journal of Computing 7(2), pp. 30-38.

Martin, B. (2000). Learning Constraints by Asking Questions. In Beck, J. (Ed.), Proceedings of the

ITS'2000 workshop on applying Machine Learning to ITS Design/Construction, Montreal, pp.

25-30.

Martin, B. and Mitrovic, A. (2000a). Tailoring Feedback by Correcting Student Answers. In Gauthier,

G., Frasson, C. and VanLehn, K. (Eds.), Proceedings of the Fifth International Conference on

Intelligent Tutoring Systems, Montreal, Springer, pp. 383-392.

Martin, B. and Mitrovic, A. (2000b). Induction of Higher-Order Knowledge in Constraint-Based

Models. In Beck, J. (Ed.), Proceedings of the ITS'2000 workshop on applying Machine

Learning to ITS Design/Construction, Montreal, pp. 31-36.

Martin, B. and Mitrovic, A. (2001a). Increasing Help Adaptability in Constraint-Based Modelling. In,

Proceedings of the AIED2001 Workshop on Help Provision and Help Seeking, San Antonio,

Texas.

Martin, B. and Mitrovic, A. (2001b). Easing the ITS Bottleneck with Constraint-Based Modelling. New

Zealand Journal of Computing 8(3), pp. 38-47.

Martin, B. and Mitrovic, A. (2002a). Automatic Problem Generation in Constraint-Based Tutors. In

Cerri, S. A. and Gouarderes, G. (Eds.), Proceedings of the Sixth International Conference on

Intelligent Tutoring Systems, Biarritz, Springer, pp. 388-398.

214

Martin, B. and Mitrovic, A. (2002b). WETAS: A Web-Based Authoring System for Constraint-Based

ITS. In De Bra, P., Brusilovsky, P. L. and Conejo, R. (Eds.), Proceedings of the Second

International Conference on Adaptive Hypermedia and Adaptive Web-Based Systems, Malaga,

Springer, pp. 543-546.

Mayo, M. and Mitrovic, A. (2000). Using a Probabilistic Student Model to Control Problem Difficulty.

In Gauthier, G., Frasson, C. and VanLehn, K. (Eds.), Proceedings of the Fifth International

Conference on Intelligent Tutoring Systems, Montreal, Springer, pp. 524-533.

Mayo, M. and Mitrovic, A. (2001). Optimising ITS Behaviour with Bayesian Networks and Decision

Theory. International Journal of Artificial Intelligence in Education 12, pp. 124-153.

McKenzie, J. (1977). Computers in the teaching of undergraduate science. British Journal of Education

Technology 8, pp. 214-224.

Michalski, R. (1983). A Theory and Methodology of Inductive Learning. Artificial Intelligence 20, pp.

111-161.

Miller, G. A. (1956). The magical number seven, plus or minus two: Some limits on our capacity for

processing information. Psychological Review 63, pp. 81-97.

Mitrovic, A. (1996). SINT- a Symbolic Integration Tutor. In Frasson, C., Gauthier, G. and Lesgold, A.

(Eds.), Proceedings of the Third International Conference on Intelligent Tutoring Systems,

Montreal, Springer, pp. 587-595.

Mitrovic, A. (1998). Experiences in Implementing Constraint-Based Modeling in SQL-Tutor. In

Goettl, B. P., Halff, H. M., Redfield, C. L. and Shute, V. J. (Eds.), Proceedings of the Fourth

International Conference on Intelligent Tutoring Systems, San Antonio, Texas, Springer, pp.

414-423.

Mitrovic, A. and Ohlsson, S. (1999). Evaluation of a Constraint-Based Tutor for a Database Language.

International Journal of Artificial Intelligence in Education 10, pp. 238-256.

Mitrovic, A. and Hausler, K. (2000). Porting SQL-Tutor to the web. In Peylo, C. (Ed.), Proceedings of

the ITS'2000 workshop on adaptive and intelligent web-based education systems, Montreal,

pp. 37-44.

Mitrovic, A. and Martin, B. (2000). Evaluating Effectiveness of Feedback in SQL-Tutor. In Kinshuk,

Jesshope, C. and Okamoto, T. (Eds.), Proceedings of the International Workshop for

Advanced Learning Technologies IWALT2000, Palmerston North, IEEE Computer Society,

pp. 143-144.

215

Mitrovic, A., Martin, B. and Mayo, M. (2002). Using evaluation to shape ITS design: Results and

experiences with SQL-Tutor. International Journal of User Modelling and User Adapted

Interaction 12(2-3), pp. 243-279.

Munro, A., Johnson, M. C., Pizzini, Q. A., Surmon, D. S., Towne, D. M. and Wogulis, J. L. (1997).

Authoring Simulation-Centred Tutors with RIDES. International Journal of Artificial

Intelligence in Education 8, pp. 284-316.

Murray, T. and Woolf, B. (1992). Results of Encoding Knowledge with Tutor Construction Tools. In,

Proceedings of the AAAI-92, San Jose, CA, pp. 17-23.

Murray, T. (1997). Expanding the Knowledge Acquisition Bottleneck for Intelligent Tutoring Systems.

International Journal of Artificial Intelligence in Education 8, pp. 222-232.

Murray, T. (1999). Authoring Intelligent Systems: An analysis of the Starte of the Art. International

Journal of Artificial Intelligence in Education 10, pp. 98-129.

Murray, T., Piemonte, J., Khan, S., Shen, T. and Condit, C. (2000). Evaluating the Need for

Intelligence in an Adaptive Hypermedia System. In Gauthier, G., Frasson, C. and VanLehn,

K. (Eds.), Proceedings of the Fifth International Conference on Intelligent Tutoring Systems,

Montreal, Springer, pp. 373-382.

Newell, A. and Rosenbloom, P. S. (1981). Mechanisms of skill acquisition and the law of practice. In

Cognitive skills and their acquisition. Anderson, J. R. (Ed.), Hillsdale, NJ, Lawrence Erlbaum

Associates, pp. 1-56.

Nkambou, R., Gauthier, G. and Frasson, C. (1996). CREAM-Tools: an authoring environment for

curriculum and course building in an ITS. In Frasson, C., Gauthier, G. and Lesgold, A. (Eds.),

Proceedings of the Third International Conference on Computer Aided Learning and

Instructional Science and Engineering, Montreal, Springer, pp. 420-429.

Ohlsson, S. and Bee, N. (1991). Strategy Variability: A challenge to models of procedural learning. In

Birnbaum, L. (Ed.), Proceedings of the International Conference of the Learning Sciences,

Charlottesville, pp. 351-356.

Ohlsson, S. and Rees, E. (1991). The function of conceptual understanding in the learning of arithmetic

procedures. Cognition and Instruction 8(2), pp. 103-179.

Ohlsson, S. (1994). Constraint-Based Student Modeling. In Student Modeling: The Key to

Individualized Knowledge-Based Instruction. Greer, J. and McCalla, G. (Eds.), New York,

Springer-Verlag, pp. 167-189.

216

Ohlsson, S. (1996). Learning from Performance Errors. Psychological Review 3(2), pp. 241-262.

O'Shea, T. and Self, J. A. (1983). Learning and Teaching with Computers. Brighton, Harvester Press.

Palmer, B. G. and Oldehoeft, A. E. (1975). The design of an instructional system based on problem-

generators. International Journal of Man-Machine Studies 7, pp. 249-271.

Petrie-Brown, A. M. (1989). Discourse and dialogue: concepts in intelligent tutoring interactions.

International Journal of Artificial Intelligence in Education 1(2), pp. 21-29.

Ramadhan, H. and Du Boulay, B. (1993). Programming Environments for Novices. In Cognitive

Models and Intelligent Environments for Learning Programming. Lemut, E., Du Boulay, B.

and Dettori, G. (Eds.), Berlin, Springer-Verlag, pp. 125-134.

Rickel, J. and Johnson, W. L. (1997). Intelligent Tutoring in Virtual Reality: A Preliminary Report. In

Eighth World Conference on Artificial Intelligence in Education. Du Boulay, B. and

Mizoguchi, R. (Eds.), IOS Press, pp. 294-301.

Russell, D., Moran, T. and Jordan, D. (1988). The Instructional Design Environment. In Intelligent

Tutoring Systems: Lessons Learned. Psotka, J., Massey, L. D. and Mutter, S. A. (Eds.),

Hillsdale, NJ, Lawrence Erlbaum, pp. 203-228.

Sammut, C. and Banerji, R. B. (1986). Learning Concepts by Asking Questions. In Machine Learning:

An Artificial Intelligence Approach. Michalski, R., Carbonell, J. and Mitchell, T. (Eds.), San

Mateo, CA, Morgan Kaufman, 2, pp. 167-192.

Satava, R. (1996). Advanced simulation technologies for surgical education. Medical Simulation and

Training 1(1), pp. 6-9.

Self, J. A. (1990). Bypassing the Intractable Problem of Student Modeling. In Intelligent Tutoring

Systems: At the Crossroads of Artificial Intelligence and Education. Frasson, C. and Gauthier,

G. (Eds.), Norwood, NJ, Ablex Publishing Corporation, pp. 107-123.

Self, J. A. (1994). Formal Approaches to Student Modelling. In Student Modeling: The Key to

Individualized Knowledge-Based Instruction. Greer, J. and McCalla, G. (Eds.), New York,

Springer-Verlag, pp. 295-352.

Self, J. A. (1999). The defining characteristics of intelligent tutoring systems: ITSs care, precisely.

International Journal of Artificial Intelligence in Education 10, pp. 350-364.

217

Shute, V. J. and Gawlick-Grendell, L. (1993). An experimental approach to teaching and learning

probability: Stat Lady. In Brna, P., Ohlsson, S. and Pain, H. (Eds.), Proceedings of the World

conference on Artificial Intelligence in Education, Edinburgh, AACE, pp. 177-184.

Shute, V. J., Torreano, L. A. and Ross, E. W. (1999). Exploratory Test of an Automated Knowledge

Elicitation and Organization tool. International Journal of Artificial Intelligence in Education

10, pp. 365-384.

Sison, R. and Shimura, S. (1998). Student Modeling and Machine Learning. International Journal of

Artificial Intelligence in Education 9, pp. 128-158.

Soller, A., Goodman, B., Linton, F. and Gaimari, R. (1998). Promoting Effective Peer Interaction in an

Intelligent Collaborative Learning System. In Goettl, B. P., Halff, H. M., Redfield, C. L. and

Shute, V. J. (Eds.), Proceedings of the Fourth International Conference on Intelligent

Tutoring Systems, San Antonio, Texas, Springer.

Sparks, R., Dooley, S., Meiskey, L. and Blumenthal, R. (1999). The LEAP Authoring Tool: Supporting

complex courseware authoring through reuse, rapid prototyping, and interactive visualizations.

International Journal of Artificial Intelligence in Education 10, pp. 75-97.

Suraweera, P. and Mitrovic, A. (2000). Evaluating an Animated Pedagogical Agent. In Gauthier, G.,

Frasson, C. and VanLehn, K. (Eds.), Proceedings of the Fifth International Conference on

Intelligent Tutoring Systems, Montreal, Springer, pp. 73-82.

Suraweera, P. and Mitrovic, A. (2001). Designing an Intelligent Tutoring System for Database

Modelling. In Smith, M. J. and Salvendy, G. (Eds.), Proceedings of the 9th Int. Conf Human-

Computer Interaction International (HCII 2001), New Orleans, Lawrence Erlbaum

Associates, pp. 745-949.

VanLehn, K. (1983). On the Representation of Procedures in Repair Theory. In The Development of

Mathematical Thinking. Ginsburg, H. P. (Ed.), New York, Academic Press, pp. 201-252.

Verdejo, M. F., Fernandez, I. and Urretavizcaya, M. T. (1993). Methodology and design issues in

Capra: an environment for learning program construction. In Cognitive Models and Intelligent

Environments for Learning Programming. Lemut, E., Du Boulay, B. and Dettori, G. (Eds.),

Berlin, Springer-Verlag, pp. 156-171.

Weber, G. (1993). Analogies in an intelligent programming environment for learning LISP. In

Cognitive Models and Intelligent Environments for Learning Programming. Lemut, E., Du

Boulay, B. and Dettori, G. (Eds.), Berlin, Springer-Verlag, pp. 210-219.

218

Winograd, T. (1975). Frame representations and the declarative-procedural controversy. In

Representations and understanding. Bobrow, D. and Collins, A. (Eds.), New York, Academic

Press, pp. 185-210.

Woolf, B. and Cunningham, P. A. (1987). Multiple Knowledge Sources in Intelligent Teaching

Systems. IEEE Expert 2(1), pp. 41-54.

Yacef, K. and Alem, L. (1996). Student and Expert modelling for Simulation-based Training: A cost

effective framework. In Frasson, C., Gauthier, G. and Lesgold, A. (Eds.), Proceedings of the

Third International Conference for Intelligent Tutoring Systems, Montreal, Springer, pp. 614-

622.

