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Abstract 

An Intelligent Tutoring System (ITS) differs from other educational systems because 

it uses knowledge to guide the pedagogical process. It attempts to optimise the 

student’s mastery of domain knowledge by controlling the introduction of new 

problems, concepts and instruction/feedback. Central to this process is the student 

model, which provides information about what the student knows. The state of the art 

in student modelling is model tracing, which compares student actions against an 

“ ideal”  procedure. 

Constraint-based modelling is a new domain and student modelling method that 

describes only pedagogically informative states, rather than following the procedure 

the student used to arrive at their answer. Ohlsson introduced the idea, which is based 

on learning from performance errors, but did not provide details of how it should be 

implemented. Even his definition of constraints is very broad. SQL-Tutor is an 

existing ITS that uses a constraint-based model. The representation of constraints 

within this system is as loose as Ohlsson’s description. The constraints in SQL-Tutor 

are LISP code fragments, where domain structural knowledge is incorporated into the 

constraints via ad hoc functions. 

In this thesis we present a more specific representation for constraints that 

obviates the need for complex user-defined functions. Constraints (and their 

associated taxonomies and domain-specific functions) are specified as pattern 

matches. This new approach has two advantages: the constraints are simpler to author, 

and they can be used to generate solutions on demand. We have used the new 

representation to create algorithms for solving problems and correcting student 

mistakes, and for generating novel problems to present to the student. We present the 

details of these algorithms and the results of both laboratory and classroom 

evaluations. The solution generation algorithm is demonstrated in laboratory testing to 
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be practical, and the problem generation algorithm, together with a new problem 

selection method, exhibits improved learning performance in the classroom. 

We also present the design and implementation of an authoring system for 

constraint-based tutors and demonstrate its efficacy in authoring tutors for two 

domains. One of these, a tutor for English language skills, was evaluated in an 

elementary school classroom. This evaluation was a success. The students enjoyed 

using the tutor, found the interface easy to use, and felt that they had learned a lot. An 

analysis of their mastery of the constraints suggested that they did indeed learn the 

underlying principles in the course of the session. The authoring tool enabled us to 

develop this system quickly using a spelling resource book as the source of both the 

domain taxonomy from which to produce the problems (i.e. a vocabulary of words to 

use) and the principles for the constraints. The authoring tool provided all other 

functions. This evaluation therefore showed that our authoring tool allows the rapid 

creation of an effective ITS. 
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1 Introduction 

Intelligent Tutoring Systems (ITS) differ from classic computer-aided instruction 

(CAI) in the way they adapt to users’  individual needs. This is accomplished by 

modelling what the student does or does not understand. The basis of this student 

model is a domain model, which is a detailed description of the subject being taught. 

A common element of an ITS is its provision of a scaffolded environment for the 

student to practise the skill they are trying to learn. The domain and student models 

may be used to provide detailed feedback on student answers, select new problems, 

and indicate to the user their current strengths and weaknesses. They are an effective 

way to teach students, and gains in the order of 1 to 2 standard deviations in 

performance are possible when compared with classroom teaching alone (Bloom 

1984; Anderson, Corbett, Koedinger and Pelletier 1995). Teaching by ITS promises to 

be more efficient than one-on-one tutoring, although not necessarily as effective. 

Unfortunately, building them is hard and this imposes a major bottleneck in their use 

(Murray 1997).  

Constraint-Based Modelling (CBM) (Ohlsson 1994) is an effective approach that 

simplifies the building of domain models. However, CBM is still a young approach 

that lacks detail. In this thesis we investigate how to build effective ITSs using CBM. 

We present a representation for CBM that is easy to use and facilitates automatic 

problem solving. We then demonstrate how it can be used to decrease the effort 

required to build an ITS by automatically providing detailed, student-specific 

feedback, and by generating new problems according to students’  needs. The 

remainder of this chapter introduces ITS and CBM, describes our thesis, and outlines 

the structure of the remainder of this document. 
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1.1 Intelligent tutor ing systems 

In the early 1970s, Intelligent Tutoring Systems began to evolve from simple 

computer-aided instruction (CAI). In simple CAI the interface is static with respect to 

each user. Information is presented in a lecture (or “storyboard” ) fashion, grouped 

into topics to form some sort of curriculum. The student navigates their way through 

the curriculum according to their needs, however each student is presented with 

exactly the same information and choices. They may also be asked questions either on 

request or automatically, to test their understanding so far. Feedback on their answers 

is usually restricted to an indication of whether their answer was right or wrong, and 

what the correct answer was. If any further feedback is required, such as comments on 

individual incorrect answers, it must be handcrafted for each question. 

The problem with such systems is two-fold. First, the information they present 

does not target their audience. Although the student may select parts of the curriculum 

they are interested in, this is performed at a very high level, and the actual content of 

each topic is unvarying. The system may therefore present information that the 

student is already familiar with, requiring them to wade through it in search of the 

parts that are of use. Worse, it may make assumptions about what the student knows, 

even though they have not covered the required part of the curriculum. The student 

will then need to hunt for the relevant concepts in the rest of the material. 

This problem extends to the setting of exercises. On conclusion of a topic, a 

simple CAI often poses some questions so the student can see how well they have 

understood the material. However, the system may make invalid assumptions about 

what the student knows at this point, and hence set problems that they are unable to 

solve. Also, if the student has understood most of the content but is struggling with a 

particular aspect, the system is unaware of this and may not set any/enough exercises 

in the problem area. 

Second, the feedback on problems is of limited use. People learn by applying the 

relevant skills, and so problem solving is an important part of learning. However, the 

usefulness of performing exercises is dependant on how much can be learned from 

mistakes made (Ohlsson 1996). To be helpful, the system needs to tell the student why 

the answer was wrong. In simple CAI, this is difficult, because the system has no 
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understanding of the domain: it simply presents information and problems that have 

been stored by a teacher. Any additional feedback is developed from scratch for each 

problem. 

Early CAI adopted an approach called “ linear programming”, where the topic was 

presented in very small steps, such that questions posed have at least a 95% chance of 

being answered correctly (Last 1979). CAI has since evolved into ITS (and other 

methods) via a series of improvements, which have deepened the level of adaptivity. 

Some examples are (O'Shea and Self 1983): 

� Branching, e.g. (Ayscough 1977) – the program adapts its response 

depending on the answer given. For example, it might present corrective 

feedback for a given error, or engage in a dialogue; 

� Generative (Palmer and Oldehoeft 1975) – generate new problems of 

appropriate difficulty for the student, according to their current 

performance; 

� Simulation, e.g. (McKenzie 1977)  – the student interacts with a “virtual 

laboratory” ; 

� Games 

� Dialogue systems (Carbonell 1970) – an extension of branching CAI where 

the student interacts with the system in a natural language 

Intelligent Tutoring Systems (ITS) have evolved from these early attempts. They 

are an example of adaptive educational systems. Adaptivity is an important extension 

of CAI. Instead of presenting static information, adaptive systems use domain 

knowledge to actively decide what to show the student next. Techniques such as 

active hypermedia (Brusilovsky 2000; Murray, Piemonte, Khan, Shen and Condit 

2000) combine and format content for presentation, depending on what the student 

has so far seen and understood. Intelligent coaches (Lajoie and Lesgold 1992) tailor 

the interface of online “coaches”  so that the help they provide is useful without being 

extraneous. Practice-based systems select problem tasks based on the students’  

current understanding. Some systems combine aspects of all three approaches. A key 

attribute of ITS is that the adaptive aspects of the system are separated from the 

course content. In other words delivery of the course material is supported by features 

that facilitate adaptivity, such as a domain and student model, teaching strategy, etc. 
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1.2 The domain and student models 

The benefits of ITS over standard CAI are a result of their adaptivity, which in turn is 

derived from their deep modelling. ITSs contain two main models: a domain model 

and a student model.  

The domain model represents the subject being taught in such a way that the 

system can use it for reasoning. There are many possible representations, including 

semantic networks, production rules and constraints. What representation is adopted 

depends partly on how it will be used. It supports other functions such as information 

selection and representation, problem selection, and feedback generation.  

Whereas the domain model is common to all users of the system, the student 

model varies between students, or groups of them. It is a representation of their 

beliefs. This may take many forms, including general measures such as level of 

competence, rate of acquisition, attentiveness and motivation. Commonly, it includes 

detailed information such as which parts of the curriculum the student has visited, 

what problems they have solved and not solved, and, ideally, which concepts they 

have grasped or failed to grasp. The student model provides the ITS with adaptability. 

Given the system’s current state plus the information from the student model, 

decisions will be made about how next to proceed. Because the student model is 

included, behaviour will be unique to that student.  

The student model is usually related in some sense to the domain model. One 

common approach is to use an overlay: the student model is a kind of “window” to the 

domain model, providing a unique view of the underlying domain concepts coloured 

by the student’s beliefs. As a simple example, it may specify that each individual 

knowledge unit has been learned or not learned. When talking about the student 

model, it is therefore not usually possible to separate it from the domain model, or, 

conversely, the representation of the domain model usually characterises much of the 

student model. 
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1.3 Constraint based modelling 

CBM is a method that arose from experiments in learning from performance errors 

(Ohlsson 1996). Ohlsson proposes that we often make mistakes when performing a 

task, even when we have been taught the correct way to do it. He asserts that this is 

because the declarative knowledge we have learned has not been internalised in our 

procedural knowledge, and so the number of decisions we must make while 

performing the procedure is sufficiently large that we make mistakes. By practicing 

the task however, and catching ourselves (or being caught by a mentor) making 

mistakes, we modify our procedure to incorporate the appropriate rule that we have 

violated. Over time we internalise all of the declarative knowledge about the task, and 

so the number of mistakes we make is reduced.  

Some domain model methods such as model-tracing (Anderson, Corbett, 

Koedinger and Pelletier 1995) check whether or not the student is performing 

correctly by comparing the student’s procedure directly with one or more “correct”  

ones. In CBM, we are not interested in what the student has done, but in what state 

they are currently in. As long as the student never reaches a state that is known to be 

wrong, they are free to perform whatever actions they please. The domain model is 

therefore a collection of state descriptions of the form: 

 

“ If <relevance condition> is true, then <satisfaction condition> had better 

also be true, otherwise something has gone wrong.”  

 

In other words, if the student solution falls into the state defined by the relevance 

condition, it must also be in the state defined by the satisfaction condition. 

SQL-Tutor (Mitrovic 1998) is an example of an ITS that uses CBM. The domain 

model consists of over 500 constraints. A simple overlay student model is used, which 

records the number of times each constraint has been satisfied or violated. Although 

we have built a new tutor using the methods described in this thesis (see Section 

7.2.5), we used SQL-Tutor as the basis of much of this research. This is chiefly 

because it already contains a model for a rich and complex domain, the SQL database 

language. This enabled us to test our ideas thoroughly without needing to build a new 
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domain model of similar complexity from scratch, which is difficult and time-

consuming; instead we modified the existing domain model to fit our new approach. 

Further, it provided us with a full working system on which we could test individual 

ideas. Finally, SQL-Tutor had already been subjected to four evaluations between 

1998 and 2000, providing a wealth of student performance information that could be 

used as input for our testing. 

1.4 Limitations of CBM 

In his definition of CBM, Ohlsson does not include implementation. In particular, the 

domain model is limited purely to describing how to critique a student solution. Even 

the student model representation is left for further research. SQL-Tutor, for example, 

uses a very simplistic student model that does not include any form of curriculum. 

CBM is also not concerned with how problems are produced or selected, and provides 

detail of only one type of feedback: declarative messages that are attached to each 

constraint. 

Many ITSs contain a problem solver, whose function is to determine the correct 

solution to a given problem state, or, at the very least, the next best action to take. 

Because a constraint-based model contains all the required information to determine 

whether or not a solution is in a valid state, we propose that this is sufficient to solve 

the problem. Further, we contend that because CBM always considers the student 

solution’s state, it is capable of correcting any student solution. We argue that this is 

useful because it allows the system to show the student how to eliminate their 

mistakes without misleading them by introducing unnecessary changes. 

CBM’s modular nature allows information relating to different domain concepts 

to be mixed together at will, subject to satisfying the constraints. This provides an 

opportunity for automatic experimentation within the domain: SQL-Tutor could 

potentially try patching different SQL constructs together to produce novel SQL 

statements. Since the answers to problems in this domain are SQL statements, we can 

use this technique to craft new problems.  

The basis of our work was therefore to produce a representation for CBM that 

allows it to be used for problem solving, and to exploit this capability by adding 
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algorithms for solving student problems and for generating new exercises 

dynamically. 

1.5 Thesis contr ibutions and outline 

Constraint-based modelling is a promising approach with a plausible psychological 

foundation. However, experiences with SQL-Tutor suggest that while such models are 

fairly easy to build, on their own they are of fairly limited utility. This thesis explores 

the practicalities of building ITSs using CBM. It proposes a representation for 

constraints, and a set of algorithms that extend the capabilities of CBM to problem 

solving and problem generation. It proposes and experimentally evaluates the 

following four hypotheses: 

� Hypothesis 1: It is possible to build a constraint-based domain model that 

contains sufficient information to solve problems and correct student 

solutions, by adopting a constraint representation that makes all of the 

logic in each constraint reversible; 

� Hypothesis 2: Using the representation defined in hypothesis 1, it is 

possible to develop an algorithm for solving problems and correcting 

student answers, which does not need further domain information to 

achieve this; 

� Hypothesis 3: CBM can also be used to generate new problems that fit the 

student’s current beliefs, and this is superior to selecting one from a pre-

defined list; 

� Hypothesis 4: Because the new representation is domain-independent, it 

may form the basis of an ITS authoring tool that supports the development 

of new CBM tutors. 

 

For hypothesis 1 to be true for a given domain, the constraint representation must 

be sufficiently expressive that it can describe the entire model without relying on 

external functions, yet simple enough that all operations it performs (such as testing 

for a valid value of a term) can be reversed, i.e. given that term t is valid, we can say 
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why it is so. ITS domains come in many different types, such as procedural, 

declarative and open-ended. Whether hypothesis 1 is true for all domains (and if not, 

what characterises the domains for which it is true) remains an open question. In this 

thesis we explore two domains: the SQL database query language, and English 

vocabulary and spelling. We develop a representation that is suitable for both these 

domains. 

Similarly, the algorithm we develop to demonstrate hypothesis 2 works quite well 

for the SQL domain but is not guaranteed to work for all others. Also, the behaviour 

of the algorithm relies heavily on the completeness and correctness of the domain 

model. In Chapter 5 we demonstrate that the algorithm performs satisfactorily in the 

SQL domain but is not flawless, because of problems with the constraint set. Instead 

of trying to prove hypothesis 2 for all domains, we set ourselves the practical target of 

showing that hypothesis 2 is feasible in that solution generation can be performed 

acceptably in a complex domain such as SQL, despite errors in the domain model.  

For hypothesis 3 we discuss the possibility of generating problems on the fly in 

Chapter 6, but we do not demonstrate that it works. Again, we are at the mercy of the 

constraint set, which makes the approach risky. Instead, we propose a more practical 

solution: we use problem generation to create a large problem set offline, which 

increases the chance that the system will choose a suitable problem in a given 

situation. In doing so, we develop a novel method of determining problem difficulty 

based on the constraints, which is needed to create appropriate problems on the fly. 

This new difficulty measure turns out to provide a more accurate means of problem 

selection. 

We have built an ITS authoring tool that uses our new representation. The domain 

model is entirely represented in data files using the new constraint language, with no 

added code for external functions. We therefore satisfy hypothesis 4 for the 

representation chosen. Again, it remains an open question whether there are types of 

domains for which this would not be possible.  

An outline of the thesis structure follows. In Chapter 2, we briefly describe the 

fundamentals of ITS, and give details on the current state of the art, Cognitive tutors. 

We then introduce constraint-based modelling, and discuss how it compares to 
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Cognitive tutors, and show why CBM is a worthwhile approach to research. We also 

describe SQL-Tutor, an example of CBM applied to a complex domain. 

Chapter 3 describes the limitations of CBM as implemented thus far and gives the 

motivation for our work. In Chapter 4 we introduce a new representation for 

constraints that we have developed, which is designed to be easy to use and readily 

reasoned about by the system. This representation forms the basis of the work in the 

next three chapters. Chapter 5 discusses the idea of solving problems (and correcting 

student answers) directly from constraints, and details the algorithm we have 

developed. This algorithm makes it possible for the system to return (as feedback) a 

corrected version of a student’s incorrect answer. We also give the results of a 

laboratory evaluation of this approach. In Chapter 6 we extend the approach to 

generating novel SQL statements, and describe how this is used to build new 

problems for the student to solve, based on their current student model. We present 

the results of both a laboratory test and a six-week classroom evaluation. We also 

describe a method for inducing high-level student models using machine learning, 

which we developed while trying to determine the best way to select target constraints 

for problem selection. 

The purpose of our research is to facilitate the authoring of new CBM tutors. In 

Chapter 7 we describe an authoring system we have implemented for building text-

based CBM tutors. We have reimplemented a tutor (SQL-Tutor) using this system, 

and built a new system for teaching English language skills. Both are described. We 

also discuss an algorithm for building new CBM domain models based on the 

MARVIN machine learning system. Finally, we summarise the results of our research 

and reiterate fruitful areas for future work. This thesis makes the following 

contributions to research in ITS: 

� We develop a representation for constraints that is simple and transparent, and 

show that it is sufficiently expressive for two domains—English vocabulary 

and SQL—the latter being structurally complex; 

� We present an algorithm for correcting student solutions that uses only the 

constraints to guide it, and allows constraint-based tutors to show the student 



10 

hints about what they should have done. We demonstrate its feasibility in a 

complex domain (SQL); 

� We develop an algorithm for generating new problems from the constraint set 

and demonstrate its efficacy in the SQL domain. We also introduce a method 

for determining the difficulty of each problem with respect to an individual 

student, and demonstrate via a classroom evaluation that a system using both 

problem generation and the new difficulty measure outperforms one that uses 

neither; 

� We implement a constraint-based authoring system that uses the new 

representation and demonstrate its effectiveness in the domains of SQL and 

English vocabulary. We show through a classroom evaluation how the latter is 

an effective tutoring system, despite being built in a very short time by 

someone who was not an expert in teaching that domain; 

� Through all the above, we increase the practicability of implementing 

constraint-based tutors, and thus make a significant contribution to the field of 

ITS. 

In the course of this research, we have prepared and presented 11 publications, 

which are listed in Appendix C. 
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2 Background 

2.1 Intelligent tutor ing systems 

Computers have been used in education since the sixties (O'Shea and Self 1983). The 

first Computer Aided Instruction (CAI) systems presented material to the student in a 

static “storyboard”  fashion, where every student received the same material, although 

they may have had some control over how they navigated through the curriculum. At 

appropriate (again, static) intervals, the system posed questions for the student to 

answer. The earliest CAI systems (so-called “ linear”  systems) assumed that the 

student’s answer would nearly always be correct, and that the system needs 

modification if this is not true (O'Shea and Self 1983). Later systems included 

“branching” , where the response to a student’s answer differed according to what 

their response was. However, because these CAI systems lacked any knowledge of 

the domain being taught, specific feedback was difficult, because it had to be hand-

crafted for each problem. As a consequence, the system’s response was often limited 

to indications of right/wrong or presentation of the correct answer, and so the 

problems posed usually required only yes/no, multi-choice or a short (e.g. numeric) 

answers. 

CAI systems can achieve modest gains in learning performance over classroom 

learning (Kulik, Kulik and Cohen 1980), however this falls short of individual one-

on-one (human) tutoring, which may improve students' learning performance by up to 

two standard deviations (Bloom 1984). This prompted researchers to investigate ways 

that computer-based teaching environments could more closely approximate human 
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tutors. Many approaches have been tried, some very anthropomorphic, such as 

animated agents (Johnson, Rickel and Lester 2000) and natural language dialogue 

systems (Petrie-Brown 1989). The latter allows computers to emulate classic tutoring 

behaviour such as Socratic dialogues. 

Intelligent Tutoring Systems (ITS) may mean any system that uses advanced 

techniques such as those described to improve teaching/learning performance. 

However, in more recent times ITS has come to mean teaching systems that “care”  

(Self 1999). Self describes “care”  as meaning that ITSs are sensitive to what the 

student knows, what they misunderstand, and what they want to do. In other words, 

ITS attempts to tailor the system to the individual using it.  

Even under this more restrictive definition of ITS there remain many different 

possible approaches. Cognitive Tutors (Anderson, Corbett, Koedinger and Pelletier 

1995) provide a problem-solving environment with rich feedback. Collaborative 

learning systems (Dillenbourg and Self 1992; Soller, Goodman, Linton and Gaimari 

1998) try to facilitate positive interaction between students by promoting interaction, 

encouraging participation, supporting collaborative skill practice and promoting group 

processing, rather than directly tutoring each individual knowledge in the domain 

being learned. Computer coaches such as SHERLOCK (Lajoie and Lesgold 1992) 

present the system as both an environment in which the student can practise tasks, and 

as a more advanced peer who can lead the student through impasses and thus enable 

them to work on problems that would otherwise be out of reach. Simulation tutors 

(Alexe and Gescei 1996; Satava 1996; Yacef and Alem 1996; Forbus 1997; Munro, 

Johnson, Pizzini, Surmon, Towne and Wogulis 1997; Rickel and Johnson 1997) 

provide an environment in which the student can experiment in the chosen domain 

with computer direction. Some tutors fall into more than one of these categories: for 

example, SHERLOCK is both a simulation tutor and a coach. 

In this thesis we are primarily interested in systems like the Cognitive Tutors, 

which support learning by problem solving. The student is given a problem in the 

chosen domain, which they attempt to answer. The main roles of the system are to set 

the problem, and to provide rich help and feedback as the student progresses. Lajoie 

(Lajoie 1993) identifies four types of cognitive tools that can be identified by the 

functions they served: those that (1) support cognitive processes such as memory and 
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metacognitive processes, (2) share the cognitive load by providing support for low-

level skills, (3) allow learners to engage in activities that would otherwise be beyond 

their reach, and  (4) allow learners to generate and test hypotheses in the context of 

problem solving. The ITSs we are concerned with cover at least the last three of these. 

However, they most strongly fit category 3. By providing rich and detailed feedback 

during problem solving, they allow the student to tackle problems that they would be 

unable to solve on their own. In this context they are like an individual human tutor 

coaching a student through a difficult problem by teaching them the knowledge and 

skills they currently lack to complete the exercise. 

2.1.1 Architecture 

Many different architectures exist for intelligent tutoring systems. However, most 

share a common set of functional units as shown in Figure 1 (Beck, Stern and 

Haugsjaa 1996). Each of these is now described. 

2.1.2 Domain model and expert module 

The domain model contains a representation of the information to be taught. It 

provides input into the expert module, and ultimately is used to produce detailed 

feedback, guide problem selection/generation, and as a basis for the student model. 

The domain model may take many forms, depending on the knowledge 

representation used, the domain it represents, and the granularity of the information 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 1.  Architecture of an ITS 
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being represented. In page-based systems such as adaptive hypertext (Brusilovsky 

2000) or adaptive storybook systems such as those produced by the REDEEM 

authoring system (Ainsworth, Grimshaw and Underwood 1999), domain knowledge 

is stored at the page level, and provides basic information about the content of the 

page, which aids in problem selection and course sequencing. In Cognitive tutors, the 

domain model consists of low-level production rules that completely describe the 

expected student behaviour down to “atomic”  thought components (Anderson and 

Lebiere 1998). Simulation-based systems, e.g. RIDES (Munro, Johnson, Pizzini, 

Surmon, Towne and Wogulis 1997), use the domain model to describe how each 

component of the simulation should behave (i.e. what actions are possible with this 

object, and what the consequences of each action should be), and how components are 

interrelated. Constraint-based systems describe the possible (and pedagogically 

interesting) valid states that an answer may occupy.  

The expert model uses the domain knowledge to advise other parts of the system. 

It may indicate the relative difficulty of curriculum sections or problems, such that the 

pedagogical module can select the next task. In Cognitive tutors it identifies whether 

or not the student’s current solution is on track and, if not, what has gone wrong. It 

may also be able to run the domain model to solve the problem from a given state. In 

constraint-based systems it evaluates the student solution against the constraints to 

determine what concepts have been misapplied. 

2.1.3 The Student model 

The student model contains information specific to each individual student (or, 

possibly, populations of students), which is used to tailor the system’s response to 

individual needs. The student model does not actually do anything by itself. Rather, it 

provides input to the pedagogical module. 

Because student modelling is so central to ITS, it is also a controversial area. 

Initially, the goal was for the student model to model the student’s mental state as 

completely as possible. Modellers therefore tried to represent many different mental 

constructs and attributes, such as learned facts and omissions in knowledge, mal-

formed knowledge, relevant real-world experiences, attentiveness, tiredness, and so 

on. The task quickly became impossible and pessimism set in. Then, in 1988 Self 
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published the paper “Bypassing the intractable problem of student modelling” , which 

sought to find a solution to the impasse (Self 1990). Self proposed four “ rules”  of 

student modelling, which sought to overcome the pessimism and silence some of ITSs 

detractors. They are: 

1. Avoid guessing. Have the student supply information such as the current goal, 

if it is needed by the system, rather than trying to infer what they are doing. 

This decreases the requirements of the system, and reduces the likelihood of 

making decisions about actions based on incorrect assumptions; 

2. Don’ t diagnose what you can’ t treat. There is no point in modelling 

information that will never be used by the pedagogical module. Rather than 

trying to model everything you can about the student, decide what pedagogical 

actions you wish to take, and build the student model to support it; 

3. Empathise with the student’s beliefs. Don’ t label them as bugs if they 

disagree with the system, but rather strive to converge the system and the user 

beliefs. This means, for example, being mindful that the student might be 

correctly solving the problem, but in a different way to the system. Strive for 

sufficient flexibility that the system can accept, and adapt to, different 

problem-solving approaches; 

4. Don’ t feign omniscience. Assume the role of “ fallible collaborator” . That is, 

allow the model to be overridden by the student, rather than taking complete 

control and refusing to relinquish it. 

 

Following Self’s paper, there has been much more research into student modelling, 

with many different systems being devised. However, most of these fall into three 

main approaches (Holt, Dubs, Jones and Greer 1994): overlay models, perturbation 

models, and other methods. Each is now described. 

Overlay models 

These assume that the domain model contains all of the concepts the student must 

learn, and that the student knows a subset of this information. The task of teaching is 

therefore seen as filling in the holes in the student’s knowledge until they have 

learned sufficient of the model to achieve mastery. For a production rule domain 
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model this means that all rules have been applied with sufficiently few errors that they 

can be said to be learned. In an adaptive hypertext system all of the curriculum has 

been either covered, or is considered learned (because more comprehensive material 

has been covered), with enough problems on each page answered correctly. In a 

simulation the student may have successfully applied all the procedures they are 

required to learn (such as resuscitating the simulated drowning victim). A variation on 

overlay models is the differential model, which assumes that different parts of the 

domain have different importance, and so models the difference between student 

knowledge and the expected student knowledge rather than the entire domain. The 

expected subset may vary over time, thus “ forgiving”  some gaps in the student’s 

knowledge early on but remediating them later, as the expected model changes to 

require them. WEST (Burton and Brown 1978), a gaming system for teaching 

arithmetic, is an example of such a differential model. 

Whilst many different systems fall into the general category of overlay systems, 

they may vary greatly in their specific implementations, particularly how they judge 

which parts of the domain are learned and which are not. The simplest method is to 

consider a knowledge element learned after it has been successfully applied n times. 

Some Cognitive Tutors (Anderson, Corbett, Koedinger and Pelletier 1995) use a 

complex Bayesian formula to calculate the probability that each production rule has 

been learned. It takes into account several a priori probabilities: that the student 

already knew the production, that they will learn it at a given opportunity to apply it; 

that they will correctly guess how to use it, and that they will accidentally misuse it, 

even if they know it. Then, after each step, they calculate and update the probability 

that the student actually knows the rule, given their observed performance. This 

information can then be used to predict performance, and thus help select new 

problems. Mayo and Mitrovic (Mayo and Mitrovic 2000) use a similar method for a 

constraint-based student model. The Cardiac Resuscitation simulation system, or 

Cardiac Tutor (Eliot and Woolf 1995), estimates the desirability that the system end 

up in a given simulation state (e.g. patient fibrillating) given the student’s behaviour 

so far, and the probability that the student’s behaviour will lead it to this state. This 

information is used to adjust parameters of the simulation such that the desired state is 

more likely to be reached. Many other schemes exist. 
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Perturbation models 

Whereas an overlay model assumes that the student’s knowledge is a subset of that of 

an expert, a perturbation model recognises that the student may harbour 

misconceptions, or “buggy knowledge”, which must also be represented. Figure 2 

illustrates the notion of a perturbation model. 

Figure 2.  Perturbation model 
 

Building a perturbation model usually requires that the underlying domain model 

contain information about the mistakes students are likely to make, or “bug libraries”  

(Burton 1982) so that they can be identified in individual students’  behaviour. For 

example, model-tracing tutors often include incorrect productions, which represent 

commonly made mistakes.  

Other approaches 

Researchers have recently begun to use machine learning to try to induce student 

models. ADVISOR (Beck and Woolf 2000) uses a functional approximator to predict 

the time taken to solve the next problem and the probability that the student will 

answer it correctly, based on the complexity of the problem, the student’s proficiency, 

and the number of hints they have received for this problem. In Section 6.2 we use a 

variation of the rule induction algorithm PRISM (Cendrowska 1988) to infer a high-

level student model from the low-level constraint information (Martin 1999). Gilmore 

and Self (Gilmore and Self 1988) similarly use an ID3 type classification system to 

learn the concepts the student has and hasn’ t learned. 
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2.1.4 Pedagogical module 

This module decides what to present to the student next. It uses information from the 

student, domain and expert models to arrive at each decision. In effect, this module 

models the “ teaching style”  to be applied. For example, it may favour examples over 

the presentation of static text. It may make both low-level decisions, such as the level 

of difficulty of practice exercises, and high-level ones, such as when the student 

should move to the next topic of the curriculum. There are many different forms, 

depending on the teaching style being modelled, and the kind of information 

available: adaptive hypertext systems may only control page presentation, while the 

pedagogical module of a Cognitive tutor may determine problem difficulty, level of 

feedback, and when to declare that a portion of the curriculum is learned. 

2.1.5 Communication Module  

Also known as the interface module, it interacts with the learner, displaying 

information and accepting input from the student. 

 

In this research, we are primarily interested in the domain and student models. 

With the exception of the authoring system in Chapter 7, which is a complete system 

built around CBM, we have intended the methods we have developed to be 

independent of interface or pedagogy.  

2.2 The state of the ar t: Cognitive Tutors 

Cognitive tutors (Anderson, Corbett, Koedinger and Pelletier 1995) model the domain 

to be learned as a runnable model (such as a set of production rules), that map out all 

the valid ways a student may solve the problem. Based on Anderson’s ACT-R theory 

or “ rules of the mind”  (Anderson 1993; Anderson and Lebiere 1998), they were 

initially proposed partially as a means of validating Anderson’s theories. Since then 

they have become successful tutors in their own right, the most celebrated being the 

Algebra Tutor, which has been shown to provide gains of 1 SD (over non-tutor users) 

in the subject of secondary school algebra (Koedinger, Anderson, Hadley and Mark 

1997). 
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2.2.1 ACT theory: rules of the mind 

The central tenet of Anderson’s theory is that the processes of thought can be 

modelled using declarative and procedural knowledge. Whereas others have argued 

over which of these (if either) are a better representation of the mind, e.g. (Winograd 

1975), Anderson contends that both are necessary. To be able to perform a task, a 

person needs the required procedural knowledge. However, before they can learn this 

they first need the underlying declarative knowledge. Learning then becomes a two-

step process: first the student must acquire the appropriate declarative knowledge, and 

then they must develop this into the required procedural knowledge. Although 

humans can perform tasks where they have forgotten the declarative knowledge that 

led to their acquisition of the skill, Anderson asserts that they must have had that 

knowledge at some point. 

Anderson produced a formal representation for declarative knowledge using 

chunks (Miller 1956) and procedural knowledge (production rules) to describe a 

person’s knowledge state. This representation, plus the rules for their use and 

creation, forms the ACT theory. Since its inception in 1976, the ACT theory has been 

modified heavily, giving rise to several major versions: ACTE, ACT*, and several 

versions of ACT-R, of which the current is ACT-R 5.0. During this time Anderson 

has refined the definitions for chunks and procedural rules by restricting what can be 

represented in a single chunk or rule, and the way in which they can be generated. For 

example, a production rule may only produce one of the following six combinations 

of effects: no change, goal elaboration (current goal modification, no change to the 

goal stack), side effect (new goal on stack, no modification to current goal), return 

result (modify current goal, push new goal on stack), pop unchanged (pop completed 

goal without modification), and pop changed (modify current goal and pop off the 

stack). He believes his latest representation models the atomic components of thought. 

This is backed by empirical evidence: given an appropriate latency for the firing of 

each production rule and the retrieval of each chunk, simulations of tasks using 

Anderson’s model display behaviour where the time taken to perform a task correlates 

closely with human performance on a wide variety of tasks. 
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2.2.2 ACT-R and learning 

Any theory that describes the structures of thought must also be able to describe how 

they got there. ACT-R contains theories of learning for both declarative and 

procedural knowledge. As stated previously, production rules can only make 

modifications to goals. Since productions are also the only means of performing a 

mental action, goal chunks must be used to store new declarative knowledge. In ACT-

R 4.0 when a novel problem is solved, a goal chunk is stored that essentially 

represents the solution to the solved problem (such as “ the answer to 6+4 is 10”). If a 

person later solves a problem that is similar to an existing one, the two may be 

merged to form a more general declarative chunk. Thus declarative knowledge may 

be obtained from performing some procedure and remembering the result. For 

example, some children learn their addition tables by using counting to add numbers 

and remembering the answer. Note that this learning process is not deterministic: 

having noted that 6 plus 4 is 10, the child may subsequently fail to remember this fact 

and again resort to counting. However, the more times the child encounters the 

problem 6+4, the more likely they are to remember the answer. This is born out by 

experiment. 

ACT-R 4.0 also describes the learning of procedures. As a person performs some 

procedure, they may at intervals seek to understand what they have done, so as to be 

able to repeat the task. ACT-R represents this via a dependency goal, which specifies 

the relationship between two (encountered) goals and the constraints upon when this 

dependency is valid. Consider the following point in a multi-column addition 

problem, which a child is being shown how to perform: 

  

 23 
+34 
- - -  
  7 

 

At this stage the student is aware that 3 + 4 = 7. They have an initial state where no 

numbers have been filled in, followed by the next state where “7”  has been written. 

They also have a declarative chunk that corresponds to the two numbers in the 
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column, namely  “7 is the sum of 3 + 4” . They now create the dependency goal (in 

pseudocode): 

 
I ni t i al  goal  i s  ADD- COLUMN wi t h val ues 3 and 4,  and an answer  of  
NI L 
Modi f i ed goal  i s  ADD- COLUMN wi t h val ues 3 and 4,  and an answer  of  7 
Const r ai nt  i s  FACT34:  ADDI TI ON- FACT 3 + 4 = 7 

 

ACT-R now pops this dependency goal and creates a procedural rule from it. Since 

the values “3”  and “4”  appear in the initial and modified goals, plus the dependency, 

ACT-R assumes that such repetition is not coincidence, but that it indicates that such 

terms can be variablised, so the following rule can be induced: 

 
I F  
   I ni t i al  goal  i s  ADD- COLUMN wi t h val ues N1 and N2,  and answer  NI L 
AND 
   Ther e exi st s ADDI TI ON- FACT N1 + N2 = SUM 
THEN 
   Modi f y goal  t o ADD- COLUMN wi t h val ues N1 and N2,  and answer  SUM.  
 

ACT-R 4.0 also provides a theory for the learning of the sub symbol parameters, i.e. 

how fast each piece of declarative knowledge can be retrieved and the speed and 

utility of performing the production rules. Together these four aspects of learning 

(creating declarative chunks, merging/generalising chunks, dependency goals for 

procedural learning, and retrieval speed and utility) constitute a robust theory of 

learning based on ACT-R’s definitions of the atomic components of thought, which 

are well corroborated in practise. 

2.2.3 Cognitive tutors 

Cognitive tutors were initially developed in part to validate the (then) ACT* theory of 

mind. An early goal was that the tutors should possess a plausible model of what the 

student was trying to learn:  

“The core commitment at every stage of the work and in all applications is that 

instruction should be designed with reference to a cognitive model of the competence 

that the student is being asked to learn. This means that the system possesses a 

computational model capable of solving the problems that are given to students in the 

ways students are expected to solve the problems.”   
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(Anderson, Corbett, Koedinger and Pelletier 1995).  

 

Thus, from the outset Cognitive tutors have followed (versions of) the ACT-R theory 

of learning as described above, which continues to this day. Recall that learning in 

ACT-R is described as the acquisition of declarative knowledge chunks, followed by 

the compilation of procedural rules that apply declarative knowledge to tasks being 

mastered. Anderson believes that the acquisition of declarative knowledge is 

relatively straightforward and unproblematic compared with the subsequent 

refinement into procedural knowledge. Hence, Cognitive tutors focus on the 

acquisition of production rules and represent their domain models in this manner, 

supported by declarative knowledge chunks, which are assumed to already be learned. 

Initial work on Cognitive tutors was intended to support the ACT theory of skill-

acquisition by showing that learning could be achieved by getting students to behave 

like the production-rule model. This required from the outset that the domain model 

be a complete model of the task being performed, specified using production rules. 

Tutoring is achieved using a method known as model tracing. As the student works at 

the problem, the system traces her progress along valid paths in the model. If she 

makes a recognisable off-path action she is given an error message indicating what 

she has done wrong, or perhaps an indication of what she should do. If the action is 

identified as being off-path but cannot be recognised, she may only be told that it is 

incorrect, but not why. Because of the combinatorial infeasibility of tracking the 

student’s state relative to the correct path throughout the entire domain space, early 

Cognitive tutors forced the student to stay on a  correct path. Later tutors relaxed this 

requirement somewhat, however this was done in an ad hoc way. For example, later 

versions of the LISP tutor (Anderson, Farrell and Sauers 1984) allowed delayed 

feedback, which dropped the necessity for the student to stay on a recognised path. 

Instead, if the student produced a program that could not be recognised, it was run 

against a set of test cases and accepted if it returned the correct results. This has the 

disadvantages that specific feedback may not be given for an incorrect solution, and 

that the student might “get lucky” , producing an incorrect program that happens to 

work for the test cases. 
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Analogous to the model tracing technique for critiquing the student’s action is the 

student modelling method of knowledge tracing. A Bayesian procedure is used to 

estimate the probability that a production rule has been learned after each attempt. 

Formulas 1 and 2 give the probability that a production is in a learned state after a 

correct answer and an error, respectively. 
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� �1�nLp  is the probability that the rule was already learned, � �Sp  is the probability of 

a slip, � �1�nUp  is the probability that the production was not previously known, and 

� �Gp  is the probability that the student guessed. 

This information is used to decide when the skills of a section of curriculum have 

been satisfactorily learned. Anderson et al. found that these skill probabilities could be 

used to accurately predict post-test performance (Corbett and Anderson 1992). 

2.2.4 Example: L ISP TUTOR 

The LISP tutor (Anderson, Farrell and Sauers 1984) was an early attempt at a 

Cognitive tutor. The student is given a description of a small program to encode in 

LISP, which she then writes with the system’s help. Interaction is similar to using a 

(very comprehensive) language-sensitive editor. As the user builds their solution, the 

system inserts tags that describe the general form of the program, for example (user 

input in bold): 

( def un f act  ( n)  
   ( cond ( ( equal p)  <ACTI ON>)  
     <RECURSI VE- CASE>) )  
 

The standard LISP tutor does not allow the student to stray at all from the model 

of desired performance. In the above example, the student needs to test for zero, for 

which there is a dedicated function. The tutor immediately interrupts the student and 
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makes them use the ZEROP function, rather than the more general EQUALP. In fact, 

the use of EQUALP is valid, however this would lead to a solution that is off the path 

specified in the LISP tutor, because the authors have deemed it undesirable. Note that 

this is a design decision, rather than a characteristic of the modelling method. Further, 

the LISP tutor will interrupt the student at key points, even if no recognisable mistake 

has been made, if they perform actions that are not expected. In the previous example, 

this student is writing a recursive function. Anderson et al. determined that students 

tend to find the terminating case easy to write, but struggle with the recursive case. 

Therefore, if they perform any unexpected actions after writing the terminating case, 

the system asks them a question about the recursive case, even though they may be 

performing some valid action. If they fail to answer the question correctly, the system 

digresses with some exercises to help them understand the nature of the recursion they 

are trying to build. Again, this is an issue with the model being used, but it highlights 

how deficiencies in the model may lead to overly prescriptive behaviour. 

In order to follow the student correctly, the LISP tutor needs to constantly know 

their intent. In many cases this is obvious, but in others (such as declaring one of 

several variables) further clarification is needed. The LISP tutor pops up a menu 

whenever something needs to be disambiguated. Once they have finished the exercise, 

they are presented with a standard LISP environment in which they can test their 

code. 

The LISP tutor performs very well. In an initial mini-course at CMU, students 

using it solved a series of exercises in 30% less time than those in a standard LISP 

environment, and performed one standard deviation better on their final test. As a 

result, a full year course was devised using the LISP tutor, which continues to this 

day. However, later evaluations failed to conclusively prove that the style of teaching 

used (notably comprehensive, immediate help) improved performance per se. 

Anderson et al. concluded that the main reason for improved performance in post-

tests previously was probably because the LISP tutor enabled students to cover more 

exercises in the same amount of time, which subsequently gave them an advantage. 

However, this in itself is considered a worthwhile outcome, since enabling students to 

achieve their learning in less time gives them more time to learn additional material, 

or to do other things. 
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2.2.5 Summary 

Cognitive tutors are some of the most successful to date. The PAT tutor for high 

school mathematics has produced gains as high as 100% for areas targeted by the 

system (Koedinger, Anderson, Hadley and Mark 1997). The model-tracing technique, 

on which they are based, is derived from a comprehensive theory of learning, ACT-R, 

and the results obtained with it strongly support that theory. 

2.3 Motivation for  change 

Since Cognitive tutors are so effective and the technology for building them is well 

understood, it may seem unnecessary to explore other options. However, they harbour 

several outstanding issues. In particular, the following may be attributed directly to 

the Cognitive tutoring method, rather than to the wider field of ITS in general 

(Anderson, Corbett, Koedinger and Pelletier 1995): Cognitive tutors are hard to build, 

they may be too restrictive, and they may not suit all domains. These three issues are 

all related. 

With respect to difficulty in building tutors, Anderson estimates the typical time to 

author a system is around 10 hours per production (Koedinger, Anderson, Hadley and 

Mark 1997), although this figure is not backed up by empirical data, and seems overly 

large. For example, Koedinger authored the 25 productions for Kermit in just a few 

days (See section 2.4.3). Complex domains may run into hundreds, perhaps 

thousands, of productions. Using the 10 hours estimate, a very simple tutor for 

teaching subtraction with carry requires at least six production rules (Blessing 1997), 

so would require more than a week’s effort, and a domain such as SQL might take 

years just to author the production rules. Such effort would be a serious barrier to 

building tutors for very complex domains, yet this is where the need is arguably 

greatest.  

Some domains are highly suited to a procedural approach. In arithmetic for 

example, there tend to be a few well-defined procedures for performing tasks such as 

addition, subtraction, and division. In others such as programming, this is not the case. 

Commenting on tutoring systems for programming in general, (Deek and McHugh 

1998) note that: 
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“ Intelligent systems present the student with a simple problem containing a clear 

definition, specifications and constraints. The student is then led into finding the 

‘ ideal solution’ .”  

A consequence, they claim, is that students become dependent upon being led to the 

solution, and fail to develop the skills to determine the solution for themselves. Part of 

the reason for this is that often only a single solution path is encoded in the production 

rules. In the LISP tutor for example, the student is guided very closely along a 

particular path. For example, alternative means of testing a condition may be 

discounted by the tutor. Allowing greater flexibility in programming language tutors 

is difficult because they often contain a high level of redundancy. For example, in 

SQL there are three completely different problem-solving strategies for retrieving 

data from multiple tables. The following three queries all perform the exact same 

function (retrieve the name of the director of “Of mice and men”), but use different 

strategies: 

 
SELECT l name,  f name  
FROM movi e,  di r ect or   
WHERE di r ect or  = di r ect or . number  and t i t l e = ' Of  mi ce and men'  
 
SELECT l name,  f name  
FROM movi e j oi n di r ect or  on movi e. di r ect or  = di r ect or . number  
WHERE t i t l e = ' Of  mi ce and men'  
SELECT l name,  f name  
FROM di r ect or  
WHERE number  = 
      ( sel ect  di r ect or  f r om movi e wher e t i t l e = ' Of  mi ce and men' )  
 

There is no obvious “ ideal”  solution to the above problem, although there may be 

criteria with which one could judge merit (e.g. efficiency). Further, there are many 

subtle details that could be modified arguably without affecting the quality of the 

solution, such as whether or not to qualify names (e.g. “director.lname”), and whether 

or not to use table aliases to shorten name qualifications. While such alternatives 

could be represented using the production rule approach, it would be a substantial 

undertaking. Even successful Cognitive tutors such as the LISP tutor are sometimes 

criticised for being too restrictive because they inevitably exclude valid solutions 

(Anderson, Corbett, Koedinger and Pelletier 1995; Deek and McHugh 1998), 

although it is arguable whether or not this affects learning. Since Cognitive Tutors 
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have been shown to be capable of producing dramatic learning outcomes (Koedinger, 

Anderson, Hadley and Mark 1997), this might even be a positive feature. 

More importantly, in SQL the solution is structured into six clauses representing 

different aspects of the problem: what to select (SELECT), where from (FROM), any 

restrictions (WHERE), grouping (GROUP-BY), sorting (ORDER-BY) and group 

restrictions (HAVING). There is no right or wrong way to approach writing an SQL 

query. For example, some students may choose to focus on the “what”  part of the 

problem first, and then fill in the restrictions, whereas others may first attend to the 

restrictions, or even sorting. Again, it is possible to encode all variations as separate 

paths through the production rule model, but this would make the mode large and 

unwieldy. Worse, the actual paths represented are of no importance to us. The 

production rule model is simply too low-level an abstraction for this type of domain. 

Similarly in data (entity-relationship) modelling, it is equally valid to define all 

entities and then their relationships, or define each pair of entities and their 

relationships simultaneously. Thus it appears that there are domains for which 

Cognitive tutoring is likely to be an unwieldy (or possibly unworkable) tool for 

modelling. 

What happens when there is no “ right”  answer to a problem at all? For example, 

imagine a tutor for musical improvisation, where the student’s input is via an 

instrument such as a keyboard and the “problem” is an accompaniment that the 

student must improvise over. There is clearly no such thing as a “correct”  answer to 

this problem. The domain is procedural in that the student is performing the procedure 

of playing a note, followed by another one, where each action (note) will have many 

characteristics, such as pitch, volume, timing and colouration (bending, tremolo, slide, 

etc), however there is no correct procedure to follow other than “after playing a note, 

either play another one (sometime) or finish” . It is not at all obvious how a production 

rule model could be built for such a domain, and yet there are still many ways an ITS 

could provide useful feedback, such as how well the notes played fitted the key of the 

piece, whether the student’s playing was an example of the style (e.g. “blues”) being 

practised, and how “ interesting”  the piece was (as judged by the tutor’s author). 

In summary, although Cognitive tutoring has been shown to work extremely well 

for some domains, there are others for which they may be less suitable, or even 
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impossible to implement, although we have not explored this in any detail. In 

particular, open-ended domains such as the musical improvisation tutor described 

seem less suited to the Cognitive Tutor approach, because they do not require a model 

of procedure, and might not benefit from the effort of building one. This might also 

apply to more declarative domains such as SQL. There is therefore scope for 

alternative methods that can cope with, and are suited to, declarative and open-ended 

domains. The research presented in this thesis is concerned with one such alternative, 

constraint-based modelling. 

2.4 Constraint-based modelling 

In 1994, Ohlsson proposed another method for domain and student modelling that is 

also based on a psychological theory of learning. Both the underlying theory and the 

resulting modelling system are radically different from Anderson’s, and represent a 

major change in direction. The theory and model are now described. We also compare 

CBM to Cognitive tutors, and describe an existing system that uses CBM, to illustrate 

how it is implemented. 

2.4.1 Learning from per formance er rors 

As described in Section 2.2.2, Anderson’s ACT-R theory included a theory for how 

new knowledge is learned by the creation of new declarative chunks and the 

compilation of new production rules. The former, he asserts, happens automatically 

via the retention of new problems and their solutions. The latter, according to his later 

theories in ACT-R 4.0, occurs when the student makes a conscious decision to reflect 

on how they just performed some step of the solution. Tutors based on ACT-R 

therefore concentrate on keeping the student on a valid solution path, such that they 

commit correct productions to memory, not buggy ones they have arrived at 

erroneously. 

Ohlsson (Ohlsson 1996) has a different view. In a theory called “ learning from 

performance errors” , he asserts that procedural learning occurs primarily when we 

catch ourselves (or are caught by a third party) making mistakes. Further, he contends 

that we often make errors even though we know what we should do, because there are 



30 

simply too many things to think about, and we are unable to make the correct decision 

because we are overloaded. In other words, we may already have the necessary 

declarative knowledge, but for a given situation there are too many possibilities to 

consider for us to determine what currently applies. Thus merely learning the 

appropriate declarative knowledge is not enough: only when we have internalised that 

knowledge—and how to apply it—can we achieve mastery in the chosen domain. 

We can represent the application of a piece of declarative knowledge to a current 

situation by describing the current problem-solving state. Ohlsson uses constraints for 

this task. Each constraint consists of a relevance and a satisfaction condition. The first 

specifies when this piece of declarative knowledge is relevant, and the second 

describes the state whereby this piece of knowledge has been correctly applied, i.e.: 

 
I F <r el evance condi t i on> i s t r ue 
THEN <sat i sf act i on condi t i on> wi l l  al so be t r ue 
 

Consider a person learning to drive. On approaching an intersection, she must 

consider many factors regarding who gives way and decide whether or not to stop. 

Such pieces of knowledge relate, among other things, to the driving rules of the 

country she is in. In New Zealand for example, one such rule is that “at uncontrolled 

intersections, traffic on the right has right-of-way” . Now, as our driver approaches an 

uncontrolled intersection, she must consider whether or not to give way. A constraint 

for the above situation might be (in pseudocode): 

 
I F uncont r ol l ed i nt er sect i on 
AND car  appr oachi ng f r om r i ght  
THEN gi ve way 
 

By Ohlsson’s theory, our learner driver may be flustered by the number of things she 

has to consider (especially if there are several other cars at the intersection), overlook 

the above constraint, and drive into the path of a car on her right. However, a skilled 

driver knows “ intuitively”  to look for the car on the right and stop because they have 

applied this constraint many times before, and it has been internalised in some way as 

procedural knowledge. The corresponding procedural rule in an ACT tutor might be: 

 

I F t he goal  i s  t o t r avel  t hr ough t he i nt er sect i on 
AND t he i nt er sect i on i s  uncont r ol l ed 
AND a car  i s  appr oachi ng f r om t he r i ght  
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THEN set  a sub goal  t o gi ve way t o t he car  

 

2.4.2 CBM in ITS 

Whilst the underlying theories of ACT-R and Performance Errors may be 

fundamentally different, in terms of ITS implementation the key difference is the 

level of focus: ACT-R focuses in detail on the procedures carried out, while “ learning 

from performance errors”  is concerned only with pedagogical states. This translates 

directly into the domain models. Cognitive tutors faithfully model the procedures that 

should be learned, while constraint-based tutors represent just the states the student 

should satisfy, and ignore completely the path involved. 

In a constraint-based tutor, the domain model is represented by a set of 

constraints, where each constraint represents a pedagogically significant state. That is, 

if a constraint is relevant to the student’s answer, this is an example of a principle that 

we wish to teach the student. If the constraint is violated, the student does not know 

this concept and requires remedial action. A key test of whether or not a constraint 

represents a single pedagogically significant state (i.e. that all problems/solutions that 

fall into this state are pedagogically equivalent) is whether or not a single piece of 

feedback can be delivered for all problems that violate this constraint. Once the 

domain model has been so defined, we can associate feedback actions directly with 

the constraint. The basic definition of a constraint in a constraint-based tutor is 

therefore: 

 
<const r ai nt  i d> 
<f eedback act i on > 
<r el evance condi t i on> 
<sat i sf act i on condi t i on> 
 

For example, in the domain of multi-column addition with carry, the following 

constraint (in pseudocode) checks that the student has correctly added the numbers in 

each column, where ideal-solution represents a correct solution to this problem, 

problem is the original problem specification, and student-solution is the student’s 

attempt. 

 

( 1 
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“ You have added t wo number s i ncor r ect l y  i n col umn <N> – pl ease 
check your  addi t i on.  Not e t hat  t her e i s  no car r y f or  t hi s col umn. ”  
 
( and 
 i deal - sol ut i on. col umn( N)  = SUM 
 pr obl em. col umn( N) . car r y = NO 
)  
 
( st udent - sol ut i on. col umn( N)  = SUM 
)  
 

The constraints are used to evaluate the student’s input by comparing it to an 

“ ideal solution” . The ideal solution is just one of the set of possible solutions to the 

problem, and is considered “ ideal”  in the sense that it is the answer the author would 

ideally like the student to submit. However, it is not necessary for the student to 

submit this particular answer, nor to solve the problem in this particular way.  

When the student submits a solution or action, each constraint is evaluated one at 

a time. Constraints may test elements of the student solution only (syntactic), or 

compare aspects of the student and ideal solutions (semantic). For each constraint if 

the relevance condition is true, this constraint is relevant to the student’s current 

solution or action. The satisfaction condition is then tried. If this is also true, the 

solution is correct with respect to this constraint and no further action is required. 

Otherwise, the constraint has been violated and the feedback action is taken. 

The student model is also based on the constraints. The simplest is an overlay 

model, where the system determines that each constraint is either learned or not 

learned. There are various ways to classify each constraint. This is discussed further 

in Section 6.2. 

2.4.3 Compar ison with Cognitive tutors 

The philosophies underpinning Cognitive Tutors and Constraint-Based modelling are 

fundamentally at odds. ACT-R asserts that learning is achieved when students reflect 

on a successful action, and internalise what they did as procedural knowledge. This 

requires a conscious effort on the student’s part to assimilate what they have done. In 

contrast, Ohlsson asserts that learning occurs as the result of an unsuccessful action: to 

correct their mistake, students must apply their underlying knowledge to the current 

situation, and in doing so they automatically reinforce their internal knowledge of 

what to do. Ohlsson further believes that because the student is forced to reflect on the 
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declarative knowledge that underlies the action to be taken each time they are shown 

feedback, they are learning at a deeper level than simply remembering the procedure 

for solving a particular problem or kind of problem, and so their performance is more 

likely to be transferable to other problems and to the real world. 

At the practical level, CBM has the following advantages (Ohlsson 1994): 

1. The domain model is simple, and need not be runnable.  

Cognitive tutors require a model of the desirable path from problem to solution so that 

they can trace the students’  actions against it. This model must be complete and 

correct from the outset; otherwise the system cannot follow what they are doing. In 

contrast, a constraint-based model need only model pedagogically significant states, 

which in many cases is a much simpler task, because the number of factors that must 

be taken into account is less than the number of steps on alternative paths that a 

Cognitive tutor would need to model. Further, if a constraint is missing the effect is 

highly localised: the system simply fails to detect a particular type of error. Since 

constraints are modular, the rest of the solution should still be able to be assessed. 

This reduces the need to conduct large-scale empirical studies with a domain expert, 

and allows the domain model to be developed incrementally and deployed before the 

model is complete. For example, SQL-Tutor has been used for four years now, yet the 

model is still acknowledged to be incomplete. The initial version exhibited quite a few 

problems when used by a class, yet was still shown to be an effective teacher 

(Mitrovic and Ohlsson 1999).  

To illustrate the difference in effort required, consider the domain of database 

(entity-relationship) modelling. KERMIT (Suraweera and Mitrovic 2001) is a 

constraint-based ITS in this domain. Consider the following two simple problem 

statements, which the student must represent by ER diagrams: 

1. Some students live in student halls. Each hall has a unique name, and each 

student has a unique number. 

2. Each student has a unique number, a first name, and a last name. 

To assess answers to these two problems, KERMIT requires 23 constraints, such 

as (in pseudocode): 

 
( 1 
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“ Each r egul ar  ent i t y  shoul d have at  l east  one candi dat e key 
at t r i but e”  
 
( and  
  ( each st udent - sol ut i on. OBJECT) ,   
  ( OBJECT. t ype = ent i t y)  
)  
 
( count of  ( OBJECT. ATTRI BUTE. t ype = key)  >= 1)  
)  
 

In contrast, Koedinger implemented a procedural model for a Cognitive tutor that 

can assess the same two problems. It required 25 productions, 10 (trivial) general 

chunks and 30 problem-specific chunks, or a total of 55 major elements and 10 trivial 

ones. The 30 problem-specific chunks have no use outside these two problems, so are 

analogous to the ideal solution in the constraint-based solution, which consists of a list 

of tags, which represent the important features of the problem (entities, relationships, 

etc). For the example problems there are a total of 11 tags. Also, the production rules 

are typically more specific than constraints, so cover less of the domain. KERMIT has 

only 90 constraints in total, so in authoring the domain model for these two problems 

more than a quarter of the domain model has been implemented. 

2. There is no need for a bug library 

Cognitive tutors may optionally contain mal-productions as well as the correct ones. 

Without these, the model-tracer is unable to say why a step that is not on the correct 

path is wrong, and so is limited to a “ that is incorrect”  message, or demonstrating the 

correct next step.  

In CBM, incorrect answers are implicitly encapsulated by the constraints: if a 

student has not added two numbers together correctly, they have implicitly made 

some error in their step. It may still be desirable to analyse students’  answers to 

determine which parts of the domain are problematic, and so need to be modelled. It 

is also useful to observe student behaviour to help decide at what level student 

mistakes are pedagogically equivalent. However, the level of analysis required is less 

because it is not necessary to tag errors back to particular procedural steps.  

3. There is no requirement for sophisticated inference mechanisms 

Cognitive tutors need to know the intent of every student action, in order to decide 

what the current goal is, so that the action may be compared to the appropriate goal in 
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the model. Further, every action needs to be made available to the tutor. This requires 

either that the tutor perform evaluation after every student action (e.g., after every key 

stroke), or that the necessary details be inferred. In CBM, we are only interested in the 

state of the answer at any stage, rather than the sequence of actions or the intent of the 

student. We can therefore check constraints using simple pattern matching. 

4. The model permits free exploration of the domain 

A complaint of model-tracing tutors is that they are too restrictive (Self 1999). In 

particular, it is difficult to allow the student to perform explorative actions. Some 

systems do allow variation from the desirable path, but the extent to which this is 

practical is limited by the need to be able to determine when the student has gone 

completely off-track. The further the student is allowed to wander, the harder it is for 

the system to understand why they have deviated from the path and therefore to make 

judgments about whether or not they are completely lost. Worse, it quickly becomes 

almost impossible to make recommendations about how to get back on the path, apart 

from returning to the state where their solution first deviated, so the student may be 

forced to abandon a promising line of attack. SHERLOCK (Lajoie and Lesgold 1992) 

overcomes this by allowing multiple solution paths for each problem, but can still run 

into difficulty if the student keeps switching strategies. Many documented cases, e.g. 

(Ohlsson and Bee 1991), support the notion that “ radical strategy variability”  (i.e. 

complete changes of problem-solving approach) is the normal case. 

CBM, on the other hand, is less troubled by strategy variation, since it does not try 

to track the student’s problem-solving procedure. All that is therefore required is to 

implicitly represent all possible valid solutions. For example, in the SQL domain a 

constraint that tests that all tables are present must consider that tables may be 

represented in either the FROM or the WHERE clause, that the tables may be by 

themselves, in JOINS, in comma-separated lists, or in nested queries, and that table 

names may or may not be aliased. It need not consider whether the student is trying to 

implement a JOIN or nested SELECT. This obviates the need for multiple paths 

through the various options. 
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5. The model is neutral with respect to pedagogy.  

Cognitive tutors need to follow every step the student takes and evaluate that step 

with respect to the correct solution path. For reasons of computational complexity, if 

the student strays from a solution path, it is necessary to get them back onto it quickly, 

before the task of determining the way back becomes computationally intractable. It is 

therefore necessary to remedy problems in a timely fashion, which dictates the 

teaching strategy used: evaluate every step, and provide immediate feedback if there 

is a problem. Note that this may be a deliberate decision: Anderson et al argue that the 

efficacy of this type of feedback is psychologically plausible, and they have 

conducted experiments with the LISP Tutor that show the immediate feedback leads 

to faster learning (Anderson, Corbett, Koedinger and Pelletier 1995). 

CBM does not have this requirement. The solution may be evaluated at any time, 

since it is not necessary to be on any particular path. Partial solutions may be 

evaluated provided the system recognises that the solution is not complete, leaving 

tests for completeness until the student declares they are done. When the student 

submits her final solution, it is checked for completeness as well as correctness. 

2.4.4 Applicability of CBM 

The systems described in this thesis are all declarative in nature, in that the order in 

which student actions take place (i.e. the problem-solving procedure) are not 

considered relevant to the correctness of their behaviour. However, this does not mean 

that CBM can not be applied to procedural tasks. Consider the task of learning to 

count a set of objects. This domain requires a number of constraints upon the order of 

behaviour, such as (Ohlsson and Rees 1991): 

� Always start with the first number in the numbering system being used (i.e. 

integers); 

� Use the numbers in the order defined for the numbering system being used; 

� Only use a new number if the one immediately preceding it has been used 

already; 

� Do not count an object that has already been counted 

� Do not cycle back to an object already counted 
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Ohlsson describes how CBM can deal with such rules by including into the 

student’s current solution state all of the actions taken so far. Thus, if the solution 

state includes a set of the objects counted so far, a constraint may easily check that the 

current object being considered has not already been counted. Similarly, if the 

solution state includes an ordered list of the numbers used so far, it is easy to check 

this to ensure the current number is one greater than the last, and that the current 

number has not already been used. 

Another example is the Cardiac Tutor (Eliot and Woolf 1995) . In this domain, the 

student is presented with a heart patient, which they must diagnose and treat. In this 

domain, both the sequence some actions and the timing of actions is important. CBM 

could model this by including, in both the problem and the solution, a trace of the 

required actions and their times. The constraints could then compare the order and 

timestamps of actions where it is important. In general, procedural domains may be 

handled by ensuring that the problem and solution states contain ordering and/or 

timing information. 

In summary, CBM is a state-based approach that compares the state of the student 

and “ ideal”  solutions, to ensure that the student solution is always in a permissible 

state. It may be applied to any domain where the problem and solution can be 

presented this way. This may include procedural domains. However, for procedural 

domains with a relatively small level of branching in the trace of possible solutions, it 

might be more natural to use a model-tracing approach, since this immediately 

provides the benefit of being able to suggest the next action. 

2.4.5 Example of a constraint-based system: SQL-Tutor  

SQL-Tutor (Mitrovic 1998) is a CBM ITS that teaches the SQL database query 

language to Stage 2 and 3 students at the university of Canterbury.  Several versions 

have been built, the latest being a web-enabled system, built using Allegro Common 

LISP, and the Allegroserve web server software (see www.Franz.com).  

Figure 3 shows the user interface. In SQL-Tutor, constraints are encoded as LISP 

fragments, supported by domain-specific LISP functions. For example, in the 

following constraint, “attribute-in-db” , "find-schema”, “current-database” and “valid-

table”  are all specific to SQL. 
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;  pr obl em number   

( p 147 
 
;  f eedback message 
" You have used some names i n t he WHERE cl ause t hat  ar e not  f r om 
t hi s dat abase. "  
 
;  r el evance condi t i on 
( and ( not  ( nul l  ( wher e ss) ) )  
     ( bi nd- al l  ?n ( names  
       ( s l ot - val ue ss ' wher e) )  bi ndi ngs) )  
 
;  sat i s f act i on condi t i on 
( or  ( at t r i but e- i n- db ( f i nd- schema ( cur r ent - dat abase * st udent * ) )  ?n)  
    ( val i d- t abl e ( f i nd- schema ( cur r ent - dat abase * st udent * ) )  ?n) )  
 
;  whi ch SQL cl ause t hi s const r ai nt  i s  most  r el evant  t o 
 
" WHERE" )  

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Figure 3.  SQL-Tutor interface (web-enabled version) 
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SQL-Tutor contains 509 such constraints.  

SQL-Tutor teaches SQL by presenting the student with English descriptions of 

queries, for which they must write an SQL SELECT statement. The answer section of 

the interface is structured into fields for the six clauses of a SELECT statement: 

SELECT, FROM, WHERE, GROUP-BY, ORDER-BY and HAVING. The student 

types their answer directly into these fields. At any time, they may receive feedback 

on their answer by submitting it to the system. At this stage the answer is evaluated by 

the constraint evaluator, and returns feedback regarding the state of their solution. 

There are six levels of feedback: “Feedback” , “Error log” , “Hint” , “Partial 

solution” , “All errors” , and “Complete solution” . “Feedback”  simply informs them 

that they are right or wrong. “Error Log”  indicates which of the six clauses the first 

error encountered is in. “Hint”  presents the feedback message for the first violated 

constraint. “Partial solution”  displays the ideal solution for the clause to which the 

first violated constraint relates. “All errors”  lists the feedback messages for all 

violated constraints. Finally, “Complete solution”  simply displays the ideal solution in 

its entirety.  The feedback level is automatically set by the system, and increments 

from “Feedback”  to “Error log”  to “Hint”  automatically if the student continues to 

submit an incorrect answer. However, the student may override this behaviour by 

manually selecting the feedback type they require. 

SQL-Tutor also attempts to ease cognitive load by providing scaffolding. The 

bottom section of the screen details the structure of the database the student is 

currently working on, so that they do not need to remember the details of the database 

tables, nor interrupt their work seeking help. This information may be drilled into if 

necessary for further detail. 

The constraint set for SQL-Tutor (like all CBM tutors) is a flat set of constraints. 

Approximately half are semantic, and the other half syntactic. The constraints are 

unevenly distributed among the six SQL clauses: 12% are for the SELECT clause, 9% 

FROM, 34% WHERE, 32% HAVING, 6% GROUP BY and 7% ORDER BY. In 

particular, two thirds of the constraints are related to restrictions upon the data 

extracted from the database (i.e. the GROUP BY and HAVING clauses). The domain 

can also be split into basic queries (requiring a SELECT, FROM and WHERE clause) 
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and more advanced one, which also require the GROUP BY, HAVING, and ORDER 

BY clauses. The basic queries account for 55% of the constraint set, although note 

that the HAVING constraints are mostly identical to those for WHERE. Another way 

of splitting the constraints into basic and difficult is to consider those constraints 

concerning nested queries as advanced (approximately 10%). 

In SQL-Tutor a single pedagogical state may be represented by more than one 

constraint. For example, there are 14 constraints with the feedback message: 

 

“ Check t he i nt eger  const ant  you used wi t h t he aggr egat e f unct i on i n 
HAVI NG”  
 
 

 Of the 509 constraints, there are 347 distinct feedback messages. Also, there are 

cases where the same constraint is repeated because it is relevant to all clauses. 

Sometimes this is pedagogically significant, but in other cases it is merely a 

consequence of the way the constraints are encoded on a clause-by-clause basis. For 

example, the following constraint is present for all six clauses: 

“ You have ended t he <cl ause- name> cl ause wi t h a comma -  t hat  i s  not  
al l owed. ”  

 

If feedback messages that are identical except for the clause name are considered 

equivalent, the number of pedagogically significant states further drops to 202. A 

further consideration is that up to a large number of the constraints deal explicitly 

with constructs where attribute names have been “qualified”  by adding the table 

name, e.g. “MOVIE.DIRECTOR”. This is really only a single concept: either the 

student knows how (and when) to use them or she does not. Also, many constraints 

test for the absence of a particular construct, for example: 

 
' ( p 95 
 " Scal ar  f unct i ons ( numer i c,  dat e or  st r i ng ones)  cannot  be used i n 
t he FROM cl ause -  t hey may onl y appear  i n WHERE,  HAVI NG and SELECT. "  
 
 t  
 
 ( nul l  ( i nt er sect i on ' ( " ABS"  " DATE" )  ( f r om- cl ause ss)  : t est  ' equal p) )  
 
 " FROM" )  
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The data from the study described in section 6.2 suggests that a student will cover 

around 25% of the constraint set after an extensive session with SQL-Tutor, and that 

this is sufficient to display proficiency in SQL. 

CBM does not require any explicit structure to the model, however there may 

benefits to applying one: the model may be easier to maintain, and the model might 

form the basis of a curriculum. Adding structure might also allow the model to be 

opened to the teacher and student, by providing a high-level view of the student’s 

performance. It also aids the selection of a target constraint for selecting the next 

problem. The difficulty is in deciding what structure to use, since this may differ 

according to how it will be used. Further, teachers may disagree on the structure, and 

students may learn the domain in different ways, necessitating individual domain 

structures. This is discussed in section 6.2. 

SQL is an example of a declarative domain: the student’s task is to transform a 

natural language description of a query into the SQL representation. The order in 

which they do this is not important. SQL is a relatively small language, because it is 

very compact: unlike more general programming languages such as Java, a single 

construct, such as a join in the FROM clause, has high semantic meaning, in that it 

implies considerable activity which is hidden from the writer (lock the table, open an 

input stream, retrieve the first record…). In spite of its syntactic simplicity, students 

find SQL very difficult to learn. In particular, they struggle to understand when to 

apply a particular construct, such as GROUP BY or nested queries. The major tasks of 

the tutor are therefore twofold: 

1. To provide a rich set of problems, requiring many different constructs, that 

the student may learn when to apply them, and; 

2. To provide drill in building those constructs. 

SQL therefore seems well suited to CBM: given sufficient practise, the student will 

internalise when to apply each construct, and how to build it. 

SQL-Tutor has a fairly large constraint set because of the amount of redundancy 

in the SQL language: there are often different ways to solve the same problem, and 

the details can vary greatly (e.g. qualification of attribute names, aliasing of table 

and/or attribute names). This gives SQL a quite high branching factor. However, more 

general programming tasks such as Java would probably be worse in this respect, 
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leading to very large constraint sets. An alternative might be to limit what the student 

can do. The latter is a common strategy in the domain of programming languages 

(Deek and McHugh 1998). 

The response from students has been very positive, and statistical analysis of their 

performance indicates a significant improvement after as little as two hours of 

exposure to the tutor (Mitrovic and Ohlsson 1999). SQL-Tutor is now used regularly 

as part of a second year course on databases, and is popular with students. It is also 

the test bed for further research into ITS and CBM, including animated pedagogical 

agents (Suraweera and Mitrovic 2000), Bayesian student modelling (Mayo and 

Mitrovic 2000; Mayo and Mitrovic 2001), evaluating feedback effectiveness 

(Mitrovic and Martin 2000; Mitrovic, Martin and Mayo 2002), and the research 

described in this thesis (Martin 1999; Martin 2000; Martin and Mitrovic 2000a; 

Martin and Mitrovic 2000b; Martin and Mitrovic 2001a; Martin and Mitrovic 2001b; 

Martin and Mitrovic 2002a; Martin and Mitrovic 2002b). 
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3 Addressing limitations of CBM 

Tutors built using CBM have been shown to be effective teaching environments. 

SQL-Tutor has been successful in the classroom, and is well liked by the students 

who use it. Further, the Web version is used by a large number of people world-wide: 

over 400 people have tried it, and when the Web version was last taken “off-air”  for 

evaluation testing this invoked scores of emails from users wanting to know why it 

was no longer available. KERMIT elicited favourable qualitative feedback from 

students at Canterbury University. CAPIT, an ITS for teaching punctuation and 

capitalisation to elementary school children, has also been well received (Mayo and 

Mitrovic 2001). 

In spite of these successes, there are still many improvements that could be made.  

We are interested in two main themes: increasing the usefulness of the knowledge 

base, and making constraint-based tutors easier to build. From these broad categories, 

we chose three specific goals to direct our enhancements to CBM: improving the 

quality of feedback, facilitating the generation and selection of new problems, and 

simplifying the creation of the knowledge base. Each of these is now introduced. 

3.1 Feedback can be misleading 

Feedback in SQL-Tutor is applied directly to each constraint in the domain model: 

when a constraint is violated, it produces a message that describes the underlying 

domain principle that has been failed. The student may additionally be shown all or 

part of a correct solution. SQL-Tutor selects problems from an authored set of 

examples. Each problem consists of the problem text, and an “ ideal”  solution to the 

problem. In SQL there is usually more than one correct query for any problem, so the 

ideal solution represents just one of a (possibly large) set of correct solutions. Because 
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the domain model is state-based, it is able to cope with differences between the 

student and ideal solutions by modelling the various different ways that a state (e.g. 

all tables used) might be represented. 

However, problems arise when the ideal student solution is presented to the 

student as feedback. Through a series of in-class evaluations of SQL-Tutor, we have 

measured the apparent speed of learning while pupils interact with the system 

(Mitrovic and Martin 2000). Analysis of the data obtained indicates that differences in 

the feedback given have a significant effect on the speed of learning. For example, 

presenting either the constraint feedback or part of the ideal solution increases 

learning speed, while presenting the entire solution is detrimental. Further, one of the 

most successful modes of feedback is “partial solution” , where the pupil is presented 

with the fragment from the ideal solution for one of the SQL clauses in which they 

have made mistakes. The drawback with this approach is that the fragment may 

sometimes be correct within the context of the ideal solution, but incorrect within the 

context of the student solution. Consider the following example: 

Problem: 

List the titles of all movies directed by Stanley Kubrick.    

Ideal Solution: 

SELECT t i t l e   
FROM movi e   
WHERE di r ect or =( sel ect  number  f r om di r ect or   
     wher e f name=' St anl ey '  and l name=' Kubr i ck ' )  

Student Solution: 

SELECT t i t l e   
FROM movi e j oi n di r ect or  on number  = di r ect or  
WHERE f name=' St anl ey '  and l name=' Kubr i ck '  

 

Submitting this attempt (correctly) yields the following result: 

"You have used an attribute in the FROM clause which appears in several tables you 

specified in the FROM clause. Qualify the attribute name with the table name to 

eliminate ambiguities." 
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However, when prompted for a partial solution for the FROM clause, the system 

returns “FROM movie” , which is correct for the ideal solution but not correct within 

the context of the student solution.  

A CBM knowledge base uses the constraints to diagnose the student’s answers 

and build a student model, the latter being described by Ohlsson only in passing. In 

contrast, Cognitive tutors are able to indicate to the student what they should be doing 

next, by modelling the problem-solving steps. While a CBM-based system can 

comment on the incorrect solution (even if empty), it cannot offer specific instructions 

on how to fix errors because the model intentionally contains no information 

whatsoever about the problem-solving procedure. Neither is CBM able to solve the 

problem in order to indicate a possible solution, because the knowledge elements 

(constraints) are discrete and so lack information indicating the sequence in which 

they should be considered. Finally, the only requirement of each constraint is that they 

are able to test whether or not the student solution is in the appropriate relevance and 

satisfaction states, but they do not need to be able to indicate why the answer is in this 

state or how to get it into this (satisfaction) state if it is not there already. 

In the three CBM implementations described earlier (SQL-Tutor, CAPIT, and 

KERMIT), this limitation is real. In SQL-Tutor, constraints are encoded in LISP. In 

each constraint the relevance and satisfaction conditions are each a standard LISP 

condition consisting of function calls, combined using the standard LISP logical 

connectives AND, OR and NOT. Functions may be internal to LISP (e.g. CONS, 

FIRST) or domain-specific (e.g. at t r i but e- of ( t abl e,  at t r i but e) , which 

tests whether a particular term attribute is belongs to the database entity table). A 

domain-independent pattern-matching routine is also included.  Similarly, KERMIT 

contains a domain-specific functional language for representing constraints. CAPIT 

(Mayo and Mitrovic 2001) uses an extension of regular expressions to represent 

constraints. It is possible that this could be used to correct errors, although no attempt 

is made to do so. However, CAPIT is unusual in that the domain is deterministic: 

there is only one way to correctly capitalise and punctuate a sentence in New Zealand 

English. Further, the domain is simple: there are only 25 constraints. It is doubtful that 

the language used in CAPIT could be extended to more complex domains because it 

is too limited. 
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The consequence of this is that none of these systems can tell the user what their 

answer should have been because when they discover a constraint violation, they 

cannot determine what to do about it. In SQL-Tutor the output of the constraint 

evaluation process is the list of satisfied and violated constraints, and the variable 

bindings for all instances where each constraint was found to be relevant. This is of 

little use however, since the system is unable to use them to run the constraint 

evaluation in reverse to arrive at a correct version (with respect to this constraint) of 

the student solution. KERMIT also uses a domain-specific representation of 

constraints, which include specialised sub functions plus ad hoc algorithms to 

evaluate solutions against the constraints. 

KERMIT, CAPIT and SQL-Tutor therefore not only lack an algorithm for 

problem solving, for two of them it would not be possible directly from the constraint 

set because the constraints do not provide the information necessary to overcome a 

violation. To be able to correct errors, it would be necessary for these systems to 

include specific “ repair”  functions for each constraint, which would (at least) double 

the constraint authoring effort. However, since each constraint maps a relevance state 

to a satisfaction state, it in some way describes how the student solution, if in the 

relevance state, should be further constrained in order to satisfy the underlying 

declarative rule. It therefore seems that the constraint does encapsulate how to 

produce a valid part-answer from a certain range of inputs (i.e. those relevant to this 

constraint), but this information is hidden in the functions that carry out the testing. 

Therefore, what is needed is a constraint representation that makes all of this 

information transparent, and hence able to be used by an algorithm to generate a part-

solution that satisfies the constraint. We have developed such a representation, which 

is described in Chapter 4. 

Once the constraints are in a suitable representation, an algorithm is needed that 

reverses the logic of the constraint evaluator, i.e. given a satisfaction condition it 

produces a part-solution that satisfies it with respect to the ideal solution and the 

student’s attempt. We have developed such an algorithm, which is described in 

Chapter 5. 
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3.2 Limited problem set 

Another feature the three ICTG systems share is that they contain enumerated 

problem sets that have been hand-authored by their creators. SQL-Tutor currently 

contains 82 such problems, KERMIT has six, and CAPIT has 45. Each system 

chooses problems based on the student model: the constraints which are relevant to 

each question are compared to the student model, to see how they match the student’s 

performance on those constraints. The problem that best matches the currently 

targeted constraints wins. Different methods are used to determine the target 

constraint(s). SQL-Tutor uses the constraint that has been violated most often. This 

may be selected from the entire constraint set, or from a subset from a specific part of 

the curriculum, such as “sorting” . In deciding which constraint has been violated most 

frequently, either all or a recent subset of the student’s behaviour may be considered. 

Candidate problems are those for which this constraint is relevant, with the problem 

of the most suitable difficulty being selected. A similar system is used in KERMIT. 

CAPIT, in contrast, uses a Bayesian normative system to decide which constraint 

should be targeted and to determine which problem is most suitable. 

The problem with all of these systems is that the size of the problem set is very 

limited, and so although the problem selection criteria may appear sensible, in 

practice they may of limited use because there are so few problems to select from. For 

example, in SQL-Tutor each constraint is, on average, relevant to three problems in 

the set, with only 20% of the constraints being relevant to any problem at all. It is 

therefore highly likely that if a student is having particular trouble with an individual 

constraint, they will quickly exhaust all relevant problems. Further, since not all 

constraints have relevant problems, there are many concepts in our domain knowledge 

base that we are simply unable to test. We also need to be able to support users of 

varying (and changing) abilities, so we need to be able to test each constraint using 

problems that have varying difficulties, which further increases the number of 

problems required. Finally, in determining the difficulty of a problem with respect to 

the current student at this moment in time, we should ideally consider the student’s 

knowledge of each constraint relevant to each problem. This means the real range of 

difficulties a problem set represents changes with time, so we cannot guarantee at any 
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time that we have a problem of a given difficulty with respect to the student. For 

example, if a student does very well and rapidly learns a large proportion of the 

constraints, the difficulty of the problems with respect to that student may quickly 

drop too low to contain any problems that are sufficiently challenging. Conversely, if 

they keep violating constraints, the simplest problems may soon appear beyond their 

ability. This increases the range of difficulties we need to represent, and so further 

increases the number of problems required. 

None of these issues are caused by CBM per se: to reduce them we simply need to 

write more problems. However, writing problems is hard. It took many days to write 

the 82 problems for SQL-Tutor. Moreover, it is difficult to write a problem set that 

covers all constraints: we can either write problems independently of the constraints 

and regularly test them against the constraint set to see what the current coverage is, 

or we can manually investigate each constraint, and try to write several problems that 

cover that constraint over a range of difficulties. Recalling that SQL-Tutor contains 

over 500 constraints, this will be a large undertaking.  

In the previous section we argued that it should be possible to use the information 

in the constraints to correct a student answer with respect to an individual constraint. 

A special case is when the student answer is blank. In this case, we are solving a 

problem from scratch. Recall that in all three ICTG systems, an ideal solution is used 

when diagnosing the student answer: both the student answer and the ideal solution 

are used as input to the constraint evaluator. However, for around half of the 

constraints, only the syntax of the student answer is tested, and so the ideal solution is 

not required. Since constraints are modular, it follows that these can act independently 

of the semantic constraints to determine whether the current solution is valid SQL, 

regardless of the ideal solution. If, as suggested in the previous section, the constraints 

can map an incorrect solution to a correct one, the syntactic constraints should be able 

to map an invalid SQL statement to a valid one. Given a suitable starting point, it 

should be possible to automatically generate an arbitrary SQL statement. In Chapter 6 

we show how we can use an individual constraint as the starting point and 

automatically “grow” a valid SQL statement for which this constraint is relevant, and 

we describe an algorithm we have developed for doing this. This new SQL statement 

forms the ideal solution of a new problem for testing this constraint. We can then 
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apply this algorithm to the entire constraint set, to generate problems to cover the 

domain. Thus while CBM does not cause the limitations discussed in this section, it 

can be used to overcome them. 

3.3 Building an ITS is hard 

CBM knowledge bases are easier to build for some domains than those adopting 

model tracing. For example, the knowledge base in KERMIT contains just 92 

constraints. Recall from Section 2.4.3 that an equivalent representation for a 

Cognitive tutor required a total of 55 non-trivial knowledge elements to represent just 

23 constraints and two problem statements (with 11 tags). While direct comparisons 

can be misleading, this nevertheless seems a significant difference. Further, in 

Cognitive tutors each knowledge element has an effect on a potentially large region of 

the model. In comparison, modifying a constraint has no effect at all on the rest of the 

constraint set.  

In Cognitive tutors the model has a high requirement of fidelity. An incomplete 

model will prevent the user completing the task. Thus, having decided what problems 

you want the student to solve, a complete model must then be built for the procedures 

involved. In contrast, CBM does not have this necessity. An incomplete constraint-

based model will fail to catch some student errors but it will not prevent the user 

finishing the problem. A missing constraint is therefore not a catastrophic situation, 

unlike a missing knowledge element (or procedural rule) in Cognitive tutors. This 

enables CBMs to be built incrementally, adding new constraints whenever incorrect 

student answers are “ let through” by the system.  

In spite of these advantages CBMs are still hard to build. It is unrealistic to expect 

someone other than an ITS engineer to build one from scratch since they require a 

good knowledge of how the system will use the constraints, as well as of the domain 

itself and the representation used to build the knowledge elements. Since, in Section 

3.1, we identified a need for a new constraint representation, we also took this 

opportunity to develop a simple constraint representation, together with a set of rules 

on how constraints should be written, so that someone other than an ITS engineer 

(e.g. a domain expert) might be able to produce the knowledge base for a given 
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domain. This is discussed in Section 7.3. A consequence of the new representation 

and its requirements to facilitate problem solving is that all domain-specific 

information must be explicitly encoded in the constraints. This has the advantage that 

the domain-specific information is cleanly separated from the constraint evaluator. 

We can capitalise on this feature to produce an authoring tool for constraint-based 

ITS. We have developed such a system, Web-Enabled Tutor Authoring System 

(WETAS), which is described in Chapter 7. 

3.4 Summary 

CBM is a relatively new approach to domain and student modelling that simplifies the 

construction of domain models. In doing so however, it loses one of the major 

advantages of other methods such as model tracing: it is unable to indicate what the 

student should have done. As a result, it provides a poorer level of feedback. We have 

sought to overcome this limitation. We have also endeavoured to address the 

continuing problem of how to make ITS easier to construct. In the next four chapters, 

we describe these enhancements to CBM. 
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4 Constraint representation 

To be able to reason about the nature of constraint violations, either every operation 

performed during constraint evaluation must have a corresponding counter-operation 

that corrects the fault, or all of the information used to test the constraint must be 

available to the problem-solving algorithm. The latter has the benefit of (theoretically) 

not requiring any more effort on the part of the author, whereas the former would 

roughly double the knowledge engineering effort. For this reason, we introduce a new 

representation of constraints is more transparent, and is reversible. Reversible means 

that a constraint defined in this language can not only be used to determine whether or 

not the solution satisfies it, it can also be used to enumerate correct solutions with 

respect to this constraint. 

The constraint representation in SQL-Tutor already uses pattern matching via the 

domain-independent MATCH function. However, it also uses many domain-specific 

functions to decide valid values of terms, test for compatibility of two or more values 

(e.g. an attribute and the table that the attribute appears to belong to), and to post-

parse terms such as qualified names. These functions hide the logic that determines 

whether or not a solution is correct. For example, the function val i d- t abl e( t 1)  

determines whether or not t 1 is a valid table name, but is unable to tell us what t 1 

should be if this test fails. It is these functions that must be removed from the 

representation. We investigate whether this can be overcome, and propose the 

following hypothesis: 

 

Hypothesis 1: It is possible to build a constraint-based domain model that 

contains sufficient information to solve problems and correct student solutions, by 

adopting a constraint representation that makes all of the logic in each constraint 

transparent to the system. 
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4.1  Constraint representation 

In the new representation, constraints are encoded purely as pattern matches. Each 

pattern may be compared either against the ideal or student solutions (via the 

MATCH function) or against a variable (via the TEST and TEST_SYMBOL 

functions) whose value has been determined in a prior match. An example of a 

constraint in SQL-Tutor using this representation is: 

( 34  
" I f  t her e i s  an ANY or  ALL pr edi cat e i n t he WHERE cl ause,  t hen t he 
at t r i but e i n quest i on must  be of  t he same t ype as t he onl y 
expr essi on of  t he SELECT cl ause of  t he subquer y. "  
 
;  r el evance condi t i on 
( mat ch SS WHERE ( ?*  ?a1  
  ( " <"  " >"  " ="  " ! ="  " <>"  " <="  " >=" )   
  ( " ANY"  " ALL" )  " ( "  " SELECT"  ?a2 " FROM"  ?*  " ) "  ?* ) )  
 
;  sat i s f act i on condi t i on 
( and ( t est  SS ( ^ t ype ( ?a1 ?t ype) )   
     ( t est  SS ( ^ t ype ( ?a2 ?t ype) ) ) )  
 
" WHERE"  
)  
 

This constraint tests that if an attribute is compared to the result of a nested 

SELECT, the attribute being compared and that which the SELECT returns have the 

same type (^ t ype is an example of a macro, which are described in section 4.1.4). 

The new representation consists of logical connectives (AND, OR and NOT) and 

three functions: MATCH, TEST, and TEST_SYMBOL. These are now described. 

4.1.1 MATCH 

This function is used to match an arbitrary number of terms to a clause in the student 

or ideal solutions. The syntax is: 

 
( MATCH <sol ut i on name> <cl ause name> ( pat t er n l i s t ) )  
 

where <sol ut i on name> is either SS (student solution) or I S (ideal solution) and 

<cl ause name> is the name of the SQL clause to which the pattern applies. 

However, the notion of clauses is not domain-dependent; it simply allows the solution 
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to be broken into subsets of the whole solution. The ( pat t er n l i s t )  is a set of 

terms that match to individual elements in the solution being tested. The following 

constructs are supported: 

� ?*  – wildcard: matches zero or more terms that we are not interested in. For 

example, ( MATCH SS WHERE ( ?*  ?a ?* ) )  matches to any term in the 

WHERE clause of the student solution, because the two wildcards can map to 

any number of terms before and after ?a, so all possible bindings of this 

match gives ?a bound to each of the terms in the input; 

� ?* var  – named wildcard: a wildcard that appears more than once, hence is 

assigned a variable name to ensure consistency. For example: 

 
( AND ( MATCH SS SELECT ( ?* w1 " AS"  ?* w2)   ( 1)  
     ( MATCH I S SELECT ( ?* W1 ?N ?* ) )    ( 2)  

 

First, (1) tests that the SELECT clause in the student solution contains the 

term " AS" . Then, ?* W1 in (2) tests that the ideal solution also contains all the 

terms that preceded the " AS" , and then maps the variable ?N to whatever 

comes next. The unnamed wildcard at the end of the second MATCH discards 

whatever comes after ?N; 

� ?var  – var iable: matches a single term. For example,  

 
( MATCH I S SELECT ( ?what ) )  
 

matches ?what  to one and only one item in the SELECT clause of the ideal 

solution; 

� " st r "  – literal str ing: matches a single term to a literal value. For example, 

in 

 
( MATCH SS WHERE ( ?*  " >="  ?* ) )  
 

one of the terms in the WHERE clause of the ideal solution must match 

exactly to " >=" ; 

� ( l i t 1 l i t 2 l i t 3. . . )  – literal list: list of possible allowed values for a 

single term. For example: 
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( MATCH SS WHERE ( ?*  ?n1 ( " >="  " <=" )  ?n2 ?* ) )  
 

assigns the variable ?n1 to any term preceding either a " >="  or a " <=" , and 

?n2 to the term following it. Note that because ?n1 and ?n2 are not 

wildcards, they must map to a single term each, hence if the " >="  or " <="  is 

either at the start or the end of the clause this match will fail, because one (or 

both) of ?n1 and ?n2 will fail to match. 

 

Variables and literals (or lists of literals) may be combined to give a variable 

whose allowed value is restricted. For example,  

 
( MATCH I S ORDER_BY ( ?*  ( ( " ANY"  " ALL" )  ?what )  ?* ) )  
 

 means that the term that the variable ?what  matches to must have a value of " ANY"  

or " ALL" . There is no limit to the number of terms that may appear in a literal list, or 

in a MATCH in general. 

4.1.2 TEST 

Having performed a MATCH to determine the existence of some sequence of terms, 

we often wish to further test the value of one or more variables that were bound. This 

is carried out using the TEST function, which is a special form of MATCH that 

accepts a single pattern term and one or more variables. For example (the following 

constraint is simplified): 

 
( 2726 
" Check you have used t he cor r ect  l ogi cal  connect i ve i n WHERE t o 
r epr esent  a r ange of  number s. "  
 
( and 
    ( mat ch SS WHERE ( ?*  ?n1 ?op1 ?what 1  
                    ( ( " and"  " or " )  ?l c)   
                    ?n1 ?op2 ?what 2)  ?* )     ( 1)  
    ( mat ch I S WHERE ( ?*  ?n1 " bet ween"  ?* ) )    ( 2)  
)  
 
( t est  SS ( " and"  ?l c) )        ( 3)  
 
" WHERE"  
)  
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This constraint first tests for an attribute (?n1) in the WHERE condition of the 

student solution that is being compared to two different values (?what 1 and 

?what 2) in (1). Then, (2) looks for the same attribute being used in a BETWEEN 

construct in the ideal solution. If this is the case, the two tests in the student solution 

must be ANDed together. The TEST function call in (3) checks that this is the case, 

by ensuring that the logical connective (represented by the variable ?l c) equates to 

“and” . The syntax of the TEST function is: 

 
( TEST <sol ut i on name> ( t est - t er m) )  

 

where <sol ut i on name> is again IS or SS, and ( t est - t er m)  is a single value 

test, such as a test against a literal or list of literals. In the previous example, a single 

value test is made for the value " and" . In effect, TEST performs the same function 

as MATCH, but where the pattern contains just a single match term, on a list that 

contains just the value of the variable in question, in this case ?l c .  

4.1.3 TEST_SYMBOL 

We often need also to be able to test characters within the value of a term. For 

example, a valid SQL string is defined as a single quote followed by any characters, 

and closed with another single quote. To test this we add the function TEST-

SYMBOL, which acts exactly like the MATCH function, except it accepts a variable 

name instead of a clause name, and further parses the value of the variable binding 

into individual characters, before applying the match pattern. For example, to test for 

a valid SQL string in the variable ?st r : 

 
( TEST_SYMBOL SS ?st r  ( " ' "  ?*  " ' " ) )  
 

This test would succeed for values of ?st r  such as " ' Kubr i ck ' "  for example, but 

fail for " ' Smi t h"  because of the missing closing quote. The general syntax is: 

 
( TEST_SYMBOL <sol ut i on> <var > ( pat t er n) )  
 

Note that in both TEST and TEST_SYMBOL, the solution name is passed as a 

parameter even though it doesn’ t appear to be necessary, since these tests are on 

already bound variables, not an input string. However, this is required because the test 



56 

may be a macro, which may perform further pattern matches on the input, so it needs 

to know which solution to match. Macros are now described. 

4.1.4 Removing domain-specific functions: macros 

At the start of this chapter we stated that SQL-Tutor uses domain-specific functions to 

extract features of the solutions and to make special comparisons between them. In 

the new representation this is forbidden, because it hides the logic of the test. In SQL-

Tutor almost all domain-specific functions test for a valid value or pair of values. For 

example, in: 

 
( val i d- t abl e ( f i nd- schema ( cur r ent - dat abase * st udent * ) )  ' ?t 1)  

 

Val i d- t abl e tests that ?t 1 is a valid table name in the student’s current database. 

Similarly: 

 
( at t r i but e- of  ( f i nd- t abl e ' ?t 1 ( cur r ent - dat abase * st udent * ) )  ' ?a1) )  
 

tests that ?a1 is a valid attribute in the table ?t 1. Routines such as f i nd- t abl e 

and cur r ent - dat abase (a Common Lisp Object System selector method) are 

simply data accessors. In both val i d- t abl e and at t r i but e- of , the function 

might alternatively be represented as a membership test on an enumerated list: for 

val i d- t abl e the list will contain the set of table names for a given database, while 

for at t r i but e- of  each member of the list will be a tuple of type 

( <at t r i but e> <t abl e>) . Since our language already supports testing against 

lists of literals, these can be encoded using the pattern matching language, i.e. 

 
( TEST SS ( ( " MOVI E"  " DI RECTOR" . . . )  ?t 1) )  
 

which tests that ?t 1 is a valid table, and 

 
( TEST SS ( ( " TI TLE"  " MOVI E" )  ( " YEAR"  " MOVI E" )  ( " LNAME"  
" DI RECTOR" ) . . . )    
          ( ?a1 ?t 1) )  
 

which tests that ?a1 and ?t 1 form a valid attribute/table combination, i.e. that ?a1 

is an attribute of table ?t 1. 

Many of the other domain-specific functions are either accessor functions or 

perform pattern matching. The former can be eliminated by making the required 
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values available to the pattern-matching algorithm (for example, as standardised 

global variables), while the latter can all be achieved using the pattern matching 

language itself. The only function from SQL-Tutor we were unable to represent 

elegantly was “ length” , which tests how many of a particular item exist. In practice, 

we could represent this function in our language by some other means in all but one 

case of its use. In the single exception, which tests for the number of attributes in the 

SELECT clause, we did not consider this constraint pedagogically necessary, 

although we could have easily coded it via a macro that enumerates all possibilities. 

However, it remains an open question whether other functions (such as a more general 

“ length”  function) would be necessary in other domains. 

We have now replaced function calls with pattern matching, however it would be 

cumbersome to have to enumerate all attributes of all tables every time we wish to 

perform such a test. To overcome this we use macros to represent partial pattern 

matches that are used often. For example, the macro for ^at t r i but e- of  used 

previously is: 

 
( ^at t r i but e- of  ( ??a ??t )  
    ( TEST SS ( ( ( " TI TLE"  " MOVI E" )  ( " LNAME"  " DI RECTOR" ) . . . )     
              ( ?a1 ?t 1)  
             )  
    )     
)  
 

The syntax of a macro definition is: 

 
( <MACRO NAME> ( <par amet er s>)  <body>)  
 

The name must always begin with a “^ ”  so that macros can be easily identified by the 

constraint compiler. Similarly, the parameter names are preceded by “??”  so that they 

can be distinguished from local variables in the macro body. The body may be any 

valid condition including logical connectives, MATCH functions and other macro 

calls. Consider the following example from SQL: 

 
( ^at t r i but e- al i as ( ??name ??at t r  ??t abl e)  
  ( and 

  ( t est  ?? ( ^name ??name) )  
  ( or - p  
    ( t est  ?? ( ^at t r - name ( ??name ??at t r  ??t abl e) ) )               ( 1)  
    ( mat ch ?? SELECT  
         ( ?*  ( ^at t r - name ( ?_a1 ??at t r  ??t abl e) )  " AS"  ??name) )    ( 2)  
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  )  
 )  

)  
 

This macro accepts an attribute name as input and returns the physical attribute and 

table names. In SQL attributes can be aliassed, i.e. they can be assigned another name. 

For example: 

 
SELECT movi e. number  AS num 
FROM movi e 
ORDER- BY num 
 

In this example, “num”  is defined as an alias for movi e. number  in the SELECT 

clause, and is used again in ORDER-BY. To test that num in ORDER-BY is a valid 

attribute, we need to know what it maps to, which is achieved by the ^at t r i but e-

al i as  macro defined previously. If ??name fails the test in (1), i.e. it is not a valid 

attribute name, (2) tries to match it to an alias definition in the SELECT clause. 

Hence, the macro needs to know which solution it is testing. The constraint that tests 

for a valid attribute in ORDER-BY is therefore: 

 
( 149 
" You have used some names i n t he ORDER BY cl ause t hat  ar e not  f r om 
t hi s dat abase. "  
 
( mat ch SS ORDER_BY ( ?*  ( ^name ?n)  ?* ) )  
 
( t est  SS ( ^at t r i but e- al i as ( ?n ?a ?t ) ) )  
 
" ORDER BY" )  
 

When the constraint set is loaded, the macro names are expanded into their 

corresponding pattern matches. The parameter names in the macro definition are 

substituted for those passed in, and the “??”  solution name placeholders are replaced 

with the solution name from the caller. Hence, all routines that can call a macro (i.e., 

MATCH, TEST and TEST_SYMBOL) must specify a solution name. Note that 

macros may also be embedded in pattern matches, and that the macro being called 

may have more than one parameter. For example: 

 
( mat ch SS SELECT ( ?*  ( ^at t r - name ( ?n ?a ?t ) )  ?* ) )  
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In this case, the first parameter to ^at t r - name (?n) is matched to a term in the 

input string, with ?a and ?t  being either tested or instantiated by the macro, 

depending on whether or not they are already bound. 

When the constraints are compiled all macro calls are recursively removed such 

that the resulting code contains purely pattern matches with no sub functions, and 

hence all tests are fully enumerated. It is this property that facilitates generating SQL 

from the constraint set. 

4.1.5 Limitations of the representation 

The constraint language is limited by the need to be able to generate solutions that 

satisfy the constraint set. This means that it must be possible to enumerate the set of 

constructs that satisfies each constraint. This gives rise to two limitations: the inability 

to call external functions, and a lack of recursion. Each is now described. 

 

Inability to call external functions 

It is not permissible for constraints to call external functions, such as  arithmetic 

operations, since these could not be relied upon to return the set of all possible 

answers in a given situation. For example, the built-in “+”  function could not return 

all possible values of X and Y in the question “X + Y = 5?” . This is a common 

problem with languages that perform unification: for example, PROLOG is unable to 

answer such questions. The workaround is to write these functions in the pattern 

matching language, usually by enumerating all cases in which we are interested. In 

SQL-Tutor, for example, the operator INCR (where INCR(X,Y) means Y = X + 1) 

was encoded by enumerating all values of X and Y that arose in the problem set. 

 

Lack of recursion 

A fundamental limitation of the new representation is that it cannot represent 

recursive definitions: although the macros add structure to the constraints in raw form, 

the expanded representation of any test is simply the logical connection of linear 

pattern matches upon a set of strings. This means that functions such as 

“greater_than” and “ less_than”, for example, would need to be enumerated, rather 

than writing a recursive definition. In the SQL domain, it was necessary to test 
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whether a number was one larger than another, and this too had to be enumerated. 

Perhaps more seriously, the domain itself may allow recursive constructs, such as 

nested loops. In SQL, queries may be nested in the SELECT clause to an arbitrary 

depth. It is not possible in the new constraint language to represent such constructs, 

and so it is not possible to test their correctness. However, it is still possible to 

represent a suitable subset. In SQL-Tutor, we set a limit of three levels of nesting, 

since we reasoned that it is unlikely a query would require more than this, so we 

would never set a problem that exceeded this limit. We then wrote constraints that 

explicitly tested for up to three levels, i.e. we enumerated all the possibilities from 

zero to three levels of nesting. However, there may be other domains for which 

recursion is more fundamental, and hence this limitation may be more difficult to 

overcome. 

4.2 The constraint evaluator  

The constraint evaluator performs three functions: test the student solution against the 

constraint set, extract relevant fragments of the solution, and collate the set of 

corrections that need to be performed (if any). These latter functions are required for 

problem solving (Chapter 5). 

Constraints are evaluated one at a time. On completion, the solution is either 

correct with respect to the constraint set (i.e. it does not violate any constraints) or it 

has violated one or more constraints and may be passed on for correction. For each 

constraint the relevance condition is first checked. If it fails, the constraint is not 

relevant and no further action is taken. Otherwise, the satisfaction condition is 

checked. If this fails, the list of required corrections is passed on. If the constraint 

succeeded, binding and fragment information is recorded.  

All of the individual statements in the relevance condition are evaluated using the 

pattern matcher until a failure occurs, which signifies that we are no longer interested 

in this constraint. However, when the satisfaction condition is evaluated, we test all 

bindings that resulted from the relevance condition even if a failure has been 

encountered, so that we have failure information about all of the failed bindings, not 

just the first. The overall constraint evaluation algorithm is: 
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Test - sol ut i on:  
For  each const r ai nt  i n t he set  
   i f  t he r el evance condi t i on eval uat es 
      For  each set  of  val i d bi ndi ngs 
         i f  t he sat i s f act i on condi t i on eval uat es 
            Add t he ( modi f i ed)  bi ndi ng set  t o t he set  of    
              f r agment  i nf or mat i on f or  t hi s const r ai nt   
         el se 
            Add t he cor r ect i on i nf or mat i on f or  t hi s bi ndi ng set    
              t o t he l i s t  of  cor r ect i ons needed f or  t hi s  
              const r ai nt  
      Add t he bi ndi ng and cor r ect i on i nf or mat i on f or  t hi s  
       const r ai nt  t o t he set  f or  t hi s pr obl em.  

 

Constraints are tested directly by evaluating the LISP fragments that they consist of. 

There are only six functions that may be called: MATCH, TEST, TEST_SYMBOL, 

AND, OR-P, and NOT-P. “AND” is the built-in LISP function, while OR-P and 

NOT-P are modified versions of the built-in functions OR and NOT, which are 

required to maintain binding and correction information consistency during failures. 

The logic pattern-matcher is therefore contained wholly within these functions, with 

MATCH and TEST being the most important. Further, all binding and correction 

information is collected by these functions. Each function is now described. 

The MATCH and TEST Functions 

The MATCH and TEST functions are essentially wrappers around the same 

algorithm. In the case of MATCH, the input is a clause from the student solution, 

which is tested against a list of one or more pattern terms. TEST accepts a single 

pattern term and has no other input: all variables participating in the pattern are 

assumed to be either instantiated already, or they will be instantiated as a side effect 

of the test. 

When a MATCH is performed, some of the terms in the match pattern may have 

already been bound by previous matches. Because matching can include wildcarding, 

some terms may have already been bound in multiple ways. Therefore, an underlying 

function, MATCH-BINDINGS, takes the pattern list and tries to match it to the 

student solution for each valid set of bindings so far. On commencement of evaluating 

a given constraint, the binding set contains just a single set with a default root 

binding. Each time a variable is encountered, the binding set is updated with the 

current binding set being duplicated for each possible binding value for the variable. 
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Each of these new sets is then recursively tested against the rest of the pattern to try to 

complete the match. At any point one or more of these binding sets may be further 

split because another variable in the same pattern is encountered that can be satisfied 

in multiple ways. Further, during problem solving (see Chapter 5), each clause of the 

interim solution may contain more than one fragment, so MATCH-BINDINGS tests 

each fragment individually. The final binding list returned is a list of the sets of 

binding values for which the pattern successfully matches.  

The MATCH function further modifies the binding set returned from MATCH-

BINDINGS. Each time a match is successful, it implies that the associated piece of 

SQL is of interest to us for problem solving. Therefore, the pattern itself is recorded in 

each valid binding set. The problem solver can then instantiate the fragment with the 

bindings from the set to reconstruct the original fragment of the solution that is 

relevant to this constraint. Similarly, the TEST function records successful tests in the 

binding information. This is required because many tests result in new variables being 

instantiated, which are later involved in a MATCH or TEST. Without this 

information, the link between the variables would be lost, so corrections made to the 

latter variable because of a failure would not propagate back to the original MATCH. 

Consider the following constraint: 

 
( 21 
" I f  a DATE t ype at t r i but e i s  used i n a condi t i on,  i t  must  be 
compar ed t o an at t r i but e of  t he same t ype. "  
          
( and   ( mat ch SS WHERE ( ?*  ( ^at t r i but e- p ( ?a ?at t  ?t ) )  " ="  ?c ?* ) )  
       ( t est  SS ( ^ t ype- p ( ?at t  " DATE" ) ) )  
)  
          
( and   ( t est  SS ( ^at t r i but e- p ( ?c ?at t 2 ?t 2) ) )    ( 1)  
       ( t est  SS ( ^ t ype- p ( ?at t 2 " DATE" ) ) )    ( 2)  
)  
          
" WHERE" )  

 

When ?c  is tested in (1) to see if it is in fact an attribute, a side effect is that 

?at t 2 and ?t  are instantiated to the physical attribute name and table name that ?c  

represents. If (2) fails, ?at t 2, which is an intermediate variable only, is corrected. 

Test (1) therefore needs to be recorded so that the problem-solver can deduce that ?c  
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also needs to be corrected because ?at t 2 was derived from it. An example of a 

correction list entry with such a test is given in Section 5.7.1. 

Logical Connectives 

We are prevented from using the inbuilt OR and NOT functions by the fact that 

MATCH and TEST update the binding lists as they are encountered. Therefore, if a 

disjunct consists of a conjunction of MATCH and TEST calls, some of these may 

succeed before the disjunct as a whole finally fails, and so the binding list will contain 

fragment entries for part of the failed disjuncts as well as for successful ones. This is 

also true in the case of NOT: if the test being negated itself succeeds, it will update 

the fragment list, even though this means the negation has failed. The custom routines 

OR-P and NOT-P ensure that the binding set is consistent, by restoring it each time a 

disjunct or negation fails. 

The pattern matcher 

The MATCH, TEST and TEST_SYMBOL functions share a common pattern 

matcher, which tries to match a given pattern list to an input fragment one term at a 

time. The matcher works from left to right, maintaining the current binding set as it 

goes. The pattern terms may each be one of an unnamed wildcard, named wildcard, 

literal, or variable. Each of these is treated differently. 

Literals (and lists of literals) are the simplest type of pattern term: the next term 

must match the literal exactly. Variables are more complex. If the variable hasn’ t been 

instantiated yet, it may take any value. If it has been instantiated, the next term must 

match the instantiated value. Further, the variable term may also contain a match (e.g. 

a list of allowed values) that must be met. The term is first compared with any match 

requirements, and then compared to the current binding set to ensure consistency is 

maintained.  

The purpose of an unnamed wildcard is to “consume” zero or more terms until the 

rest of the pattern can succeed. When one is encountered a flag is set that indicates 

that if a subsequent term fails, the matcher may backtrack to this position, drop the 

current input term and try again. In contrast, the behaviour for a named wildcard 

depends on whether or not it is instantiated. If the wildcard variable is not currently 

instantiated, it behaves the same as an unnamed one except the binding list is updated 



64 

with an entry for the wildcard on successful completion of the pattern. However, if the 

wildcard has been already instantiated, it is treated the same as a literal: the next n 

terms must now be the same as the value of the wildcard, where n is the length of the 

original match to this wildcard. 

Because a variable may be preceded by a wildcard, it can potentially take more 

than one value, which will cause the current binding set to be split into many. Further, 

there may be more variables further on in the pattern that allow this branching to 

happen again. Each variable value must therefore be resolved recursively for the rest 

of pattern: if the rest of the pattern succeeds, one or more binding sets are inserted 

into the binding list representing all the ways the pattern could resolve given the 

current value for this variable. Then, if the variable was preceded by a wildcard, the 

next potential value is obtained, and again the rest of the pattern is tested to see 

whether it returns any further valid bindings.  

Finally, special consideration must be given to the situation where either the 

pattern list or the input runs out before its counterpart. The input is only permitted to 

run out before the pattern list if the remainder of the pattern list consists entirely of 

unnamed wildcards, un-instantiated wildcards, and wildcards instantiated to NULL. 

Conversely, the pattern is only permitted to run out before the input if the last term is 

a wildcard that can be resolved to the remainder of the list.  

4.3 Summary 

We have developed a new constraint representation where all testing functions are 

transparent and reversible, and implemented the associated constraint evaluator. We 

have reimplemented the domain model for SQL-Tutor using the new representation. 

We use this version of the domain model and constraint evaluator in the classroom 

evaluation in Chapter 6, which demonstrates that it works. Recall that hypothesis 1 

required a transparent representation that facilitates problem solving. We have now 

defined the representation and shown it to be feasible for at least the SQL domain. In 

the next chapter we show that it is sufficient to solve problems in this domain. 
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5 Problem solving using constraints 

The CBM approach obviates the need for a problem solver because the constraints are 

only interested in the solution state and can check this by testing the student solution 

directly against an ideal solution. Strategy variation is allowed for within the 

constraints by testing at the conceptual level (e.g. does this solution have all the 

necessary tables represented somehow, rather does this solution represent tables the 

same way as the ideal solution). Even procedural domains can be represented this way 

by capturing declarative knowledge that constrains sequences of events (“you must 

have started the engine before you release the clutch”). 

However, CBM does not preclude the use of a problem solver. In this chapter we 

explain why one is beneficial and describe the implementation of a problem-solving 

algorithm that uses just the existing constraints to arrive at correct solutions. 

5.1 Motivation 

We described in Chapter 3 how feedback could be misleading. In many domains 

including SQL, there is more than one way to solve a problem. There can therefore be 

valid differences between the student and ideal solutions. Often these will be minor, 

such as performing two unconstrained tasks in a different sequence (in the case of a 

procedural domain), or using a qualified name instead of an unqualified one in SQL. 

In other cases however, the entire problem solving strategy may differ. Recall the 

example from Chapter 3: 

Problem: 
List the titles of all movies directed by Stanley Kubrick.    
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Ideal Solution: 
SELECT t i t l e   
FROM movi e   
WHERE di r ect or =( sel ect  number  f r om di r ect or   
     wher e f name=' St anl ey '  and l name=' Kubr i ck ' )  

Student Solution: 
SELECT t i t l e   
FROM movi e j oi n di r ect or  on number  = di r ect or  
WHERE f name=' St anl ey '  and l name=' Kubr i ck '  
 

The ideal solution uses a nested SELECT to obtain supplementary data from a 

second table, while the student uses a JOIN, which is a totally different strategy to 

solving the problem. This doesn’ t pose a problem until the student is presented with 

part or all of the answer as feedback. In the above case the full solution is of no use to 

the student unless they are prepared to abandon their attempt, in which case they do 

not get to complete the learning they are currently experiencing. However, to be 

shown a partial solution is worse: both the FROM and WHERE clauses of the ideal 

solution would be wrong in the context of the student’s attempt. Since we believe that 

showing a partial solution is beneficial (Mitrovic and Martin 2000), we need to 

address this shortcoming. 

In a model tracing ITS we might try to get from the erroneous solution back onto a 

correct solution path by either using a bug library to determine what is wrong, or 

retracing the sequence of steps back to where the student solution first deviated from a 

correct path. In the case of CBM, we do not have a bug library, nor do we have any 

method of getting back to a desirable solution. We therefore desire a problem solver 

that uses the constraints themselves to solve the problem. Moreover, since the student 

solution may be incorrect in any number of ways that we have never seen before, we 

would like this problem solver to be able to arrive at a correct solution given an 

arbitrary student solution. To be useful the resulting solution should be as close to the 

student’s attempt as possible. 

Determining how to track and understand students’  (sometimes incorrect) 

problem-solving procedures remains an important problem in ITS research. This is 

particularly evident in the complex domain of programming. Various approaches have 

been tried, but (Deek and McHugh 1998) report that almost all of them constrict the 

student’s freedom in some way. The main issue is determining the student’s intent, 



67 

such that bugs can be understood and corrected in a logical way. Model-tracing tutors 

overcome this problem by forcing the student to stay very close to one or more 

“optimal”  solution paths. Since building up these paths is difficult, often only one is 

provided. The LISP Tutor (Anderson, Farrell and Sauers 1984; Anderson and Reiser 

1985) relies on a bug catalogue, which models divergence from the expert behaviour 

to keep the student within one step of the solution path so that the tutor always knows 

their intent. This, combined with the language-sensitive-editor style of the user 

interface, ensures that the system is always able to complete the solution by simply 

carrying out the rest of the model. The ACT Programming Tutor (Corbett and 

Anderson 1993) similarly models “ ideal”  solution paths. However, model tracing does 

not guarantee that student errors can always be corrected. Sometimes a student may 

perform an action that is neither on a correct path nor on a defined incorrect one. At 

this point, model tracing has nothing to say other than that it is incorrect. Model 

tracing systems may use repair theory (VanLehn 1983) to overcome the impasse, by 

backtracking and suggesting alternative actions which the student may adopt, until the 

trace is “unstuck” . However, this is a non-trivial task since it is rarely clear where the 

repair should be made, and so the repairer may encounter a combinatorial explosion 

of potential paths (Self 1994).  

DISCOVER (Ramadhan and Du Boulay 1993) maintains control of the model 

tracing process by providing two interfaces: a general one where students may 

construct solutions on their own without feedback, and a “guided phase” module, 

where they are restricted in what they can input. An alternative method is to build the 

student interface in such a way that only selected actions may occur. ELM-PE (Weber 

1993) provides a syntax-based structure editor, which automatically fills in LISP 

statement slots with appropriate insertions, such that only valid LISP may be 

constructed.   

In contrast, CBM tutors like SQL-Tutor intentionally place no such restrictions on 

the user—they are free to write their solutions in any order using whatever constructs 

they see fit. The solution is then evaluated as a whole according to whether or not it is 

syntactically correct and satisfies the semantics of the problem. The solution may 

therefore deviate radically from the correct solution, at which point the user’s 

“ intentions”  are completely unknown. Some systems that suffer this problem try to 
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overcome it by forcing the student to make their intentions explicit. Bridge (Bonar 

and Cunningham 1988) breaks down the problem solving process into three steps. 

First, the student formulates their ideas in English. Then, they translate their informal 

ideas into plan specifications. Finally, they build the program code. Because it already 

has their intentions, Bridge is able to understand partially completed code. Similarly, 

Capra (Verdejo, Fernandez and Urretavizcaya 1993) breaks problem solving into 

three parts: problem extraction, relation to a class of solutions, and refinement to a 

final answer. Note however, that Capra does not allow the student to enter his or her 

own solution. Rather, they are “ led”  to one of a set of solutions stored in Capra’s 

knowledge base. Such an approach has been criticised for making students dependant 

on being led to a solution, rather than developing their own problem-solving skills. 

In the previous chapter, we developed a representation for constraints that makes 

the evaluation process transparent, in that a satisfied condition can be reversed, to 

show why it succeeded, while for a failed test we can see what the construct should 

have been. To satisfy hypothesis 1, it must be possible to build an algorithm that uses 

this representation to solve problems. We present hypothesis 2: 

Hypothesis 2: Using the representation defined in hypothesis 1, it is possible to 

develop an algorithm for solving problems and correcting student answers, which 

does not need further domain information to achieve this. 

5.2 The approach  

In a constraint-based model, each constraint can be thought of as a pair of conditions 

that reduce the solution space. The relevance condition represents a certain subset R 

of the solution space, which is the set of problem/solution states we are interested in. 

Similarly, the satisfaction state defines another subset S, which represents correct 

solutions given that our solution is a subset of R. This is depicted in Figure 4. 

Each constraint divides the solution space U into four regions: (1) R-S, (2) S-R, 

(3) R�S, and (4) U-(R�S). If the solution is in region 1, the constraint is relevant but 

not satisfied, i.e. it is violated. If the solution is in (2), it is not relevant so we are not 

interested in it. If it is in (3), it is both relevant and satisfied. A solution in 4 falls 

outside the scope of this constraint altogether. Therefore, only (1) is a problem; all 
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other regions do not signify a violation. To remove a violation we need to move the 

solution out of area (1) into any of the other regions.  

Thus for each constraint we can either satisfy the constraint or render it no longer 

relevant. When this is true for all constraints, the solution is correct with respect to the 

constraints. If the constraint set is correct and sufficient, this will be a correct solution 

to the problem. 

In essence this is a constraint satisfaction problem: the problem/solution must 

simultaneously satisfy (or not be relevant to) all constraints, and so is a difficult 

problem to solve. In practice we can define some heuristics that reduce this to an 

iterative problem, although the time taken to solve a given problem is not necessary 

linear. We describe these heuristics in the next section. 

5.3 Problem solving with constraints 

In the new representation, the (expanded) constraints make explicit all of the encoded 

domain knowledge: for any given constraint, all requirements of the ideal and student 

solutions are encapsulated in the MATCH and TEST pattern lists and the logical 

connectives between them. This means that the relevant constraints plus the variable 

bindings for each describes all that we know about the solution relevant to the 

problem, given our current domain knowledge. 

Consequently, given a complete domain model, we can rebuild the solution from 

just the relevant constraints and their bindings. In the following example we list the 

match patterns resulting from the evaluation of a correct student solution. Only 

matches related to the student solution are listed, with variable bindings substituted 
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back in to give bound fragments of the student solution. The resulting list contains 

many fragments that subsume others, i.e. they are a more specific version of one or 

more other fragments. We have omitted the subsumed fragments for clarity. 

Ideal Solution 
SELECT t i t l e   
FROM   movi e   
WHERE   di r ect or =( sel ect  number  f r om di r ect or   
  wher e f name=' St anl ey '  and l name=' Kubr i ck ' )  

Student Solution 
SELECT t i t l e 
FROM movi e j oi n di r ect or  on di r ect or  = di r ect or . number  
WHERE l name = ' Kubr i ck ’  and f name = ' St anl ey '  

 

Bound Matches (with subsumed fragments omitted) 
SELECT ( t i t l e ?* )  
FROM   ( ?*  movi e JOI N di r ect or  ON di r ect or  = di r ect or . number  ?* )  
WHERE  ( ?*  l name = ' Kubr i ck '  and ?* )  ( ?*  = ' Kubr i ck '  and f name ?* )  
       ( ?*  ' Kubr i ck '  and f name = ?* )  ( ?*  and f name = ' St anl ey '  ?* )  
 

The WHERE clause contains more than one fragment. These are “spliced”  together 

by joining overlapping fragments and removing the duplication. Wildcards are then 

deleted, yielding: 

SELECT  ( t i t l e)  
FROM  ( movi e JOI N di r ect or  ON di r ect or  = di r ect or . number )  
WHERE  ( l name = ' Kubr i ck '  and f name = ' St anl ey ' )  
 

which is the same as the student solution. 

5.4 Correcting an er roneous solution 

To provide tailored feedback we produce a correct solution that is as close as possible 

to the student’s attempt based on pattern matches from the relevant constraints. The 

previous example illustrated that the constraints may contain sufficient information 

about a correct solution to rebuild it. In the case of an incorrect solution, the 

fragments obtained from satisfied constraints tells us about the correct parts of the 

solution, while violated constraints indicate parts of the solution that must be repaired. 

To build a correct solution from a mal-formed one, we correct each violated constraint 

and add the resulting fragments to those obtained from the satisfied constraints. 

There are three types of constraint violation that may occur: a MATCH against the 

student solution fails; a MATCH against the ideal solution fails; and a 
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TEST/TEST_SYMBOL fails. The first failure type indicates that one or more terms 

are missing from the student solution. This is corrected by adding the fragment for the 

failed MATCH. The second failure indicates that there are one or more extraneous 

terms in the student solution, which can be corrected by deleting the corresponding 

match fragment. Finally, a failed TEST indicates that one or more variables in a 

previous match fragment are incorrect. This is corrected by substituting the expected 

value for those variables. 

The correct solution is built by beginning with the set of solution fragments 

created by the satisfied constraints and passing it through a modified version of the 

constraint evaluator, which accepts bound matches (including wildcards) as input. 

Each time a constraint is violated, action is taken (as indicated previously) to remove 

the violation. The fragment set is then checked for subsumed fragments, which are 

removed. The cycle then repeats until no constraints are violated. At this stage the 

fragments are spliced together as illustrated in the previous section and wildcards 

removed, yielding a corrected solution.  

5.5 Examples of solution correction 

SQL-Tutor has been subjected to four prior evaluation studies (Mitrovic, Martin and 

Mayo 2002) where, as well as collecting general statistics about the performance of 

the system, we logged the students’  attempts. There were many cases where the 

student solution was fundamentally different to the ideal solution, and so the feedback 

given for a partial solution was not relevant to their answer: Of all partial or full 

solutions presented to a student, 22 percent were either fundamentally different to the 

student solution or varied such that the student made unnecessary alterations to their 

answer. We now examine the performance of solution generation in two such 

situations. The first is a simple example to illustrate how the method works, while the 

second demonstrates its flexibility. As detailed in the previous section, generating the 

correct solution involves testing the solution against the constraints, extracting 

solution fragments from satisfied constraints, and adding, removing or modifying 

fragments for violated constraints. This process is repeated until all fragments are 
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valid and none are missing. The solution is then built by splicing together the 

remaining fragments. 

The following example is taken from one of the evaluation logs. The student has 

made two mistakes. First, in the SELECT clause, they have used a “ .”  instead of a “ ,”  

to separate two fields. Second, they have used “=”  instead of “>=”  in the WHERE 

clause. The system first tests the solution against the entire constraint set to determine 

whether or not it is correct, and discovers that six constraints are violated: 

I deal  sol ut i on:  
   ( SELECT ( l name ,  f name) )  
   ( FROM ( di r ect or  ?* ) )  
   ( WHERE ( bor n >= 1920 ?* ) )  
 
St udent  sol ut i on:  
   ( SELECT ( ( l name .  f name) ) )  
   ( FROM ( di r ect or  ?* ) )  
   ( WHERE ( bor n = 1920 ?* ) )  
 
VI OLATED: ( 650 462 6500 1802  192 5)  

 
The student has made the following errors: 

� They have used “ .”  instead of a comma to separate attribute names. To the 

system they have omitted attributes (constraint 650) and included a spurious 

one (constraint 6500). This attribute appears to come from an unnecessary table 

(“ lname”  – constraint 1802), which does not appear in the “FROM” clause 

(constraint 192), and is not a valid database name (constraint 5). 

� They have used an incorrect comparison operator (“=”  instead of “>=”) to 

compare “born”  to “1920” (constraint 462) 

 

The system now tries to correct the semantics first, since there is no point in 

correcting the syntax of elements that are not actually required. Four semantic 

constraints are violated, the first being 650, which tests that all required attributes are 

present in the SELECT clause (see appendix D for the constraint definitions). The 

system does not recognise l name and f name in the student solution, because they 

have been interpreted as a single attribute, l name. f name. This fault is corrected by 

adding the two missing fragments, i.e. the two attribute names: 

 
St udent  sol ut i on:  
   ( SELECT ( ( l name .  f name) ) )  
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   ( FROM ( di r ect or  ?* ) )  
   ( WHERE ( bor n = 1920 ?* ) )  
 
VI OLATED: ( 650 462 6500 1802)  
ACTI ONI NG 650 
   ADDI NG FAI LED MATCH ( ( SELECT f name ?* ) )  
   ADDI NG FAI LED MATCH ( ( SELECT l name ?* ) )  
 
New sol ut i on:  
   ( SELECT ( ( l name .  f name) )  ( f name ?* )  ( l name ?* ) )  
   ( FROM ( di r ect or  ?* ) )  
   ( WHERE ( bor n = 1920 ?* ) )  
 

The solution is now retested, and still fails three constraints, as shown below. The 

next one, 462, tests that the operator used to compare two terms is the right one. A 

TEST fails, so the incorrect value of “=”  is changed to the correct one of “>=” : 

 
VI OLATED: ( 462 6500 1802)  
 
ACTI ONI NG 462 
TEST I S FAI L- TEST 
 
New sol ut i on:  
   ( SELECT ( ( l name .  f name) )  ( l name ?* )  ( f name ?* ) )  
   ( FROM ( di r ect or  ?* ) )  
   ( WHERE ( bor n >= 1920 ?* ) )  
 

The semantics are again tested below, and there are still two constraints failing. 6500 

tests that there are no extraneous attributes in the SELECT clause, by trying to match 

all attributes in the student solution to the ideal solution. This fails, so the offending 

extra attribute (l name. f name) is removed: 

 
VI OLATED: ( 6500 1802)  
 
ACTI ONI NG 6500 
 
New sol ut i on:  
   ( SELECT ( l name ?* )  ( f name ?* ) )  
   ( FROM ( di r ect or  ?* ) )  
   ( WHERE ( bor n >= 1920 ?* ) )  
 

The solution is now semantically correct (removing l name. f name has corrected 

constraint 1802 as a side effect). The syntax is now checked, and found to be correct. 

The next step is to splice the fragments together. Only SELECT has more than one 

fragment and they do not overlap, so they are simply concatenated. The spliced 

solution is now tested (below) and found to fail the syntactic constraint 350, which 
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checks for commas separating attribute names by looking for the match ( ?a1 " , "  

?a2) . This fails, so the missing fragment is inserted: 

 
VI OLATED: ( 350)  
ACTI ONI NG 350 
   ADDI NG FAI LED MATCH ( ( SELECT l name ,  f name) )  
 
New sol ut i on:  
   ( SELECT NI L ( l name ,  f name) )  
   ( FROM ( di r ect or  ?* ) )  
   ( WHERE ( bor n >= 1920) )  

 

The solution is now correct. However, this is a fairly trivial example because the 

student and ideal solutions were very similar. Consider the next example, where the 

student uses a different strategy to the system: 

 
I deal  sol ut i on:  
  ( SELECT " t i t l e" )  
  ( FROM " movi e" )  
  ( WHERE " di r ect or =( sel ect  number  f r om di r ect or  wher e   
          f name=' St anl ey '  and l name=' Kubr i ck ' ) " )  
 
 
 
St udent  sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE ( l name = ' kubr i ck and f name  = ' St anl ey ' ) )  
 
 

Here, the student has used a JOIN, whereas the ideal solution uses a nested query. The 

only errors are that the trailing quote is missing off the string ' kubr i ck ' , and the 

first letter in this string should be uppercase. The first error means the system doesn’ t 

know where the string ends, so arbitrarily chooses the “=”  as the terminator, giving a 

(malformed) string of ' kubr i ck and f name. This causes nine constraints to fail. 

The system now tests the semantics, and tries to correct the first violation. Constraint 

372 tests that all required strings are present, by trying to match all strings in the ideal 

solution to the student answer. This fails, so the missing fragment ' Kubr i ck '  is 

inserted: 

 
VI OLATED: ( 372 239 2730 1514 999)  
ACTI ONI NG 372 
   ADDI NG FAI LED MATCH ( ( WHERE ?*  ' Kubr i ck '  ?* ) )  
 
New sol ut i on:  
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   ( SELECT ( t i t l e ?* ) )  
   ( FROM   ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE  ( l name = ' kubr i ck and f name  = ' St anl ey ' )   
           ( ?*  ' Kubr i ck '  ?* ) )  
 

The semantics are retested, and constraint 2370 fails (below). This constraint tests that 

attributes are compared to the correct string. The failure was a TEST of a value, so it 

replaces the incorrect string value of “ ' kubr i ck and f name”  with the correct 

one of ' Kubr i ck ' . The algorithm also eliminates subsumed fragments during 

processing, so the previously added fragment of ( ?*  ' Kubr i ck '  ?* )  is deleted: 

 
VI OLATED: ( 2730 1514 999)  
ACTI ONI NG 2730 
TEST I S FAI L- TEST 
 
New sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE ( l name = ' Kubr i ck '  = ' St anl ey ' ) )  
 

At this stage the algorithm is satisfied with the semantics so the syntax is checked, 

and three constraints fail. The first is that there are two conditions without a logical 

connective: 

 
VI OLATED: ( 347 454 4629)  
ACTI ONI NG 347 
   ADDI NG FAI LED MATCH ( ( WHERE l name = ' Kubr i ck '  AND = ' St anl ey ' ) )  
 
New sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE NI L ( l name = ' Kubr i ck '  AND = ' St anl ey ' ) )  
 

Note that the choice of “AND” (rather than “OR”) is arbitrary; if it is not correct 

another constraint should be violated that will substitute the correct value. Now, there 

is a malformed condition “AND = ' St anl ey' ” , which fails a TEST that expected 

the term preceding the “=”  to be an attribute. This is corrected by replacing AND with 

an arbitrary attribute: 

 
VI OLATED: ( 454)  
ACTI ONI NG 454 
TEST I S FAI L- TEST 
 
New sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE ( l name = ' Kubr i ck '  number  = ' St anl ey '  ?* ) )  
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The constraint just fixed (347—missing logical connective) now fails again, and is 

corrected again: 

 
VI OLATED: ( 347 203 20_A)  
ACTI ONI NG 347 

    ADDI NG FAI LED MATCH ( ( WHERE l name = ' Kubr i ck '  AND number  =  
                          ' St anl ey '  ?* ) )  

New sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE NI L ( l name = ' Kubr i ck '  AND number  = ' St anl ey '  ?* ) )  
 

The next two corrections illustrate how the greedy approach used can cause 

unnecessary work to be performed. The first corrects the fact that the newly added 

attribute (number) is ambiguous. Immediately following this, constraint 20_A 

determines that ‘number’  is of the wrong type (numeric) to be compared to a string, so 

swaps it for another attribute of the correct type. Thus, the results of the previous step 

are discarded. 

 
 
VI OLATED: ( 20_A 203)  
 
New Sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE ( l name = ' Kubr i ck '  AND ( movi e .  number )  = ' St anl ey '  ?* ) )  
 
VI OLATED: ( 20_A)  
 
New sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE ( l name = ' Kubr i ck '  AND addr ess = ' St anl ey '  ?* ) )  
 

The syntax is now correct, and the semantics are again checked. Constraint 175 

(below) discovers that addr ess  is the wrong attribute being compared to 

' St anl ey' , and substitutes the correct one: 

 
VI OLATED: ( 175)  
ACTI ONI NG 175 
TEST I S FAI L- TEST 
 
New sol ut i on:  
   ( SELECT ( t i t l e ?* ) )  
   ( FROM ( movi e j oi n di r ect or  on di r ect or  = ( di r ect or  .  number ) ) )  
   ( WHERE ( l name = ' Kubr i ck '  AND f name = ' St anl ey '  ?* ) )  
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The solution is now correct. It is very similar to what was originally entered, and 

continues to use a different strategy to the ideal solution. 

5.6  Discussion 

In the second example we generated a corrected version of an incorrect student 

answer despite the student and ideal solutions being fundamentally different: the ideal 

solution used a nested SELECT, while the student solution included a JOIN. This 

suggests that the new representation is sufficient for the domain model to be 

generative. However, there is room for improving efficiency. First, the algorithm 

described is greedy in that it performs actions for all failed constraints and their 

bindings, even though they may be undone by actions for later constraints. In 

particular, it may generate new fragments that are later deleted again. This is 

inefficient, and we need to explore ways to reduce the amount of redundant work 

performed, without adding unnecessary complexity.  

Second, each failed constraint results in just one action, based on the first item in 

the condition that failed. Some constraints are encoded as a MATCH, with either 

unrestricted or partially restricted variable terms, which are then further restricted by 

other tests. If the initial MATCH fails, it will generate an action that adds a fragment 

containing similarly general terms. These terms will remain until they are picked up 

by another constraint failure (possibly for this same constraint) in a subsequent 

processing step. It may be possible to perform more work at each action by 

incorporating more than just the first failed step in the condition, thereby reducing the 

number of iterations overall. 

Finally, there is no guarantee that the solution being built will converge. Often, 

there are multiple ways to satisfy a failed constraint, some of which may lead to 

extraneous constructs being added to the solution. It is important that these are 

removed, and that the solution does not “oscillate”  between two or more potential 

solutions (for example, by continually adding an incorrect new term, only to have it 

later removed because of another constraint violation). In the next section we describe 

how we have attempted to avoid such situations, however they remain possible. 
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5.7 The problem-solving algor ithm 

The problem solver tries to correct the student’s answer by removing violations, one 

constraint at a time. It is greedy on three counts: (1) only the first constraint (in the 

order they were encoded) is initially selected for repair, (2) each constraint may be 

violated more than once, but only the first instance is initially selected for repair, and 

(3) when there are multiple ways to satisfy a constraint (i.e. an OR disjunct), only the 

LAST is selected. The latter is a simplification that obviates the need for the pattern 

matcher to retain information about previous failed bindings: at the time the constraint 

fails, the information about the last failed disjunct will be still available. This level of 

greed is probably far from optimal. 

5.7.1 Algor ithm overview 

The problem-solving algorithm consists of two main parts: extensions to the pattern 

matcher to retain all the information needed about fragments and failures, and the set 

of routines that correct the errors. Further, the former can be further divided into 

collecting fragments, and building a corrective action list, for the error correction 

algorithm to carry out. Problem solving therefore consists of alternately testing the 

solution and gathering fragments and corrections, and correcting the first failed 

constraint. This continues until no constraints are violated, or the algorithm gives up. 

The latter may occur if the constraints cause a loop. The fragments resulting from the 

corrective actions are then spliced together into a single solution, which is again tested 

for fidelity with respect to the constraints. Finally, the solution is tidied up. The 

overall algorithm is given in Figure 5. Note that MAX-TOTAL-ATTEMPTS, MAX-

CORRECTIONS and MAX-TIDIES are constants that determine how many times the 

algorithm should try to correct errors before giving up. Currently they are all set to 20. 

Each of the main components is now described.  
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5.7.2 Collecting corrections 

Correction information is collected by the pattern-matcher because it is tied to the 

bindings that were valid up to the failure. The corrective action list is maintained 

separately to the binding list. When a MATCH fails, MATCH-BINDINGS inserts an 

entry into the corrective action list containing a tag indicating that the type of error 

was a match failure, whether the test was for the ideal solution or the student solution, 

and the set of bindings that were current at the time. This provides the full context 

needed to perform the correction. Similarly, TEST adds an entry for each failed test. 

The following is an example of a corrective action list entry: 

( 174 
 ( FAI L- TEST  
   ( ( NI L ( ?A1) )  ?A2         ( 1)  

 
Cor r ect  Answer :  
 
Test  answer  agai nst  t he synt act i c  and semant i c const r ai nt s,  gat her i ng 
al l  f r agment s and cor r ect i ve act i ons 
 
I f  any v i ol at i ons 
   Loop unt i l  no l onger  v i ol at ed,  or  MAX- TOTAL- ATTEMPTS exceeded 

Loop unt i l  no mor e v i ol at i ons,  or  MAX- CORRECTI ONS exceeded    
   per f or m al l  const r ai nt  v i ol at i on cor r ect i ons 
 

t est  t he sol ut i on agai nst  t he semant i c and synt act i c  
const r ai nt s,  gat her i ng cor r ect i ons 

               
Spl i ce t he r esul t i ng f r agment s i nt o a compl et e sol ut i on 

 
t est  t he sol ut i on agai nst  t he semant i c and synt act i c  
const r ai nt s,  gat her i ng cor r ect i ons 

         
 Loop unt i l  no mor e v i ol at i ons or  MAX- TI DI ES exceeded 

t est  t he sol ut i on agai nst  t he t i dy i ng const r ai nt s,  gat her i ng 
cor r ect i ons 

 
Per f or m cor r ect i ons 

 
    I f  any semant i c or  synt act i c  const r ai nt s st i l l  v i ol at ed 
 r et ur n FAI L 
    el se 
 r et ur n cor r ect ed sol ut i on 
el se 
    r et ur n t he or i gi nal  sol ut i on 

 
Figure 5.  Solution generation algorithm 
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   ( ( ?TEST SS ( ( ( ( aanom i nt eger ) …) ( ?A2 i nt eger ) ) ( ?A2 i nt eger ) ) )  ( 2)  
    ( ?FRAG- R WHERE ( ?*  ?N2 ?OP2 ?C ?* ) )      ( 3)  
    ( ?OP2 .  =)              ( 4)  
    ( ?TEST SS ( ( NI L ( ?A2) )  ?N2) )       ( 5)  
    ( ?A2 .  number )          ( 6)  
    ( ?N2 .  number )          ( 7)  
    ( ?TEST I S ( ( ( .  0 1 … 9)  ?104_D1)  ?104_D1) )  ( ?104_D1 .  1)  ( 8)  
    ( ?T1 .  t ape)            ( 9)  
    ( ?TEST I S ( ( NI L ( ?A1) )  ?N1) )            ( 10)  
    ( ?A1 .  t i mes)                 ( 11)  
    ( ?C .  10)                  ( 12)  
    ( ?OP .  >=)                 ( 13)  
    ( ?N1 .  t i mes)               ( 14)  
    ( ?TOP .  TOP) )               ( 15)  
 )  
)  
 

The input that caused this failure was: 

 
I deal  sol ut i on:   WHERE t i mes = 10 
 
St udent  sol ut i on:  WHERE number  = 10 
 

This entry is for constraint 174, which has failed a test. Line (1) indicates the 

failed test: ?A2 failed to equate to ?A1. Lines (2) through (15) are the binding set for 

this test, including fragment and test information. Line (3) is a fragment for a 

successful match. Lines 5, 8 and 10 record successful tests, while the rest give the 

actual values for the bindings, for example (4) indicates that the value of ?op2 is “=” . 

Line (6) shows that the value of the variable ?A2 is “number ” , while (11) indicates 

that ?A1 is “ t i mes” , hence the failure of the test for equivalence of ?a1 and ?a2. 

The correction algorithm will correct the value of ?A2 to “ times” , however ?A2 does 

not appear in the fragment in (3), so will have no effect on this fragment. Entry (5) 

indicates that ?A2 and ?N2 are equivalent, so the correction algorithm will also 

update ?N2, which does appear in the fragment. Hence, the fragment will be changed 

from “number  = 10”  to “ t i mes = 10” , correcting the error. 

5.7.3 Fixing errors 

The constraints are divided into three sets: semantic, syntactic, and tidying constraints. 

Semantic constraints are those that compare the student solution to the ideal solution. 

Their purpose is to ensure that the student solution contains the necessary terms to 
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solve the problem. For example, the following semantic constraint checks that the 

student has provided all the necessary attributes for sorting: 

 
( 531 
 
" Check whet her  you have speci f i ed al l  t he necessar y at t r i but es i n 
t he ORDER BY cl ause. "  
 
( and  
    ( mat ch SS ORDER_BY ( ?what  ?* ) )       ( 1)  
    ( mat ch I S ORDER_BY ( ?*  ( ^at t r i but e- p ( ?n ?a ?t ) )  ?* ) )   ( 2)  
)  
          
( mat ch SS ORDER_BY ( ?*  ( ^at t r i but e- p ( ?n2 ?a ?t ) )  ?* ) )   ( 3)  
      
" ORDER BY" )  

 

Condition (1) checks that the ORDER_BY clause of the student solution is not 

null. Then, (2) binds ?n to all valid attribute names in the ORDER_BY clause of the 

ideal solution, and also binds ?a to the attribute, and ?t  to the table name that are 

either implicit (in the case of an unqualified name) or explicit in each ?n. The 

satisfaction condition (3) then tests that there can be bound a valid attribute name ?n2 

for each (?a ?t ) value pair, such that ?n2 represents the same attribute and table 

name. In other words, for each physical database attribute implied by a name in the 

ORDER BY clause in the ideal solution, there must also be some name in the student 

solution that represents the same physical attribute. 

Syntactic constraints test that the student solution is valid SQL, with no reference 

to the problems being solved. For example, the following syntactic constraint tests 

that all names in the FROM clause are either valid table names or valid attribute 

names. 

( 146 

 
" You have used some names i n t he FROM cl ause t hat  ar e not  f r om t hi s 
dat abase. "  
          
( mat ch SS FROM ( ?*  ( ^name ?n)  ?* ) )  
          
( or - p  
 ( t est  SS ( ^at t r i but e- p ( ?n ?a ?t ) ) )  
 ( t est  SS ( ^ t abl e- i n- db ?n) ) )  
)  
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A side effect of the greedy approach to problem solving is that some changes may 

be made to the student solution that later turn out not to be needed and which degrade 

the quality of the solution. In SQL attributes may be either qualified (e.g. SELECT 

movi e. di r ect or ) or unqualified (SELECT di r ect or ). Attributes must be 

qualified if they would otherwise be ambiguous. When correcting an error in SQL-

Tutor where an attribute has been used for which no table exists in the FROM clause, 

the algorithm may add a new table to FROM, rather than remove the attribute, only to 

later remove both the new table and the offending attribute because they were 

superfluous. In the meantime however, the problem-solver may qualify one or more 

other attributes because the addition of the new table made them ambiguous. This is 

not an error since any attribute can be legally qualified, but it degrades the quality of 

the solution and may lead the student to think it needed to be qualified. To solve this 

dilemma and others like it, tidying constraints are used to effect desirable properties 

of the solution. In SQL-Tutor, over-qualification is the only such case. An example of 

a tidying constraint is given in Figure 6. This constraint tests that if there exists a table 

?t 1 in the FROM condition to which some attribute ?n exists in the SELECT that is 

an attribute of this table, and there can be found no other different table ?t 2 of which 

the attribute ?a of ?n is also an attribute, then ?n need be the attribute name only, i.e. 

not the qualified name ( ?t  .  ?a) .  

The main (semantic and syntactic) constraints are split into two sets for efficiency. 

The algorithm generally prefers adding new fragments or modifying existing terms 

(solution growth), to deleting fragments (solution pruning). This is because terms that 

are incorrect (such as an extraneous attribute name) may be part of a wider construct 

that is mostly correct. If the incorrect attribute were deleted, it may render the larger 

construct syntactically incorrect, causing it too to be deleted, and much of the 

student’s original attempt will be lost. However, if the erroneous attribute is replaced 

by the correct one, the wider construct may now be correct.  
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A side effect of preferring solution growth to solution pruning is that the 

algorithm may go to considerable lengths to grow a new construct, only to discover 

that it was based on a partial construct that was unnecessary. To reduce the chance of 

this the solution is always checked semantically first, which will correct, add and, if 

necessary, prune as many incorrect terms as possible. Once the solution satisfies all of 

the semantic constraints, it is tested against the syntactic constraints to ensure that all 

the current constructs are syntactically correct.  

At this stage more terms may have been added that are semantically incorrect. 

Consider the following constraint: 

( 455 
" You need t o speci f y an at t r i but e t o compar e t he st r i ng const ant  t o 
i n HAVI NG. "  
 
( mat ch SS HAVI NG ( ?*  ( ^ r el - p ?op)  ( ^sql - st r i ngp ?s)  ?* ) )  
          
( mat ch SS HAVI NG ( ?*  ( ^at t r i but e- p ( ?a ?at t  ?t abl e) )  ?op ?s ?* ) )  
 
" HAVI NG" )  

This constraint tests that a relational operator and a string (e.g. “= ' Fer r ar i ' ” ) 

is preceded by any valid attribute. If this constraint is violated, it will add an attribute 

into the HAVING clause. The semantic constraints will then need to ensure that it is 

the correct attribute. The problem solver thus loops, alternately testing the semantics 

then the syntax, until all constraints are satisfied. Finally, the tidying constraints are 

( 2 
" You have qual i f i ed an at t r i but e i n SELECT t hat  woul d not  be   
ambi guous wi t hout  t he qual i f i cat i on. "          
( and 
   ( mat ch SS FROM ( ?*  ( ^ t abl e- i n- db ?t 1)  ?* ) )  
   ( mat ch SS SELECT ( ?*  ( ^at t r i but e- of  ( ?n ?a ?t 1) )  ?* ) )           
   ( not - p  
      ( and 
  ( mat ch SS FROM ( ?*  ( ^ t abl e- i n- db ?t 2)  ?* ) )  
    ( not - p ( t est  SS ( ( ?t 1)  ?t 2) ) )  
    ( t est  SS ( ^at t r i but e- i n- db ( ?a ?t 2) ) ) )  
      )  
)  
 
( t est  SS ( ( ?a)  ?n) )  
 
" SELECT" )  

Figure 6.  Tidying constraint 
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checked. These may be applied independently of the other constraints because they 

are guaranteed not to make any changes that will violate the main constraints. 

Only one constraint is corrected after each test of the constraints. This is necessary 

because the satisfaction condition of many constraints contains more than one test. If 

only the first test failure were corrected followed by the corrective action for another 

constraint, the second could cause the rest of the first constraint never to happen, 

causing looping or extraneous fragments. Consider the following two constraints:  

 
( 1 
" Check you ar e compar i ng t he cor r ect  at t r i but e t o t he nest ed sel ect  
i n HAVI NG”  
( and 
   ( mat ch SS HAVI NG ( ?* w1 ( ^at t r - name ( ?n1 ?a1 ?t 1) )  ( ^ r el - p ?op)    
       " ( " SELECT ?* w3 " FROM"  ?* w4 ( ^ t abl e- i n- db ?t 2)  ?* w5) )  
   ( mat ch I S HAVI NG ( ?*  ?agg " ( "  ?what  " ) "  ?op2 " ( "  SELECT ?*   
       " FROM"  ?*  ( ^ t abl e- i n- db ?t 4)  ?* ) )  

  )  
( and 
  ( mat ch SS HAVI NG ( ?* w1 ?agg " ( "  ?what  " ) "  ?op " ( "  SELECT ?* w3  
       " FROM"  ?* w4 ?t 2 ?* w5) )  

    ( not - p ( mat ch SS HAVI NG ( ?* w1 ?n1 ?op " ( "  SELECT ?* w3 " FROM"  ?* w4  
       ?t 2 ?* w5) ) )  
)  
" HAVI NG" )  
 
( 2 
" Check t he r el at i onal  oper at or  you ar e usi ng i n t he HAVI NG cl ause. ”  
( and  
  ( mat ch I S HAVI NG ( ?*  ?agg " ( "  ?what  " ) "  ?op1  
       " ( "  " SELECT"  ?*  " FROM"  ?*   " ) "  ?* ) )  
  ( mat ch SS HAVI NG ( ?*  ?agg " ( "  ?what  " ) "  ?op2  
       " ( "  " SELECT"  ?*  " FROM"  ?*   " ) "  ?* ) )  
)  
 
( t est  SS ( ( ?op1)  ?op2) )  
 
" HAVI NG" )  

 
SS:  aawon > (  sel ect  aawon f r om…)  
I S:  avg( aawon)  >= ( sel ect  aawon f r om)  

 

Constraint 1 ensures that an aggregate function is used rather than just an attribute, if 

this is present in the ideal solution. Constraint 2 tests that when an aggregate function 

is compared to a nested query, the correct relational operator is used. In the example, 

both constraints are violated. Constraint 1 first adds a new match (in bold), giving:  

 
aawon > (  sel ect  aawon f r om…)  
avg( aawon)  > (  sel ect  aawon f r om…)  
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Suppose we now go on to correct the violation for constraint 2. In this case a test has 

failed, so we substitute the correct value for the operator: 

aawon > (  sel ect  aawon f r om…)  
avg( aawon)  >= ( sel ect  aawon f r om)  

 

We now retest the constraint set again. Constraint 1 once again fails, giving: 

aawon > (  sel ect  aawon f r om…)  
avg( aawon)  >= ( sel ect  aawon f r om)  
avg( aawon)  > (  sel ect  aawon f r om…)  

 

Finally, on testing the constraint set one more time, (2) fails again, and corrects the 

added fragment, which is now deleted because it is a duplicate, and we are back to 

where we started: 

avg( aawon)  > ( sel ect  aawon f r om)  
avg( aawon)  >= (  sel ect  aawon f r om…)  

 

The algorithm is now looping. If the constraints were corrected one at a time and 

retested, the following would happen instead: First, constraint 1 fails, as previously: 

aawon > (  sel ect  aawon f r om…)  
avg( aawon)  > (  sel ect  aawon f r om…)  

 

The constraint set is tested again. Constraint 1 fails again, and removes the extra 

fragment: 

avg( aawon)  > (  sel ect  aawon f r om…)  

 

Finally, constraint 2 fails, and corrects the operator. 

avg( aawon)  >= (  sel ect  aawon f r om…)  

 

Each failed constraint is therefore actioned and retested repeatedly until it is no 

longer violated. This ensures that another constraint does not become relevant and 

cause looping or extraneous fragments.  

5.7.4 Putting it all together  

On completion of the correction process, the solution now consists of a set of SQL 

fragments that must be combined into a single SQL statement. The individual 

fragments are concatenated, or spliced together, being mindful of two conditions: that 
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two or more fragments may represent different parts of the same SQL construct, and 

that the order of the various parts of the solution (e.g. conditions in a WHERE clause) 

should be the same as the student’s solution as far as possible. The first is achieved by 

comparing each fragment with each other, to see if they overlap. If so, the overlapping 

portion of one fragment is removed before concatenation. Ordering is kept consistent 

by pre-sorting the fragments according to the student solution. Each fragment is 

compared to the original student attempt, and given a rank of at which input term they 

first (at least partially) match. For example, if a fragment has the same first term as 

the third term in the student input, it will be given a ranking of 3. In the case of a tie, 

the offending fragments are rechecked to see which continues to match in that 

position if more terms in the fragment are considered. The fragments are then sorted 

based on the ranking given.  

The act of splicing the fragments can cause further constraint violations. For 

example, the two condition fragments “ l name = ' Kubr i ck ' ” , and “ f name = 

' St anl ey' ”  will splice to form “ l name = ' Kubr i ck '  f name = 

' St anl ey' ”  which is incorrect, because there is no logical operator conjoining the 

two conditions. The spliced solution is therefore re-checked against the entire 

constraint set and necessary corrections made. This process iterates until the newly 

spliced solution no longer violates any constraints. In practice, re-correction tends to 

occur at most once. 

5.8 Robustness testing 

The solution generation method described is feasible but potentially unworkable. As 

stated earlier, one of the chief advantages of CBM over model tracing is that the 

constraint set need not be complete or perfect, because each constraint is used in 

isolation without chaining. This means that the effect of an error is highly localised. 

With solution generation the effect of errors in the constraint set is more severe. There 

are two problems that may arise, both of which can be catastrophic: that a valid 

construct is disallowed, and that an invalid construct is permitted. Disallowing valid 

constructs can cause looping, because the construct in question may be added by one 

constraint, only to be (erroneously) deleted by another. Allowing erroneous constructs 
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may cause the finished solution to contain spurious elements that were either 

produced by the student or worse, added by the algorithm. 

Incorrectly encoded constraints may also cause serious problems, including 

looping. Consider the following constraint: 

( 1 
" You need a l ogi cal  oper at or  bet ween condi t i ons i n WHERE"  
 
( mat ch SS WHERE ( ?*  ?w ( ^ r el - p ?op)  ?c  
           ?w2 ( ^ r el - p ?op2)  ?c2 ?* ) )  
 
( mat ch SS WHERE ( ?*  ?w ?op ?c ( ( " and"  " or "  ?conn)  ?w2 ?op2 ?c2 ?* ) )  
 
" WHERE" )  
 

This constraint is trying to ensure that all conditions are joined by a logical 

connective. However, it is encoded such that both the correct and incorrect versions of 

the condition pair would be accepted, e.g. 

" f name = ' St anl ey '  and l name = ' Kubr i ck '  and f name = ' St anl ey '  
l name = ' Kubr i ck ' "  
 

If another constraint modifies either the incorrect or the corrected pair, looping may 

result. 

Solution generation therefore imposes a burden of correctness upon the constraint 

set: within the space of solutions to the problem set and potential student solutions to 

the problem set, the constraint set must be complete and correct. The former is a 

definable set that can be readily tested. The latter is impossible to define and 

potentially infinite. It is therefore impossible to ever say with certainty that the 

algorithm will always provide a correct solution based on the student’s input: the best 

that can be said is that we are reasonably confident that a solution will prevail n% of 

the time, and that the algorithm will always terminate. The second claim that the 

algorithm will terminate is achieved by coding a halting condition, i.e. that the 

algorithm stops after a fixed number of attempts. The first claim that the solution 

should be correct n% of the time may only be empirically measured. 

5.8.1 Testing robustness 

The default constraint set for solution generation was a direct translation of the 

existing constraints in SQL-Tutor. It was then tested to ensure it could solve all 
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problems in the problem space, by presenting the algorithm with a blank log file and 

requiring it to generate the correct solution to each problem. This step resulted in 

many corrections to the constraint set. Some of these were simply existing coding 

errors. However, a large number were additions to the constraint set or modifications 

to existing constraints because the constraint set was too loose, and so would miss real 

errors. This is the trade-off for allowing an incomplete constraint set that CBM must 

live with. It also highlights a positive side effect of the solution generation algorithm: 

it can serve as a fairly rigorous means of testing the constraints. 

The algorithm, together with the modified constraint set, was then tested by 

attempting to correct wrong answers submitted by students in two previous evaluation 

studies of SQL-Tutor. In each case 30 logs were chosen from the study and arbitrarily 

split into two groups of fifteen students. For the first study, the 30 logs were those 

with the most submissions (out of 46). For the second study, this was the entire set of 

logs. Both studies were voluntary, and the participants were all students from a 

university database course. They had attended several lectures on SQL prior to the 

study.  

Table 1 lists the number of student attempts that were corrected for the first set of 

15 logs. It also lists the proportion of attempts that fell into each of the following 

categories:  

� Not resolved: the algorithm was forced to abort because it was looping; 

� Incorrect: the algorithm terminated but the generated solution contained 

errors, e.g. extraneous constructs in the generated solution; 

� Strategy difference(s): the solution generated is correct but is an example 

of a completely different problem strategy, e.g. a JOIN used instead of a 

nested query; 

� Structural differences: the solution is an example of the same strategy 

but contains significant differences, e.g. the argument of an aggregate 

function has been unnecessarily modified; 

� Minor differences: the solution is correct and largely the same as the 

students, but contains some unnecessary minor differences, e.g. an 

attribute which was previously not qualified was unnecessarily qualified; 
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� All OK : the solution is totally correct, differing from the student solution 

only where necessary. 

 
For the training set, 71% of the attempts were satisfactorily corrected in that any 

unnecessary differences between the new solution and the student’s attempt were 

minor, and in the majority of cases there were no such differences. Of the rest, 8.5% 

were correctly generated but had unnecessary differences that might confuse the 

student, while 23% were wrong. This last category is the most critical: the algorithm 

should seek to avoid ever presenting an incorrect solution to the student. 

These problems were corrected by further modifications to the constraint set, until 

corrections to all student attempts fell in the “All OK” category. At this stage the 

algorithm can be shown to produce excellent results on a known dataset, but its 

performance on future student input is unknown. To gauge this we now tested the 

algorithm on a further set of 15 logs from the same student population. The results are 

summarised in Table 2. For this test set, nearly 96% of the attempts were satisfactorily 

corrected with almost all of these being completely correct. Of the rest, just 0.9% 

failed to terminate, with 2.3% resolving, but having errors in the solution. Three 

Log # Problem 
Attempts 

Not 
Resolved 

Incorrect Strategy Structural Minor  All 
OK 

1 11 0 0 0 0 7 4 
2 26 0 8 1 0 0 17 
3 4 0 0 0 0 0 4 
4 16 0 0 0 0 2 14 
5 41 0 10 0 8 10 13 
6 48 0 8 0 2 5 33 
7 3 0 0 0 0 0 3 
8 36 0 18 1 4 2 16 
9 39 0 10 0 0 9 23 
10 8 0 0 0 0 0 8 
11 18 0 7 0 3 1 8 
12 39 0 10 0 11 8 11 
13 49 0 7 0 0 6 36 
14 23 0 8 0 2 3 12 
15 52 0 10 0 5 4 35 

Total 413 0 96 2 35 57 237 
%  0 23 0.5 8 14 57 

Table 1.  Results for the training set 
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problem attempts had a difference that was considered more than minor. Some of the 

errors were: 

Failed to resolve: 

� Failed to resolve when the student used a different numeric constant (e.g. “0.1 

*  rentals”  instead of “ rentals/10”)—caused by missing constraints; 

� Difficulties when a numeric calculation was entered using an unexpected 

representation, such as extra parentheses—caused by missing constraints; 

Wrong:  

� Combination of both “* ”  and a list of all attributes in the SELECT clause—

caused by missing constraints; 

� Both an unaliased and an aliassed representation of the same attribute in the 

SELECT clause—missing constraints; 

� “ type = (comedy or drama)”  instead of “ type = ‘comedy’  or type = ‘drama’”  

lead to incorrect structures—missing constraints; 

Structural difference: 

Log # Problem 
Attempts 

Not 
Resolved 

Incorrect Strategy Structure Minor   All 
OK 

16 9 0 0 0 0 0 9 
17 21 0 0 0 0 1 20 
18 1 0 0 0 0 0 1 
19 10 0 1 0 0 0 9 
20 52 0 4 0 0 0 48 
21 5 0 0 0 0 0 5 
22 3 0 0 0 0 0 3 
23 3 0 0 0 0 0 3 
24 32 1 0 0 0 0 31 
25 22 2 0 0 0 1 19 
26 14 0 0 0 0 0 14 
27 22 0 0 0 0 0 22 
28 18 0 2 0 0 2 14 
29 39 0 0 0 3 0 36 
30 60 0 0 0 0 0 60 
Total 311 3 7 0 3 4 294 

%  0.9 2.3 0 1 1.3 94.5 

Table 2.  Results for the first test set (same population) 
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� “not (critics = nr)”  is missing the quotes around ‘nr’ , but instead of inserting 

the quotes, the algorithm changed the condition completely to  “critics != 

‘nr’ ”—caused by the way the constraints were encoded: the nr is interpreted as 

an (erroneous) attribute rather than a mal-formed string; 

Minor differences: 

� ordering of SELECT clause attributes—caused by incorrect attributes being 

deleted, and their correct counterparts being inserted in a different position in 

the clause. 

The above problems were then fixed where possible, and a further 15 logs tested 

from a different evaluation, representing a completely separate population. Of this set, 

a larger proportion of solutions were unacceptable compared with the previous set 

(9.5% compared with 3.2%). However, this was much better than the first set tested 

from the previous population. Only four constraints required correcting to produce no 

errors for this set. 

Finally, another 15 logs were tested from this second evaluation study, giving 

92% correct solutions. Recall that the motivation for this research was to try to reduce 

the likelihood that students would be shown a partial or full solution that was 

inconsistent with their attempt, or contained unnecessary changes. In this final test 

group, 22 ideal solutions were presented to students in whole or in part, of which 

seven (32%) differed sufficiently from their attempt that the student made 

unnecessary changes. After applying solution generation, only one of the presented 

solutions (less than 5%) differed unnecessarily from the student solution. 

5.9 Conclusions 

The solution generation algorithm successfully solved up to 95% of incorrect student 

solutions. Once trained on a set of 15 student logs, it was able to achieve a 95% rating 

on a further 15 previously unseen logs. After correcting the constraints to eliminate 

the failures for this set it satisfactorily corrected over 90% of student errors for a 

different population. Although this is a higher failure rate than for the previous test, 

the number of constraints requiring correction trended steadily downwards. Figure 7 
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plots the number of constraints corrected or modified in response to problems with 

each group the algorithm was tested on. This graph shows that the number of 

modifications to the constraints decreased during the testing process. Further, more 

than half of the modifications were performed before any testing on live data was 

required, and a total of 96.6% of the modifications had been made to the knowledge 

base after testing just one set of 15 logs. This suggests that the behaviour of the 

algorithm is reasonably stable, in that once errors are eliminated it is unlikely that the 

system will fare significantly worse on subsequent populations. 

 
Finally, we previously mentioned that correcting errors in the constraint set is 

desirable, because it leads to better diagnosis. We measured the level of misdiagnosis 

in the system prior to using solution generation, compared to after bugs had been 

fixed. For the test set of the second evaluation study (i.e. the last group tested above), 

the original version of SQL-Tutor misdiagnosed 16 cases out of 347 submissions 

(4.6%). In the final version (i.e. after correcting errors for all but this last group) there 

was only one error (0.3%), caused by the student using real attribute names as 

aliasses, which confused the constraint that checks that the correct attributes have 

been retrieved. Thus although correcting misdiagnosis was not a conscious goal, the 

system’s diagnostic ability has improved as a result of the testing performed for 

solution generation, because it identified errors in the initial constraint set. 
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Figure 7.  Constraints corrected per log 
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The robustness testing described indicates that the approach is promising and 

realistic on real, complex domains. Further refinement of the algorithm may further 

improve the situation. For example, more sophisticated ways of correcting errors than 

the very greedy approach described may reduce the likelihood of looping. We have 

therefore satisfied hypotheses 1 and 2, by showing that it is possible to develop a 

representation and algorithm that allows problems to be solved without the need for 

further domain information. That it works for a complex domain like SQL shows 

promise that it will be applicable to a wide range of domains. 
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6 Problem generation 

 
The student model in SQL-Tutor is an overlay of the domain model consisting of a 

tally of how many times each constraint has been satisfied or violated. This is 

currently used to select the next problem, by choosing one where a target constraint is 

relevant. The target is the constraint that has been most violated. In this section we 

propose an alternative: generating a new problem tailored to the current situation. 

Most ITSs do not generate their own problems, but choose from an enumerated 

set. However, some exceptions do exist. The Demonstr8 authoring tool (Blessing 

1997) facilitates automatic problem generation but the domain (arithmetic) is very 

simple: the system merely selects random numbers from predefined ranges. XAIDA 

(Hsieh, Halff and Redfield 1999) is an example of problem generation in the more 

complex domain of device maintenance training. It generates four types of instruction: 

physical characteristics of a device, theory of operation, operating and maintenance 

procedures and troubleshooting. Each is supported by a separate “ transaction shell” , 

which is tailored to the particular type of instruction. In the “Physical Characteristics”  

section, XAIDA randomly selects pairs of attributes for the device currently being 

examined and then (again randomly) chooses a question schema that fits the 

characteristics of the attributes chosen. Such attributes may be parts of the device, 

values related to parts (e.g. volume of storage tank) etc. Information about the device 

and its parts are stored in a semantic network. Exercises for “Theory of operation”  are 

similarly derived from a knowledge base about the device being learned. In this case, 

the knowledge base contains causal rules relating the state of certain components to 

the corresponding state of others. The author then generates a set of “cases”—

combinations of device attributes and values that are instructionally useful. The 

system derives the “actions”  (i.e. all of the consequences for other parts/attributes of 
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the device) based on the causal model. However, this is not really automatic problem 

generation since the “cases”  define the structure of each problem. The “Procedures”  

section requires the author to model entire procedures, which XAIDA then randomly 

quizzes the user on. “Troubleshooting”  is represented internally by a “ fault tree” , 

which is randomly instantiated to depict a particular fault. 

The systems described above perform some form of problem generation; however 

the problem they create is not structured. That is, they are limited to selecting a 

combination of values, instructional schemes etc, perhaps inferring some details of the 

solution from the underlying model (e.g. the “actions”  in the XAIDA “ theory of 

operation”  module). In our case, we wish to take problem generation one step further: 

to generate a complex, structured problem (i.e. an SQL statement) without any 

problem-specific information being provided by the author. A comparable example 

from XAIDA would be if it could generate the valid “cases”  for the theory of 

instruction based on the underlying model of device operation. Systems that use some 

sort of template to define the structure of the problem, such as XAIDA, run the same 

risk as manually authored problems: that the problem (or template) set is too small. 

Animalwatch (Arroyo, Beck, Beal and Woolf 2000), a system for teaching 

mathematics via word problems, similarly uses templates to generate new exercises, 

where the system simply instantiates numbers to create a new problem. Although 

Animalwatch contains 600 templates, students still complained of receiving the same 

problem twice but with different numbers. 

SINT (Mitrovic 1996) is possibly a close comparison. This system teaches 

symbolic integration, using the student’s current behaviour to target a particular 

integration operator that the student has not learned. It then tries to construct a 

suitable example by inductive learning (Michalski 1983). This involves generalising 

the current exercise by climbing a directed graph of operators, where edges model 

dependencies, until an operator is reached for which all dependent others are still not 

learned. The tree is then descended, selecting appropriate operators and initialising 

constants, until a complete problem is built. The major difference is that the 

constraints in a CBM model are not related to each other explicitly. Rather, they are 

related implicitly in that making constraint C1 relevant may also render some other 

constraint C2 also relevant. For example, in SQL if constraint C1 requires that the 
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solution have a WHERE condition (because the data being selected needs to be 

constrained in some way), the constraints concerning the syntax of such conditions 

now also come into relevance, and hence they are implicitly related to C1. The 

problem solver must use these implicit connections to build a new solution, and hence 

a new problem. We explore this possibility and propose the following hypothesis: 

Hypothesis 3: CBM can also be used to generate new problems that fit the 

student’s current model, and this is superior to selecting one from a pre-defined 

list. 

6.1 Motivation 

In SQL-Tutor there is no guarantee that an unsolved problem exists that matches the 

target. To overcome this, we propose generating a new problem using a procedure 

similar to problem solving. The steps are: (1) identify the target constraints; (2) 

produce a set of solution fragments from the relevance condition of the target 

constraints; (3) pass the fragments through the problem solver, generating a complete, 

novel solution; (4) convert the solution into natural language for presentation to the 

student. These steps are now described. 

6.2 Identifying the target constraint 

Previously, a single constraint has been chosen as the target. However, constraints are 

highly specific: in many cases a single concept will span multiple constraints. We 

have developed a method of automatically identifying the set of suitable target 

constraints from the student model using machine learning (Martin and Mitrovic 

2000b). This algorithm uses the student model to classify all constraints as “ learned”, 

“not learned” or “unknown”, based on the recent history of their application. A 

modified version of the PRISM machine learning algorithm (Cendrowska 1988) is 

then applied, which induces “ rules”  for the first two sets based on the text of the 

feedback message attached to each constraint. The rules induced for “not learned”  

describe the target constraints. Note that the target set may now also include 

constraints that have not been relevant yet, but which (according to their feedback 
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messages) are conceptually similar to failed constraints and so are unlikely to be 

known. This gives us a set of valid targets for any concept from which we may choose 

one or more as the basis for the new problem, allowing greater variability in problems 

we might generate. This algorithm is now described. 

6.2.1 Motivation  

In SQL-Tutor the student model is an overlay of the domain model. Each constraint 

has three counters: the number of times the constraint was relevant for the student 

solution, the number of times it was relevant for the ideal solution, and the number of 

times it has been violated by the student. These scores are used to select the next 

problem to present. The system currently chooses the constraint that has been violated 

most often, and picks an unsolved problem for which this constraint is relevant. This 

is adequate for problem selection but is constrained by the low-level nature of the 

individual constraints. We propose using machine learning to induce higher-level 

groups of constraints, which can add power and flexibility to the student model.  

6.2.2 Increasing the knowledge depth 

There is no point in adding information to a student model if it cannot be used to 

further guide the pedagogical process (Self 1990). The desire to add knowledge depth 

to the constraint-based model is motivated by the following: 

� To improve the selection of the next problem to present. SQL-Tutor has 

only the individual violated constraints available to make this choice, and so 

can only present new problems if they use the actual target constraint. This 

artificially limits the pool of potential problems at each step;  

� To help the teacher understand the student’s progress. Constraints are 

such a specific representation of the problem domain that it is difficult for a 

human to gain an overall understanding of the student’s competency or 

progress. A higher-level description of the areas of difficulty might be helpful 

to both teacher and student; 

� To aid feedback. A system that can determine the concept behind an error can 

provide help about that concept, not just the particular instance at hand. 
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To this end, we propose that the inclusion of high-level concepts will increase the 

power of the constraint-based model to guide the pedagogical process. 

6.2.3 Manually adding the concept hierarchy 

We evaluated the possibility of adding a constraint hierarchy (Martin 1999) by 

creating one by hand for the set of semantic constraints in SQL-Tutor. Recall that 

semantic constraints compare the student’s answer to an ideal solution to ensure that 

they have satisfied the question. An example of a semantic constraint is: 

( p36 
   " You need t o or der  t he r esul t i ng t upl es -  speci f y t he ORDER BY 
cl ause"  
    ( mat ch I S ORDER- BY ( ?what 1 ?* ) )  
    ( mat ch SS ORDER- BY ( ?what 2 ?* ) )  
" ORDER BY" )  

 
This constraint checks that if the ideal solution has used an ORDER BY clause to 

sort the result, the student solution must do the same. To create a concept hierarchy 

the constraints were grouped into basic concepts of the SQL query language. These 

sets were then repeatedly partitioned into groups of constraints that share common 

sub-concepts, producing a tree with individual constraints as leaf nodes. The highest-

level nodes in the tree (apart from the root) represent fundamental principles of SQL 

queries, such as “all tables present” , “use of negation”  and “sorting” . Figure 8 

illustrates the portion of the hierarchy that represents “all tables present,”  

encompassing all constraints that check that the appropriate database tables have been 

referenced in the answer. 

We formatively tested the proposed method by analysing the logs of students from 

an evaluation study of SQL-Tutor, and observing how they related to the proposed 

hierarchy. The participants were all volunteers, and had attended several lectures on 

SQL in a university database course. We observed from each log the set of problems 

the student attempted, and determined which constraints were relevant for each 

problem, and which were violated. A “hit list”  was built up for each constraint, where 

a “�”  indicates the constraint was satisfied, and a “�”  indicates that it was violated.  
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All Tables 
Present 

None Extra None 
Missing 

FROM 
 

WHERE 
(nested) 

FROM WHERE 
(nested) 

Nesting in 
Student Soln 

Nesting in 
Ideal Soln 

Nesting in 
Student Soln 

Nesting in 
Ideal Soln 

55 

236 237 

10 

221 222 

To allow for temporal variations in the student’s knowledge, each constraint was 

classified as “LEARNED” or “NOT LEARNED” based on just the last four “hits”  as 

follows: 

� Any pattern containing “��”  indicates that the concept has been LEARNED; 

� A constraint with only a single “�”  is (tentatively) considered to be 
LEARNED; 

� A constraint with no hits is not labelled; 

� Any other pattern indicates that the constraint is NOT LEARNED.  

These heuristics were obtained by analysing the failure patterns of a population of 

students from their logs. We observed that the probability of satisfying a constraint 

rises exponentially with the number of previous successes, and after two consecutive 

successes the probability of satisfaction is nearly 100%. We assume that any 

subsequent failures after that are “slips” . 

The semantic constraint hierarchy was then pruned for each student so that the 

resulting hierarchy represents the concepts the student has failed to learn as generally 

as possible. Pruning was carried out as follows: 

� Classify each constraint as described above; 

 
   
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 8.  Concept hierarchy for “all tables present”  
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� For each constraint classified as “NOT LEARNED”, ascend the tree towards 

the root until a node is reached where there are one or more nodes below it 

that are classified as “LEARNED”; 

� Backtrack to the node below. This is the most general node that describes the 

concept that was not learned. Label this node “NOT LEARNED” and discard 

all nodes below it; 

� Continue for all other constraints labelled “NOT LEARNED” that have not 

yet been discarded; 

� Discard all nodes that have not been labelled “NOT LEARNED”, and do not 

have any nodes labelled as such below them. 

This procedure was carried out for three students in the study who had solved at least 

15 problems each, and who had failed many, average and few constraints. The 

resulting pruned hierarchies were collapsed into categories, where each is described 

by the labels of all nodes from the root down to each leaf. The results were as follows: 

Student A failed many constraints, over a wide range of concepts, and appeared to 

still have much to learn about SQL. The pruned hierarchy contained the following 

categories:  

� Sorting 

� Aggregate functions 

� Grouping 

� NULLS - attributes 

Student B failed fewer constraints than A, and attempted harder problems. Their 

pruned hierarchy contained just two highly specific categories: 

� All tables present – none missing – nested SELECTs 

� Negation – correct attributes 

Student C fell somewhere between the other two, in that while their list of unlearned 

areas is longer than that of student A, more of them are very specific. For example, 

whereas student A still needed to learn “grouping”  in general, student C was only 
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having problems with two smaller sub-areas. They attempted more questions, and 

more difficult ones, but failed quite a large number of constraints. Their categories 

were: 

� Sorting 

� Negation – correct attributes 

� Grouping – attributes 

� Grouping – existence – HAVING clause 

� Expressions – arithmetic 

� Expressions – non-arithmetic – DISTINCT 

� All tables – none missing – nested SELECTs 

 

We found that the results from the hierarchy appeared to be a good representation 

of the areas the students demonstrably had problems with. For the advanced student 

the hierarchy returned a small number of highly specific descriptions corresponding to 

a low number of constraints that were yet to be learned. For the less advanced student 

the hierarchy returned a set of very general descriptions (such as “grouping”  and 

“sorting”), representing large numbers of potentially unlearned constraints. For the 

moderate student a larger set of reasonably specific descriptions were returned, 

indicating a good basic understanding of SQL but still quite a few specific areas to be 

mastered. Note that the hierarchy tells us nothing about what the student does know. 

For example, student B did not attempt any sorting problems, so the absence of any 

categories relating to sorting does not imply that it is learned. It would be possible to 

build another collapsed tree that represented the learned concepts in the same way, 

but this is dangerous. For example, if a student has correctly used just one SORTING 

constraint out of 11, it is not correct to say they have learned the concept of sorting, 

whereas if they have only encountered that same single constraint and violated it, it 

seems reasonable to assume they need to learn more about that concept. 

It may seem odd that student C finished (after 25 problems) with so many discrete 

areas that they were having difficulty with, which suggests they moved on from 

concepts they were struggling with, or that they were attempting problems involving 

many concepts that they had not yet learned. In fact, both of these were true, for two 
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reasons. First, SQL-Tutor contains a fairly limited problem set—the largest problem 

set for a single database contained just 38 problems. Second, problems were selected 

according to the currently most violated constraint. This strategy can easily fail 

because there may not be another problem for which the same constraint is relevant. 

This is exacerbated by the specificity of the constraints. If a problem involving a 

similar constraint could be used, the system would more successfully focus on the 

target concept . This highlights the need for a more general view of the constraint set. 

Also, this approach gives no control over the number of new concepts introduced. 

Therefore, although the student is currently focussing on one aspect, such as sorting, 

the system might inadvertently introduce another new concept, such as grouping. 

6.2.4 Inducing the student model using machine learning 

The results for the hand-coded hierarchy were encouraging. However, there are two 

disadvantages. First, the hierarchy, like the constraint set, must be maintained. Any 

new constraints that are not added to the hierarchy will not be visible to processes that 

rely on it. If more than one person maintains the system, it is probable that new 

constraints could “slip through the cracks.”  Second, the hierarchy represents just one 

way of looking at the constraints: there may be others that are equally valid. More 

importantly, the same hierarchy may not fit all students. For example, the structure 

used in (Martin 1999) is heavily based around functional features such as “sorting” , 

“grouping” , “ tables” , “expressions”  etc. Details such as nested queries or name 

aliasing are “hidden” lower down in the hierarchy. However, a particular student may 

have mastered the basics of SQL but repeatedly have problems with nesting queries. 

The relevant constraints for this type of problem are scattered throughout the 

hierarchy. Using Machine Learning would overcome both of these difficulties, 

making the student model more flexible and easier to maintain. 

As described earlier, the hand-coded constraint set was produced by repeated 

partitioning of the constraint set based on key concepts such as “grouping.”  These 

concepts were determined by examining each constraint to identify its main function. 

However, the constraints already contain a description of what they do: the feedback 

message attached to each constraint is a concise description of the underlying concept 

being tested. We therefore propose that we can use Machine Learning to induce a 
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hierarchy from the basic student model using the feedback messages as input. This is 

an example of student model induction from multiple behaviours (Sison and Shimura 

1998). 

We analysed the text of the feedback messages for the set of semantic constraints 

and determined which words were likely to be keywords. In practice we kept all 

words except those that were highly likely to be superfluous, such as “a” , “ the” , “and”  

etc. Some parsing of the messages was also necessary to remove suffixes. The 

resulting set of words formed the set of attributes, where each attribute has a value of 

“present”  or “not present.”  The set of “Not Learned” constraints was then converted 

into the set of positive examples, with attribute values determined according to which 

words were present. Similarly, the “ learned” constraints formed the negative example 

set. These two sets were then combined to produce a training set. 

We then induced modular rules for the class “Not Learned” using a similar 

algorithm to PRISM (Cendrowska 1988), except we only considered the attribute-

value pairs with value “present” , because the absence of a word does not necessarily 

imply that it is not relevant. Each candidate attribute was given a score based on 

simple probability, i.e. 

     Score =   
np

p

�
     (3) 

 
where p is the number of positive examples where this attribute has the value 

"present", and n is the number of negative examples for this attribute value. 

The set was then partitioned according to the attribute with the highest probability 

and coverage. If the probability is less than unity, those instances with a 0 for this 

attribute are removed, and the process repeated until unity is obtained, and the rule is 

now fully induced. All instances covered by the rule are now removed and the 

probability score for the remaining attributes is then recalculated, and the next rule 

induced. The process is repeated until no positive instances remain. 

The resulting rule set describes the “Not Learned” constraints and is used to 

classify the constraints that have not yet been used by the student. If a constraint 

satisfies one or more rules, it is likely the student has not learned the underlying 

concept yet. For example, from the induced rules Student A is unlikely to have 
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learned any constraint that contains any of the following terms in the feedback 

message: 

� “ORDER BY”, or; 

� “ function” , or; 

� “GROUP BY”, or; 

� “Grouping” , or; 

� “NULL”, and “condition” . 

6.2.5 Evaluation 

If the rules we have induced represent concepts that a student has not learned, we 

expect each student’s “Not Learned” constraints to be grouped together such that 

those constraints that are described by each rule are related and are unlikely to have 

been learned by the student, given their observed behaviour. In the case of the hard-

coded hierarchy, this appeared to be the case. We therefore used the results from 

(Martin 1999) as a benchmark for this evaluation.  

We produced rules for the same three students as were used in (Martin 1999), and 

used them to classify the remaining unused constraints. We then compared the results. 

Table 3 illustrates the results obtained. “ Induced rule”  shows the rule induced using 

the Machine Learning method, compared to “Hierarchy category” , which is the most 

similar node from the hard-coded hierarchy, in terms of the name of the category and 

the constraints it represents. “Correctly classified”  indicates the number of constraints 

that were not labelled (i.e. they had not been relevant) that the induced rule included, 

which were the same as constraints in the hard-coded category. Note that a “0”  in this 

column indicates that neither the induced rule nor the hierarchy category generalised 

beyond the constraints the student had violated. “Missing”  indicates constraints that 

the hierarchy category covered, which not covered by the induced rule, and “Extra”  

displays the number of additional constraints covered by the induced rule that were 

not included in the hierarchy category. In most cases, the induced rules represented 

the same constraints as those suggested by the hierarchy. However, there was one 

case where the outcome was not the same: for student A the set of constraints 

represented by “Function”  contained twelve extra constraints and was missing six 

compared to the hand-coded hierarchy.  
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The extra constraints arose because there were twelve more constraints concerning 

aggregate functions that were “hidden” in another part of the hand-coded hierarchy 

(“comparisons with constants”), and so were not included by it. This highlights the 

problem of having a single view of the constraints. The induced rule set is therefore 

superior to the hierarchy in this respect. However, the missing constraints are a 

genuine problem. Because categories are induced from free-format text, there is no 

guarantee that a consistent terminology will have been adopted. In this case the word 

“ function”  was used in most, but not all, of the constraints concerning aggregate 

functions. Hence, some constraints were missed. 

Student Induced rule Hierarchy category Correctly 
classified 

Missing Extra 

A ORDERBY Sorting 10 - - 
 Function Aggregate Functions 38 6 12 
 GROUPBY Grouping 2 - - 
 Grouping Grouping 0 - - 
 NULL + 

condition 
Null / attributes 3 - - 

      
B Place Negation / correct 

attributes 
0 - - 

 Another + 
table 

All tables used / 
none missing / 
nested selects 

0 - - 

      
C Arithmetic Expressions / 

arithmetic 
5 - - 

 DISTINCT Expressions / 
DISTINCT 

0 - - 

 Grouping Grouping / exists / 
having 

0 - - 

 Another + 
table 

All tables used / 
none missing / 
nested selects 

0 - - 

 GROUPBY + 
Check 

Grouping / attributes 0 - - 

 NOT+right Negation / attributes 0 - - 
 Need + 

resulting 
Sorting / existence 0 - - 

Table 3.  Results for three students 
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Overall, the method performs quite well. The induced rules are very similar to 

those obtained by the hand-coded hierarchy and should be useful for problem 

selection. The lack of consistent terminology in the feedback messages poses a 

genuine threat to this method. However, its effect seems to be fairly small: some 

relevant constraints have been missed, but no constraints were incorrectly included. In 

any case a perfect result is not essential, since the effect of missing or adding extra 

constraints will at worst be a degradation of the gains in performance of problem 

selection. 

The hand-coded hierarchy has clear benefits in other areas. Because the hierarchy 

was carefully chosen to be a meaningful abstraction of the constraints, it could be 

presented to the student to illustrate the structure of the domain, and similarly the 

student model could be presented to help both student and teacher understand where 

the problem areas lie. However, the induced rules are based purely on regularities in 

the textual feedback messages so the results are not always understandable in 

isolation: “Grouping”  and “NULL” are understandable; “Place”  is not. 

Finally, both the hand-coded hierarchy and the induced rules might be used to 

select high-level feedback. In the case of the hierarchy, each node could have an 

appropriate message attached to it, which is displayed when the node describes the 

student’s behaviour. For the induced rules, a pool of extra messages could be 

provided at varying levels of generality. Then, as well as producing classification 

rules for “Not Learned”, a rule set could be produced for “Learned.”  If a high-level 

message matches a rule for “Not Learned”, but does not match any for “Learned,”  it is 

probably relevant to this student. Conversely, a message that matches both rule sets is 

probably too general. 

6.2.6 Selecting the target constraints 

We suggested that by inducing high-level concepts a student’s misconceptions could 

be determined from the text of the constraints they violated. This allows us to identify 

those concepts a student is finding difficult. These can then be used to guide the 

pedagogical process by aiding tasks such as next problem selection. We have shown 

that in the case of SQL-Tutor, the induced rules appear promising compared to the 

hierarchy we previously hand-coded, although further evaluation is required to verify 
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the method’s performance. The set of constraints represented by the induced rules 

may now form the target set. Further, if a curriculum structure exists this might be 

used to reduce the target set to an individual concept, for example by only permitting 

constraints for a particular clause. 

6.3 Building a new ideal solution 

Each pattern match in the relevance condition of the target constraint corresponds to a 

fragment of the solution that must be present for this constraint to be relevant. We 

therefore begin by inserting these fragments into our (currently blank) ideal solution. 

Since the pattern matches may contain variables, these must be instantiated. In SQL-

Tutor these variables may correspond to database table or attribute names, literals, 

relational operators etc. In some cases the value will be constrained by tests in the 

constraint, which resolve to a set of allowed values. For example, a variable 

representing a relational operator must contain a member of the set (>, <, <=, >=, =, 

<> or !=), so the algorithm may instantiate the variable to a random element of the set. 

A variable representing a database table will be similarly constrained to a member of 

the list of valid table names. In other cases (e.g. literals) there is no such set. 

However, such variables cannot be simply assigned a random value: in any given 

instance some values will be sensible, others will not. For example, if the subject of 

the database being queried is movies, the condition “Ti t l e = ' Spar t i cus' ”  

would be sensible, but “Ti t l e = ' sekf gdvf v ' ”  would not. To overcome this 

problem we introduce a small set of instantiation constraints, which further restricts 

the value of such literals. These constraints are used only during the production of 

new problems.  

The instantiation constraints also ensure that semantic consistency is maintained, 

and may check that the new problem does not increase markedly in difficulty during 

the next phase (building a complete solution). As an example of the former, the 

movies database contains information about who stars in each film. A new problem 

might independently add two fragments for comparisons with a literal: one for the 

title of the movie and one for the name of the role being played by a particular star. A 

constraint is necessary to ensure we do not build obviously artificial conditions such 
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as in the following example, where the role of “Noddy”  does not exist in the film 

“Star Wars” , so this problem would seem nonsensical to a movie-going student: 

 WHERE t i t l e = ’ St ar  War s’  and r ol e = ’ Noddy’  

 

An example of where problem difficulty might escalate is in the (random) 

assigning of database attribute names to variables: each attribute could potentially 

come from a different database table. This would require the joining of many tables, 

which is one of the most difficult aspects of SQL. Therefore in the absence of a JOIN 

in the target constraint set, all attributes should come from a single table. Instantiation 

constraints achieve this. The following is an example of an instantiation constraint 

and its accompanying macro: 
 
( I 8 
" Ensur es t hat  l i t er al  st r i ng compar i sons i n WHERE ar e wi t h val i d st r i ngs"  
 
( mat ch SS WHERE ( ?*  ( ^at t r i but e- i n- f r om ( ?name ?at t r  ?t abl e) )   
                    ( ^ r el - p ?op)  ( ^sql - st r i ngp ?st r )  ?* ) )  
 
( t est  SS ( ^val i d- st r i ng ( ?at t r  ?t abl e ?st r ) ) )  
 
" WHERE" )  

 

( ^val i d- st r i ng ( ??at t r i but e ??t abl e ??st r i ng)  = 
    ( t est  ?? ( (  
       ( " l name"  " di r ect or "  " ' Kubr i ck ' " )   
       ( " l name"  " di r ect or "  " ' Spi el ber g' " )   
       ( " f name"  " di r ect or "  " ' St anl ey' " )   
       ( " f name"  " di r ect or "  " ' St even' " )   
       ( " t i t l e"  " movi e"     " ' St ar  War s' " )   
       ( " t i t l e"  " movi e"     " ' Bl azi ng Saddl es' " )   
       . . .                                          
       ( ??at t r i but e ??t abl e ??st r i ng) )  
    )  
)  

 

Other instantiation constraints match multiple strings. For example, one constraint 

ensures that if di r ect or . f name and di r ect or . l name are both present, they 

are a matched pair such as ' St anl ey'  and ' Kubr i ck ' . Another ensures that stars' 

names and their roles are consistent. 

At this stage our new potential ideal solution consists of a set of disjoint 

fragments, which may or may not be valid SQL. They are now passed through the 

problem solver, which corrects any errors leaving a valid SQL solution. The algorithm 

used is identical to that designed for problem solving that was described in section 4. 

However, in this case only the syntactic constraints are used. 
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6.4 Controlling problem difficulty 

The new problem must also be of appropriate difficulty. Brusilovsky (Brusilovsky 

1992) suggests that tasks may be selected according to the combination of two 

independent measures: structural complexity and conceptual complexity. Structural 

complexity is a measure of how difficult a problem is per se. Brusilovsky defines it as 

the number of steps to solve a problem. Conceptual complexity is a measure of how 

much this problem requires the use of concepts the student has not yet mastered. He 

defines this as the number of “not quite learned” knowledge elements from the 

domain model.  

To determine the next best problem to select, ITEM/IP (Brusilovsky 1992) adds 

two variables to the student model: the current optimal structural complexity, and the 

current optimal conceptual complexity. Both are dynamic: if the student solves a 

problem, the student model complexities are set to the maximum of the current values 

and those for the newly solved problem; if the problem is not solved, they are 

reduced. To select the next problem ITEM/IP first compiles a list of problems that are 

eligible (i.e. all of the skills are learned sufficiently to be ready to practice, and at least 

one is not fully learned yet). It then selects the best one by minimising the difference 

between problem complexity and the student’s current optimal complexity. This 

difference is defined as: 

 

� � � � � �ErrWCCCCWSCSCWDiff spsp 32
2

1 �����   (4) 

 

where SCp and SCs are the structural complexities for the problem and student 

respectively, CCp and CCs are the corresponding conceptual complexities, and Err is 

the number of erroneous tasks required, i.e. those that are not relevant to the current 

curriculum topic. Although Brusilovsky does not specify the weights, it is clear that 

the structural complexity is the dominating term. He reports that the described method 

has been used in systems for both first year university students and 14 year-old school 

pupils. In both cases the students found the task sequencing strategy “seemed 

intelligent, and they usually agreed with the system’s choice”  (Brusilovsky 1992). We 

set the values of the three weights empirically, by trying different values and 
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observing how well the system stayed on a concept for which errors had been made, 

how quickly it moved on to a new concept once it was mastered, and how many new 

concepts it introduced at a time. For SQL-Tutor we used W1=1, W2=5 and W3=10, 

making a single failed constraint the equivalent of five known ones, and favouring 

staying on the current failed constraint over moving to a new (previously not 

encountered) constraint. 

In SQL-Tutor there is no concept of number of problem-solving steps required. 

Instead the domain model is built around the underlying domain concepts that are 

involved in a problem’s solution, which translate into constructs present in the 

completed solution. We therefore use this as a basis for computing complexity. 

Factors that might affect structural complexity are therefore: 

1. The total number of constructs involved; 

2. The number of new constructs; 

3. The number of not learned constructs (i.e. those the student is likely to fail, 

based on previous experience); 

4. The complexity of each construct in (1, 2, and 3). 

 

Note that a much simpler scheme for calculating structural complexity might be to 

count the number of terms in the solution. However, this ignores the fact that a single 

complex term (such as a JOIN or nested select) is likely to add much more difficulty 

than, say, three WHERE conditions involving straightforward comparisons with 

literals.  

ITEM/IP uses simple counts of the number of tasks. In the case of SQL-Tutor the 

complexity of each construct must also be taken into account, since not all constructs 

are the same. There are two ways we could assign difficulty to the constructs 

associated with constraints: by manually assessing difficulty, or by automatically 

assigning a value for each constraint. Since we are trying to minimise the work 

required to build tutors, we chose the latter, although we concede that this is a 

compromise, since some constructs may be considerably more difficult to build than 

their surface complexity implies. We calculate the complexity of each construct from 

its size: the larger the construct, the more difficult it is likely to be. We use the sum of 

terms squared as the complexity measure, the same as Brusilovsky, i.e. 
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Difficulty = 2n      (5) 

 

where n is the number of terms introduced, which is equal to the number of non-

wildcard elements in the MATCH fragment(s) added as a result of this constraint. The 

difficulty is computed continually as the solution is built up: when new fragments are 

added, the complexities for the added fragments are added; when fragments are 

deleted, they are subtracted. A TEST modification is equivalent to a MATCH with 

one term. 

Conceptual complexity measures the degree to which the student is likely to 

struggle with the new concepts introduced in this problem. Again Brusilovsky used 

the number of tasks required that have not been learned yet. Instead, we use the total 

complexity of new constraints introduced that are from the target constraint set. For 

the measure of “erroneous”  concepts, we total the complexity of all relevant 

constraints that have never been encountered before. Conceptual complexity is 

measured in the same way as structural complexity but only those constraints that 

have previously been violated are used in the summation process, which continues 

until the solution is empty or the candidate constraints have been exhausted.  

Whereas ITEM/IP records the student’s ideal conceptual and structural 

complexities in the student model, we record a single value of optimum difficulty and 

compare the difficulty of each problem with respect to the student model to this value. 

For a new student model the target difficulty is set to an initial value, which depends 

on the competency level the user selects when they log in. To determine what value to 

set each competency level, we computed the difficulty of the existing authored 

problem set. This set ranged in difficulty from 6 to 1084, with a mean of 240 and 

standard deviation of 264. We adjusted these figures slightly so that the existing 

problem set was partitioned sensibly, to give default difficult difficulties of: Novice = 

0, Average = 250 (approximate mean), and advanced = 500 (approximately the mean 

+ 1 SD).  

The student’s target difficulty value is updated each time they complete a 

problem-solving activity. If the student successfully solved the problem without help, 

the variable is incremented by a constant amount, K1. Similarly, if the student fails, 
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the system decreases their levels by K2. The values of K1 and K2 were ad hoc, being 

K1 = 50, and K2 = 10. This means that the target complexity rises quickly if the 

student answers a problem correctly, but falls slowly if they fail consecutive ones. 

This ensures that the difficulty of problems being set does not trend too quickly to 

zero because a student is struggling with some concept. 

 Problems are constructed to match the target complexities as follows: 

� A target constraint is selected. To ensure that difficulty is appropriate, we 

select the simplest target constraint that meets or exceeds the student’s 

ideal conceptual complexity. The complexity for the solution so far is then 

updated according to the number of unmatched terms in the added 

fragment. If the most complex target constraint fails to meet the required 

complexity, further constraints are added in the same manner, until the 

desired conceptual complexity is reached. If, at the end of this procedure, 

the problem is still not sufficiently complex, we select the next target 

constraint set, and continue until either the desired complexity is reached, 

or the set of target constraint sets has been exhausted; 

� Further constraint fragments are added from the set of learned constraints. 

Each time a new construct is included, its complexity is added to the total, 

i.e. the square of the number of terms in the total fragment; 

� During the final building of a correct SQL statement, the same scheme is 

applied, i.e. 

o Every time a fragment is added, the complexity for the extra terms 

is added to the total; 

o Every time a fragment is deleted, the complexity for the removed 

fragment is deducted. 

Note that the third step (building a complete solution) may further increase the 

structural and conceptual complexities of the solution. This is minimised by the 

instantiation constraints, which attempt to keep the overall structure of the solution as 

simple as possible while satisfying the target constraint(s). 
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6.5 Conver ting to natural language 

The final step is to produce a natural language problem statement for which the newly 

generated SQL statement is a correct answer. Again a small set of constraints is used, 

which maps constructs in the SQL statement to a Natural Language representation of 

the problem to be solved. As before, multiple ways of representing any part of the 

problem are catered for, allowing variation in problem phrasing. The problem 

statement is structured in a similar fashion to an SQL query, in that each will contain 

a phrase that describes the attributes to be selected, another for which entity(ies) these 

attributes belong to etc. These phrases are concatenated to give the complete problem 

statement. For example, the following three constraints help generate the first phrase, 

i.e. which attribute(s) to retrieve: 

 
( NLP1 " sel ect s a r andom i nt r o f or  t he ATTRI BUTES phr ase"  
( mat ch I S SELECT ( ?what  ?* ) )  
( mat ch PROBLEM ATTR- HDR  
   ( ( " Li st  al l " )  ( " Pr oduce a l i s t  of " )  ( " what  i s  t he" ) )  ?headi ng) ) )  
" " )  
 
( NLP2 " t r ansl at es al l  at t r i but es i n t he SELECT cl ause i nt o a 
sui t abl e synonym"  
( mat ch I S SELECT ( ?*  ( ^at t r - synonym ( ?n ?s) )  ?* ) )  
( mat ch PROBLEM ATTRI BUTES ( ?*  ?s ?* ) )  
" " )  
 
( NLP3 " Makes sur e t her e i s  a comma bet ween at t r i but es"  
( and ( mat ch PROBLEM ATTRI BUTES ( ?*  ?s1 ?s2 ?s3 ?* ) )  
     ( not - p ( t est  PROBLEM ( “ , ”  ?s1) ) )  ( not - p ( t est  PROBLEM ( " , "  
?s2) ) )  
)  
( and ( mat ch PROBLEM ATTRI BUTES ( ?*  ?s1 “ , ”  ?s2 ?s3 ?* ) )  
       ( not - p ( mat ch PROBLEM ATTR ( ?*  ?s1 ?s2 ?s3 ?* ) ) )  
)  
" " )  
 

The number of NLP constraints will depend on the complexity of the domain and the 

flexibility in language required. For example, the following SQL problem could be 

stated in several ways: 

SELECT l name,  f name 
FROM st ar  
WHERE bor n >= 1920 and bor n <1930 
 

This could be mechanically translated into “List the last name and first name of all 

stars where born is at least 1920 and less than 1930”. However, a more natural 
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statement for this problem, which would “give away” less of the solution, is “What 

are the names of all stars born in the twenties?”  The latter would require a 

considerably more sophisticated constraint set to cope with for example, the fact that 

the attribute “born”  is now being used as a verb. We estimate that SQL-Tutor would 

require a minimum of around 25 constraints to mechanically translate queries into 

SQL, and at least 100 to demonstrate suitable flexibility to be able to recreate the 

current human-authored problem statements. Both would also require taxonomies to 

translate attribute names, table names, comparison operators etc into natural English. 

6.6 Problem generation example 

During the study described in (Martin 1999), we examined the state of several 

students at the conclusion of a two-hour session with SQL-Tutor. Student A was 

found to be still failing constraints concerning sorting, aggregate functions, grouping 

and null attribute tests. Suppose we wish to generate a new problem to test sorting. 

We select a constraint at random from the induced target set, for example: 

( 378 
" Check whet her  you shoul d have ascendi ng or  descendi ng or der  i n t he 
ORDER BY cl ause. "  
( and ( mat ch I S ORDER_BY ( ?*  ?n " DESC"  ?* ) )  
     ( mat ch SS ORDER_BY ( ?*  ?n ?* ) )  
)  
( mat ch SS ORDER_BY ( ?*  ?n " DESC"  ?* ) )   
" ORDER BY" )  
 

From this constraint, we obtain the fragment ORDER_BY ( ?n DESC) . Student A 

is an average student, so we need to increase the difficulty of the problem to her level. 

We randomly select one or more constraints that she has already learned, for example: 

( 175 
" Check you ar e compar i ng t he st r i ng const ant  t o t he r i ght  at t r i but e 
i n WHERE. "    
( and 
  ( mat ch I S WHERE ( ?*  ( ^at t r - name ( ?n1 ?a1 ?t 1) )  ( ^ r el - p ?op1)  
( ^st r i ngp ?c)   
                   ?* ) )  
  ( mat ch SS WHERE ( ?*  ( ^at t r - name ( ?n2 ?a2 ?t 2) )  ( ^ r el - p ?op2)  ?c 
?* ) )  
)  
( t est  SS ( ^same- at t r i but es ( ?a2 ?t 2 ?a1 ?t 1) ) )   
" WHERE" )  
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Because this is a semantic constraint, we use the first ideal solution match, which 

adds a comparison between an attribute and a string. At this stage the attribute 

variable will be randomly instantiated to a valid attribute and the relational operator 

will similarly be instantiated to one of the relational operators. The string cannot be 

instantiated yet. This partial solution is then passed to the instantiation constraints. 

Since the FROM clause is empty, it is instantiated to a random valid table name. Now 

the attribute in the WHERE clause must be a valid attribute from that table, so it is 

modified if necessary. Finally the attribute/string pair must be a valid pairing as 

defined in the instantiation attributes. The solution thus far is now (for example): 

FROM cust omer  
WHERE l name = ’ Par ker ’  
ORDER_BY ?n DESC 
 

This partial solution is now passed to the problem solver, which uses the syntactic 

constraints to build a valid SQL solution: 

SELECT number  
FROM cust omer  
WHERE l name = ' Par ker '  
ORDER_BY number  DESC 
 

Note that on completion of this stage it is possible that the generated solution will 

violate the instantiation constraints (for example, by introducing an additional table 

name) and/or alter the difficulty of the problem unacceptably by adding or removing 

fragments. It is therefore necessary to re-test both of these aspects. In the case above, 

no further modification is necessary. 

Finally, the generated ideal solution is converted into a natural language problem 

statement using the constraints designed for this purpose, for example: 

List all numbers of customers whose last name is Parker. Order the results by 

descending customer number. 

6.7 The problem generation algor ithm 

In the preceding sections, problems were generated online each time the student 

concludes an exercise. The high-level algorithm is: 
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1. Update the student model complexity variables according to the student’s 

performance on the latest exercise; 

2. Use the ML algorithm to induce a new set of target constraints; 

3. Choose a target constraint, and insert its corresponding fragment(s) into 

the (currently blank) new ideal solution; 

4.  Choose additional constraints, and insert their fragments, until the desired 

level of difficulty has been achieved; 

5. Test the solution against the instantiation constraints; 

6. Build a complete solution, using the problem solver; 

7. Convert to a natural language problem statement; 

8. Present to the student. 

This approach has one major disadvantage: it requires that both the solution and 

problem generation algorithms be fail-safe. As seen in Chapter 5, this is not an easy 

task. For solution generation, testing the constraint set to ensure that all incorrect 

solutions will be corrected is difficult if not impossible. In problem generation, the 

problem is worse. First, we are now considering building SQL without a clear 

semantic requirement, so it is even more likely that the algorithm will generate 

mistakes that a student is highly unlikely to do. Second, to avoid nonsensical 

questions the initialisation constraints also need to be infallible. Finally, generating 

plausible natural language queries that do not make the solution obvious is difficult. 

In solution generation, the most common problem is that the algorithm fails to 

terminate. This can be trapped and the fallback position adopted where the ideal 

solution is simply used. There is no such parallel in problem generation: how can the 

system trap a nonsensical problem? 

An alternative is to perform problem generation offline. In this scenario the 

problem generation algorithm is used to (try to) create n problems per constraint. On 

completion, a human teacher assesses the generated problems and decides which ones 

to keep, and which to discard. She may also alter some problems to improve their 

semantics. The created problem set is then used. Problems are now selected (rather 
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than generated) by comparing all problems to the student model to determine their 

conceptual difficulty, as described previously. Whichever is the closest fit is selected 

for presentation. During generation the difficulty of each problem may be controlled 

as described previously to ensure sufficient spread of difficulties. Alternatively, the 

problems can simply be built with no regard to difficulty, relying instead on the 

variation in constraint difficulties to ensure an even spread. In our experiments we 

chose the latter. 

The algorithm loops through each of the constraints trying to build n new 

problems. Note that some constraints test for the absence of erroneous constructs, so 

can never be successfully turned into problems. Rather than waste time determining 

that this is the case, these are explicitly excluded from processing. We add a fragment 

for each constraint based on either the relevance condition, or a prototype. Some 

constraints test only a very small part of a larger construct. To build a full SQL query 

for such a constraint relies on the other constraints for this construct being 

successfully applied. However, because the original fragment is such a small part of 

the construct, it may fail to be correctly identified by the constraint set, which may 

turn it into a different construct, or possibly delete it. Consider the following 

constraint: 

( 439_A 

   " Make sur e you ar e usi ng t he r i ght  k i nd of  JOI N. "  
   ( and 
      ( mat ch I S FROM ( ?*  ( ( " LEFT"  " RI GHT" )  ?j t 1)  ?* ) )  
        ( mat ch SS FROM ( ?*  ( ( " FULL"  " LEFT"  " RI GHT" )  ?j t 2)  ?* ) )  
   )  
   ( t est  SS ( ( " LEFT"  " RI GHT" )  ?j t 2) )  
   " FROM"  
)  
 

This constraint tests that the correct type of JOIN is being used. However, it only 

specifies the type of join and nothing else in the tests of the ideal solution in the 

relevance condition. It therefore adds only the fragment (for example) “LEFT”  to the 

FROM clause. This by itself is not valid and, since the instantiation constraints favour 

a single table over multiple ones, the lone “LEFT”  is assumed to be a mistake and 

deleted by another constraint. To overcome this, we add the following prototype to 

the constraint, which builds a complete JOIN condition: 

 



119 

;  PROTOTYPE 
( and 
   ( mat ch I S FROM ( ?*  ?t 1 ( ( " LEFT"  " RI GHT" )  ?j t )   

" JOI N"  ?t 2 " ON"  ?*  ?n1 " ="  ?n2 ?* ) )  
   ( t est  I S ( ^ j oi n- f i el ds ( ?n1 ?t 1 ?n2 ?t 2) ) )         
 )  
 
)  
 

Note that prototypes are not strictly necessary: we could also make the ideal 

conditions of the relevance conditions more stringent and achieve the same end. For 

example, in the constraint given we might ensure that the test of the ideal solution 

contains a full JOIN construct, since it would be incorrect without it anyway. 

However, for some constraints this is not such an obvious step, and it confuses the 

tasks of writing the constraints and facilitating problem generation. We began using 

this latter method, but found it much simpler to use prototypes. Of the 819 constraints 

in SQL-Tutor, 312 have prototypes. However, many of the prototypes are identical. 

For example, there is a prototype for building a nested query with appropriate 

attributes and tables that is used 54 times. 

For those constraints without a prototype, the relevance condition is used. For 

semantic constraints we are interested only in the ideal solution, so we rename all IS 

(ideal solution) matches and tests to SS (student solution) for passing to the problem 

solver, and delete all the original student solution tests. Syntactic constraints are tested 

verbatim. A summary of the algorithm is given in Figure 9. 
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6.8 Evaluation 

The motivation for Problem Generation was to reduce the effort involved in building 

tutoring systems by automating one of the more time-consuming functions: writing 

the problem set. Three criteria must be met to achieve this goal: the algorithm must 

To gener at e a set  of  pr obl ems 
Open l og f i l e 
Open pr obl em f i l e 
 
I nst ant i at e a l i s t  of  const r ai nt s t hat  ar e never  r el evant  i f  t he 
sol ut i on i s  cor r ect  
   
For  al l  const r ai nt s ( except  t hose i n t he not - r el evant  l i s t )  
    Tr y t o gener at e a pr obl em f r om t he const r ai nt  
    I f  successf ul  ( r el evant  t o t he const r ai nt )  
        Wr i t e out  t o t he pr obl em f i l e 
    ELSE  
        Repor t  t hat  i t  f ai l ed t o r esol ve t o a pr obl em 
   
Cl ose t he f i l es 
 
To gener at e a pr obl em:    
Add a f r agment  f or  t he const r ai nt  i nt o t he ( cur r ent l y  bl ank)  sol ut i on 
 
Tr y t o cor r ect  t he sol ut i on usi ng sol ut i on gener at i on al gor i t hm,  but  
al t er nat i ng t est i ng t he i nst ant i at i on const r ai nt s and synt act i c  
const r ai nt s,  i nst ead of  t he semant i c and synt act i c  const r ai nt s.  
 
To add a f r agment :  
t r y  20 t i mes max:  
I f  t he const r ai nt  has a pr ot ot ype,  set  CONDI TI ON t o t hat  
ELSE  
set  CONDI TI ON t o t he r el evance condi t i on 
 
I f  t he const r ai nt  i s  semant i c,  r ename al l  I S t est s i n CONDI TI ON t o be 
SS t est s,  and del et e t he SS t est s 
 
Set  bi ndi ngs t o be a def aul t  r oot  ( i . e.  t he def aul t  bi ndi ng f or  a 
successf ul  eval uat i on,  wher e no var i abl es wer e encount er ed)  
 
Eval uat e CONDI TI ON as t hough i t  i s  a sat i s f act i on condi t i on 
   
I f  t her e ar e cor r ect i ons t o be per f or med  
      act i on t hem 
ELSE 
    Ret ur n t he sol ut i on unchanged 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
 
 
 
 

Figure 9.  Problem generation algorithm 
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work (i.e. it must generate new problems); it must require (substantially) less human 

involvement than traditional problem authoring; and the problems produced must be 

shown to facilitate learning to at least the same degree as human-authored problems. 

These criteria form the basis of three hypotheses that must be supported by empirical 

evidence before we can be satisfied that the method is worthwhile. Additionally, if the 

method works, it should be possible to generate large problem sets, which will have 

the benefit of greater choice when trying to fit a problem to the user’s current student 

model. Also, the new representation allows us to measure the structural difficulty of 

each problem as previously described. This allows us to measure the conceptual 

difficulty of each problem in relation to the student model, and thus to choose the best 

problem for this unique student model, rather than simply basing our choice on the 

student’s aptitude level. We might therefore expect that, given a suitable problem 

selection strategy, a system using the generated problem set would lead to faster 

learning than the current human-authored set and high-level problem-selection 

strategy. This gave us four hypotheses to test: 

Hypothesis 6.1: That the algorithm successfully generates new problems; 

Hypothesis 6.2: That generating new problems is easier than authoring them 

manually; 

Hypothesis 6.3: That using generated, rather than human-authored, problems does 

not significantly degrade performance of the ITS; 

Hypothesis 6.4: That by using a problem selection routine that takes advantage of 

the new representation’s ability to calculate conceptual difficulty, 

the new problems (plus the new selection routine) may lead to an 

increase in learning performance. 

We tested the first two hypotheses in the laboratory, while the last two were evaluated 

using a university class. 

6.8.1 Testing of hypotheses 6.1 and 6.2 

The SQL-Tutor ITS was used as the basis for all testing of Problem Generation. The 

knowledge base created for problem solving in Chapter 5 formed the basis for testing. 
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Additionally, 66 instantiation constraints were added for controlling the semantics. 

The problems were generated in batch using the algorithm described in Section 6.7. 

At this stage, the natural language converter was not implemented, so human 

intervention was necessary to produce the text message for each problem. To keep the 

number of problems manageable, the batch run was limited to one problem per 

constraint. We generated a total of 819 problems.  

We then checked each problem for sensibility and, if accepted, authored the 

problem text message. Of the 819 problems, approximately half emanated from  

semantic constraints, with the other half being syntactic. Because of time constraints, 

we elected to use only those from the semantic constraints. Of these, 200 were chosen 

that had sensible semantics and were not duplicates, or around 50%. In practise, 

nearly all of the rejections were because the generated SQL was nonsensical. Some 

examples of reasons for rejection are: 

� The problem contained illegal combinations of literals, caused by 

deficiencies in the instantiation constraints; 

� The structure of the problem was unrealistic (e.g. double negatives); 

� The problem was testing some unusual construct that was unlikely to teach 

anything useful; 

� The ideal solution was identical to another; 

� The problem when converted to text would have been identical to another 

(i.e. the ideal solution was different but the semantics were the same). 

 
The process of vetting the problems and producing text input for all of the 

problems took a total of approximately three hours, compared to many days to author 

the 82 problems manually in SQL-Tutor, so it took much less time to produce 200 

problems in this way than to manually author 82. Note that this rate of authoring is 

atypical: this author produced these problems, so had the benefit of deep immersion in 

both the domain and the generation process, and had knowledge of the types of 

problems that would be generated, and likely difficulties with them. Further, simple 
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deficiencies (such as problems involving double negatives) appeared in large blocks 

because the constraints tend to be grouped by function. For example, there is a large 

block of constraints that deals with NOT. Thus, double negatives tended to appear 

close together. Finally, there was a reasonable level of structural similarity between 

blocks of problems, for example many problems dealing with nested queries were 

grouped together. This may not always be typical of a domain knowledge base. In 

spite of these caveats, we still believe problem generation will save a significant 

amount of time when authoring other domains: the author of the original problem set 

(Mitrovic) was similarly immersed in both the subject: she is a teacher of database 

material, and she authored the original SQL-Tutor system. 

The generated problems were used successfully on a university class (see next 

section). Hypotheses 6.1 and 6.2 are therefore supported in the SQL domain: the 

algorithm worked, and it took substantially less time to author problems using it than 

creating them manually. 

6.8.2 Classroom evaluation of hypotheses 6.3 and 6.4 

To test hypotheses 6.3 and 6.4 it is necessary to demonstrate that a system using 

generated problems performs as well as or better than a system using human-authored 

exercises. We modified SQL-Tutor for this purpose and evaluated it for a six-week 

period. The subjects were stage two university students studying a databases paper. At 

the end of the study the students were required to sit a lab test about SQL as part of 

their assessment, so they were motivated to use the system if they considered it might 

improve their performance. 

We partitioned the students into three groups. The first used the current version of 

SQL-Tutor, i.e. with human-authored problems. The second group used a version 

with problems generated and selected using the algorithms described. The third group 

used a variant containing other research (student model visualisation) that was not 

relevant to this thesis. Each student was randomly assigned a “mode” that determined 

which version of the system they would use. Before using the system each student sat 

a pre-test to determine their existing knowledge and skill in writing SQL queries. 

They were then free to use the system as little or as often as they liked over a six week 
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period. At the conclusion of the evaluation they sat a post-test. Appendix A contains 

the pre- and post-test scripts. 

When the study commenced approximately 60 students had signed up and 

performed the pre-test, giving sample sizes of 20 per group. During the evaluation this 

swelled to around 30 students per group as new students requested access to the 

system. At the conclusion of the study some students who signed up had not used the 

system to any significant degree. The final groups used for analysis numbered around 

20 students each. The length of time each student used the system varied greatly from 

not using it at all to around twenty hours, with an average of two-and-a-half hours. 

Consequently the number of problems solved also varied widely, from zero to 98, 

with an average of 25. Thus, an average student might expect to learn the domain in 

under three hours, with struggling students taking considerably longer. Three of the 

students in the evaluation study solved more than 82 problems, the total number 

available to the control set. These figures are discussed in more detail in Section 6.8.4. 

At the end of the six-week period we closed the student logs and analysed the results. 

We recorded the following information in the logs: 

� A timestamp for each action; 

� The problem number; 

� The student’s attempt; 

� A list of the violated and satisfied constraints; 

� On selection of a new problem, the student difficulty and the difficulty of 

the chosen problem; 

� On aborting a problem, the reason for failing to finish (if entered by the 

user). 

From this information we deduced summary information such as the status of each 

constraint over time, the time spent on each problem attempt and the number of 

attempts per problem. We used these results to analyse how each version of the 

system supported learning. 

There are several ways we can measure students’  performance while using each 

system. First, we can measure the means of the pre-test and post-test to determine 

whether or not the systems had differing effects on test performance. Note however, 

that with such an open evaluation as this it is dangerous to assume that differences are 
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due to the system, since use of the system may represent only a portion of the effort 

the student spent learning SQL. Nevertheless, it is important to analyse the pre-test 

scores to determine whether the study groups are comparable samples of the 

population. 

Second, we can plot the reduction in error rates as the student practices on each 

constraint. Each student’s performance measured this way should lead to a so-called 

“Power law” (Newell and Rosenbloom 1981), which is typical when the underlying 

objects being measured (in this case constraints) represent concepts being learned. 

The steepness of this curve at the start is a rough indication of the speed with which 

each student is learning new constraints. Since each constraint represents a specific 

concept in the domain, this is an indication of how quickly the student is learning the 

subject. We can then compare this learning rate between the two groups. 

Third, we can measure how many new constraints the student is introduced to, and 

masters, each time they solve a new problem. The higher the number, the more likely 

that the student is learning faster. If the problems are well suited to the student’s 

current abilities, the system should be able to introduce more new material without 

overloading the student, because the new material is relevant to what the student 

already knows and is of an appropriate level of difficulty. 

Finally, we can look at how difficult the students found the problems. This is 

necessary to ensure that the newly generated problems did not negatively impact 

problem difficulty (either by being too easy or too hard). There are several ways we 

can do this. First, we can measure how many attempts the student took on average to 

solve a problem and compare the means for the control and test groups. Second, we 

can measure the time taken to solve each problem. Note however, that this is an 

extremely crude measurement, since it does not take into account any “ idle”  time 

Note, however, that it does not include idle time at the end of the session, since this is 

not followed by a solution being submitted, so is not counted. Finally, students may 

abort the current problem, citing one of three reasons: it was too easy, it was too hard 

or they wanted to try a problem of a different type. If the proportion of problems 

aborted rises or the ratio of “ too hard”  to “ too-easy”  problems is very different to 1:1, 

we might conclude that problem difficulty has been adversely affected.  
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In this study, we measured all of the above. We used the software package SPSS 

to compare means and estimate power and effect size, and Microsoft Excel to fit 

power curves. We now present the results. 

6.8.3 Pre- and post-test per formance 

Each student was given a unique (anonymous) username, which was used to correlate 

the pre- and post-tests. Unfortunately, not all students who used the system provided 

their username on the post-test, so the sample sizes were reduced to 12 and 14, 

respectively. We measured the means for the pre-test, post-test and the gain (i.e. the 

difference between the pre- and post-test results. Table 4 lists the results (standard 

deviations are in parentheses). We measured significance using an independent 

samples T-test (two-tail). These indicate there was no significant difference in 

performance between the groups for either the pre-test or the post-test, nor in the gain 

observed for each student. As already mentioned, such an open evaluation is unlikely 

to show significant results because we do not know what other effort the students 

expended to learn SQL. Also, since the pre- and post-tests were different, it is 

possible that they are not comparable, e.g. the post-test may be much harder or may 

favour a particular type of problem that one system set more problems on. However, 

because the pre-test means were not significantly different, we can assume that the 

samples are comparable, which validates the rest of this study. 

6.8.4 Problem difficulty 

We measured problem difficulty both subjectively and objectively. We obtained 

Group Sample Pretest Posttest Gain 
Control 12 4.41 (1.24) 6.42 (1.38) 2.00 (1.34) 
Probgen 14 5.21 (1.31) 6.79 (1.37) 1.57 (2.31) 
Significant?  No (p = 0.12) No (p = 0.50) No (p = 0.56) 

Table 4.  Test score results 

Group Aborted  
(%) 

Too hard 
(%) 

Too easy 
(%) 

Diff Type 
(%) 

Responded 
(%) 

Control 26 24 42 34 84 
Probgen 26 22 42 35 62 

Table 5.  Aborted problems 
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subjective results by logging when students aborted a problem and recording their 

reason. If the problems were (overall) of a suitable difficulty, we would expect the 

ratio of claims of “ too hard”  to “ too easy”  to be approximately 1:1. Any significant 

move away from this ratio would indicate we have adversely affected problem 

difficulty. Further, the percentage of problems aborted should not rise significantly. 

Table 5 lists the results. “Aborted”  indicates the proportion of all problems attempted 

that were aborted. “Too hard” , “Too easy”  and “Diff type”  give the proportion of 

aborted problems for which the reason given was the problem was too hard, too easy, 

or the student wanted a problem of a different type, respectively. “Responded” 

indicates the proportion of aborted problems for which the student gave a reason. This 

last measure was different for the two groups, with a lower response rate for the 

Problem Generation group. We do not know why this difference occurred, since the 

interface was the same, and the other factors were not changed. 

These results suggest that for both groups the problems set are more often too easy 

than too hard. The percentage of problems aborted in each group was exactly the 

same, at around 26% of all problems. The ratio of too easy to too hard for the two 

groups is nearly identical, as is the proportion of problems aborted because the student 

wanted a problem of a different type. It therefore appears that the generated problems 

had no effect on difficulty as perceived by the students.  

Next we measured the number of attempts taken to solve each problem. This gives 

an objective indication of how hard students found the problems. Table 6 lists the 

results. “Solved/student”  indicates the average number of problems completed 

correctly. “Total time” is the average time spent at the system. This figure records the 

time that the user was actively using the system, from when they first logged in to 

when they last submitted an attempt. Thus it excludes idle time where the user has 

forgotten to log out. “Attempts per problem” is the ratio of submitted attempts to 

solved problems for all attempts, including those for problems the student abandoned. 

The rationale is that attempts at unsolved problems still constitute a learning effort, so 

should be counted as effort towards the problems that were actually solved. 

“Time/Problem” similarly records the total time spent on the system divided by the 

number of problems solved, using the same rationale. 
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There was no significant difference in the objective measurement of problem 

difficulty: students took approximately the same amount of time and number of 

attempts in both groups. The number of problems solved and average total time spent 

on the system was also almost the same for the two groups, suggesting that students 

did not favour either system. 

6.8.5 Learning speed 

We observed the learning rate for each group by plotting the proportion of constraints 

that are violated for the nth problem for which this constraint is relevant. This value is 

obtained by determining for each constraint whether it is correctly or incorrectly 

applied to the nth problem for which it is relevant. A constraint is correctly applied if 

it is relevant at any time during solving of this problem, and is always satisfied for the 

duration of this problem. Constraints that are relevant but are violated one or more 

times during solving of this problem are labelled erroneous. The value plotted is the 

proportion of all constraints relevant to the nth problem that are erroneous. The value 

for n=1, therefore, is the ratio of constraints that were erroneously applied to the first 

problem to the number of constraints that were relevant to one or more problems: the 

value for n=10 is the ratio of erroneous to total constraints relevant for 10 or more 

problems, and so on. 

If the unit being measured (constraints in this case) is a valid abstraction of what 

is being learned, we expect to see a “power curve” . In (Mitrovic and Ohlsson 1999) 

this has already been shown to be the case. We therefore fitted a power curve to the 

each plot, giving an equation for the curve where the initial learning rate is 

determined by the slope of the power curve at X=1. Note that as the curve progresses, 

learning becomes swamped by random erroneous behaviour such as slips. In other 

words, the plot stops trending along the power curve and levels out at the level of 

random mistakes. This is exacerbated by the fact that the number of constraints being 

Group Solved/ 
Student 

Total Time 
(hrs) 

Attempts/ 
problem 

Time/Problem  
(mins) 

Control 23 2:37 3.96 (1.89) 6:14 (3:58) 
Probgen 26 2:31 3.45 (1.23) 5:50 (3:20) 
Significant?   No (p = 0.31) No (p = 0.71) 

Table 6.  Attempts per problem 
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considered reduces as n increases, because many constraints are only relevant to a 

small number of problems. We therefore use only the initial part of the curve to 

calculate the learning rate. Figure 10 and Figure 11 show two such plots, where each 

line is the learning curve for the entire group on average, i.e. the proportion of 

constraints that are relevant to the first problem that are incorrectly applied by any 

student in the group. The first uses a cut-off of n=40, to illustrate how the curve tapers 

off. For the second, the cut-off was chosen at n=5, which is the point at which the 

power curve fit for both groups is maximal.  

Both groups exhibit a very good fit to a power curve. The differing slope of the 

curves suggests a difference in learning rates between the problem generation and 

control groups. To determine whether this difference is significant, we plotted curves 

for each student and used this to measure their individual initial learning rates. This 

increases the effect of errors even further, so we determined empirically the best cut-

off point for each group, which was found to be n=4. Figure 12 shows some of the 

plots obtained, ranging from very good power curve fit to poor. Low power curve fit 

almost always coincided with low learning performance. 

We calculated the learning rate at n=1 for each student, and calculated the mean 

and significance. Table 7 summarises the results. These results suggest the learning 

rate for the experimental group was around double that for the control group. The 

effect is significant at 	=0.05, p=0.01. A further test of the results is effect size and 

power. Using type 3 sum of squares testing (Chin 2001) we are striving for an effect 

size of 0.2, and a power (repeatability) of 0.8, i.e. an 80% likelihood of reproducing 

this result using the same experimental conditions. We obtained an effect size (omega 

squared) of 0.21, with a power of 0.794 at 	=0.05, which is a very respectable result. 
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Figure 10.  Learning curves, cut-off = 40 problems 
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Figure 11.  Learning curves, cut-off = 5 problems 
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A potential problem with comparing the control and experimental groups is that 

the constraint set is not the same, there being two significant differences. First, the 

control group uses a constraint set where around 80 of the constraints are trivially 

relevant. Of these, many are trivially true. For example: 

' ( p 364 
   " You have used t he backquot e char act er  ( ` )  i n 
    SELECT.  I f  you want  t o speci f y a const ant ,  use  
    a quot e i nst ead ( ' ) . "  
   t  
   ( nul l  ( sear ch " ` "  ( sel - t xt  ss)  : t est  ' equal p) )  
   " SELECT" )  
 

This constraint is trivially satisfied, unless the student specifically uses a back quote. 
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Figure 12.  Examples of individual learning curves 

Group Slope Fit (R2) 
Control 0.07 (0.04) 0.63 (0.29) 
Probgen 0.16 (0.12) 0.68 (0.30) 
T-test significant? Yes (p = 0.01) No (p = 0.61) 

Table 7.  Learning rates for individual students 
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In the experimental group, such constraints were rewritten such that by default they 

are not relevant. The effect is that there is a large body of constraints that are almost 

always satisfied in the control group irrespective of the student’s behaviour, while in 

the experimental group they are absent. This may have an effect on the slope of the 

power curves. To verify that this is not the case, we removed all of these constraints 

and plotted the curve for the experimental group again. Figure 13 illustrates what 

happens: the control group curve shifts upward and becomes less smooth because the 

body of trivially true constraints normally has a smoothing effect. However, the slope 

of the curve is unchanged. 

A second difference is that there are more constraints in the model for the 

experimental group, because it includes new ones added for solution generation. This 

would only be a problem if the new constraints were more likely to be violated than 

the rest of the set on average. In fact, most of the new constraints cover rare situations 

that only occur during problems or solution generation as a consequence of erroneous 

structures being built during correction, such as the existence of both the correct and 

incorrect versions of some construct. They are therefore unlikely to be relevant to a 

student solution, and so will fail to have any significance effect on the curves. We 

tentatively tested this assumption by running the answers submitted by the control 

group through the constraint evaluator for the experimental group, thus measuring the 
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Figure 13.  Error rates excluding constraints that are always true 
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students’  progress in ability by exactly the same means as was used for the 

experimental group. Figure 14 shows the resulting learning curves for each group as a 

whole. The curve for the control group still has a lower initial slope than the 

experimental group, although the difference is less (0.12 for the experimental group, 

0.078 for the control group). The power curve fit has also deteriorated. This is 

probably because the differing constraint sets means that the feedback received by the 

student no longer matches the constraints violated, hence there is some level of 

randomness creeping in. However, the fact that the experimental group still displays a 

higher initial learning rate indicates that the effect is not simply due to the differing 

constraint sets.  

Finally, we recalculated the mean initial slope and fit from individual curves, 

again using the new evaluator. Note that the number of participating students for the 

control group shrank from 16 to 10, and the number of problems per student also 

shrank, because the system for the experimental group was implemented for one 

domain (MOVIES) only due to time constraints, hence problems for other domains 

(and all problems after one for another domain) were deleted from the logs. This 

accounts for the decrease in the average goodness of fit of the power curves (from 

0.64 down to 0.54). 

Once again, there is a statistically significant difference in the initial learning rate 

between the control and experimental groups at 	 = 0.05 (p = 0.04), summarised in 

Table 8. In fact, this result is very similar to that achieved when the control group 

used the original constraint set. We can therefore assert with confidence that the 

difference is not because of the constraints. 

A further indication of increased learning is the rate at which new constraints are 

introduced and successfully applied by the students. Figure 15 plots the number of 

constraints each student has demonstrated they have mastery of, versus the number of 

problems they successfully completed. In each case, the first plot shows the full curve, 

Group Slope Fit (R2) 
Control 0.07 (0.07) 0.54 (0.30) 

Problem Generation 0.16 (0.12) 0.68 (0.29) 
T-test significant? Yes (p = 0.04) No (p = 0.27) 

Table 8.  Learning rates for individual students: new constraint set 
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while the second is cut off at the point where the number of constraints introduced per 

problem suddenly tapers off. This effect occurs because the system has run out of 

problems of sufficient difficulty to give the student. The curves suggest that the 

generated problems successfully introduce more constraints per problem that the 

student is able to master.  

To determine whether this effect is significant, we calculated the average number 

of constraints learned per problem per student for each group (after subtracting the X 

intercept from the above regressions), and calculated the significance. Table 9 

summarises the results. They suggest that the generated problems introduced more 

constraints that were mastered per problem, although the results were not statistically 

significant at 	 = 0.05 (p = 0.113). 
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Figure 14.  Learning Curves using the new evaluator for both groups 

Group Constraints per  Problem 
Control 2.51 (3.11) 
Experimental 3.94 (1.30) 
Significant? No (p = 0.113) 

Table 9.  Constraints mastered per problem 
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6.9 Discussion 

We presented four hypotheses for testing: two weak (6.1 and 6.3), which verify that 

Problem Generation works and does not degrade system performance, and two strong 

(6.2 and 6.4), which would suggest that Problem Generation is beneficial. We used 

static tests to gauge the practicality of Problem Generation, and found that even in the 

rudimentary version used for the evaluation (i.e. no natural language generation, 

errors/incompleteness in the instantiation constraints), the algorithm is effective and 

leads to a drastic reduction in the time taken to author new problems. We then 

obtained results from the classroom evaluation that showed no discernible detriment 
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Figure 15.  Constraints mastered per problem 
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in performance as a result of utilising the artificial problems. We propose, therefore, 

that hypotheses 6.1, 6.2 and 6.3 have been met. 

The classroom analysis also showed that the rate at which learning occurs, i.e. the 

rate at which students reduce the number of errors they make per concept, was 

significantly higher when the generated problems were used. Efforts to find 

explanations for this effect, such as differences in the constraint sets, failed to explain 

the effect. Analysis of the difficulty of problems set also found no significant 

difference. We therefore conclude that the use of problem generation, coupled with 

the revised problem selection algorithm, leads to an increase in learning performance. 

The generated problems themselves are unlikely to lead to such an effect. 

However, the fact that there are more problems and, in particular, that there is a larger 

number of more difficult problems, increases the likelihood that the new algorithm is 

able to find a problem of appropriate difficulty. Recall that the new algorithm 

measures the difficulty of each problem relevant to the student model. In the control 

group, the difficulty of each problem was a static value provided by the author. 

Problems may therefore be of appropriate structural difficulty for this student’s 

aptitude, but be made up of inappropriate concepts. The effect of computing the 

conceptual difficulty is to raise the difficulty of the problem by some unknown 

amount depending on the concepts involved, and the student’s grasp of them. Further, 

depending on the student’s performance, it is possible that the control system might 

arrive in the position whereby there are no suitable problems because, when the 

conceptual difficulties are included, the problems all become too hard. Conversely, an 

advanced student may quickly exhaust a small problem set. The more problems there 

are covering many different subsets of the constraint set, the more likely one can be 

found for a given situation. Figure 16 illustrates the number of problems available for 

a given difficulty range. 

It is clear that the increase in the number of problems leads to a better range of 

difficulties being available. For the authored problems, at a level above 300 (an 

average user) there are only one or two problems available at each level. For the 

generated problems, however, there are up to 20 problems at the 700 level (advanced 

users), with a trough in the middle. Although there is not an even spread of problems 

across all difficulties, there are at least a reasonable number of problems for advanced 
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students. For the control group, in contrast, it is more likely that the system will run 

out of problems of appropriate difficulty. When it does so, it reverts to simpler 

problems, until all problems are solved. At this stage learning is probably negligible. 

To determine whether or not this occurred we analysed the individual logs to observe 

whether problem difficulty decreased below the student’s proficiency level. For the 27 

students in the control group who completed one or more problems, six of them ran 

out of problems, and the system began working backwards through simpler ones. In 

the worst case, the student completed 13 problems of lower difficulty because the 

system had no more difficult ones to offer. Further, six students exhausted the 

problem set completely. In contrast, for the experimental group, only four ran out of 

problems of suitable difficulty, and only after completing more than 80 problems. 

None of the students in the experimental group exhausted the entire problem set. This 

probably accounts for the graphs in Figure 15. The amount of learning that occurred 

once the system had run out of suitable problems is highly likely to have decreased. 

We may also look at the number of problems per constraint, which gives an idea 

of how well the problem set covers the target domain. For the control group there is 

an average of 3 problems per constraint, with 20% of the constraint set being covered 

by one or more problems. In other words, on completion of all problems, the student 

will have covered 20% of the domain. For the experimental group, there are 7 
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Figure 16.  Problems available by difficulty 
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problems per constraint, also covering 20% of the constraint set. Note that 100% 

coverage is not achievable, since around 50% of the constraints are syntactic, and are 

therefore dependant on how the answer is encoded, while approximately 50% of the 

remainder test for the absence of problems. We would therefore only expect around 

25-30% coverage at most. These figures show that for each individual constraint 

(domain concept) there are twice as many problems available to cover them, so twice 

the likelihood that a problem can be found to teach a given constraint. 

Finally, the two systems tested used a very different basis for selecting the next 

problem. The control group chooses a target constraint and selects the best problem 

for which that constraint is relevant. Problem Generation simply chooses the problem 

that best fits the model, regardless of what the previous concept being taught was. It is 

possible that the improvement observed comes from this change of tack: perhaps the 

“ target constraint”  method is too narrow and leads to excessive repetition. However, 

the effect of this method is more likely to be the reverse: because there may not be 

any more problems using this exact constraint, problem selection may often be 

uncontrolled. Whatever the reason for the observed improvement, the fact that 

problem generation allows a large number of problems to be authored quickly means 

that any problem selection algorithm will have more problems available to select 

from, which will allow it to more closely match problems to student models. We 

therefore submit that Hypothesis 6.4 is supported: that the problem generation and 

problem selection algorithms presented together lead to an increase in learning 

performance. 

Recall, also, that the number of problems generated was limited to one per 

constraint to reduce the (initially unknown) effort required to vet the problems and 

translate them into English. Given how little time was required to perform this task, 

there is no reason why we could not have generated say, five problems per constraint, 

which would have made the problem set size even more favourable. Also, we were 

fairly ruthless in our elimination of unsuitable problems, throwing away 75 percent of 

the generated problems. Instead, we could have corrected these problems, which 

would have given a larger problem set. Finally, the instantiation constraints were 

fairly hastily arrived at, and were the chief cause of errors in the generated problems. 

Correcting these would have yielded a larger problem set. Therefore, the effects seen 
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here are merely an indication of how problem generation can improve an ITS: in 

practice the potential gains may be higher. 
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7 An author ing system for CBM tutors 

The ultimate aim of any improvements to the efficiency of ITS production is to 

develop an authoring tool that permits rapid deployment of future systems with 

minimal duplication of work. There are two strategies for authoring: macro-level 

architectures, and micro-level tools. These approaches are complementary. 

At the macro-level, a “black box”  performs tutoring functions for multiple 

systems. All domain-specific information such as the name of the system, the 

knowledge base, the problem set and input-processing instructions are supplied as 

input to the system, which then presents problems and processes user input as 

required. This system may be in the form of an ITS generator, where the input is used 

to build a new tutoring system that runs as a separate executable, or an ITS engine, 

where the domain-specific information for multiple tutors is used to direct a single 

ITS process, which runs all the tutors in a single process. We have adopted the latter 

of these two approaches to develop a web-based ITS engine, which is further 

described in Section 7.2. This engine can serve multiple tutors over the internet, just 

as a single web server may serve up information from multiple sources. 

At the micro-level, authoring tools are provided that allow a teacher to generate a 

new tutor with a minimum of effort. The problem generator described in Chapter 6 is 

an example of such a tool: given a domain knowledge base plus some additional 

information, the problem generator can produce an arbitrary set of problems that the 

author can then refine. Further, solution generation enables thorough testing of the 

constraint set: it generates many possible solution fragments that are considered valid 

with respect to one or more constraints, so may appear in student solutions. Finally, 

the new constraint representation has a heavily restricted syntax, which lends itself to 

a constraint editor to facilitate the writing of the knowledge base, or a constraint 

inducer that builds new constraints from examples of problems and solutions supplied 
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by the author. These tools are described in Section 7.3. Both the ITS engine and the 

authoring tools explore our final hypothesis: 

Hypothesis 4: Because the new representation is domain-independent, it may 

form the basis of an ITS authoring tool that supports the development of new 

CBM tutors. 

7.1 Existing author ing systems 

Many ITS authoring systems have been developed, using a variety of approaches. 

However, none have been built for CBM tutors. We describe some of the major 

achievements in ITS authoring. 

7.1.1 REDEEM: adding instructional planning to CAI  

The REDEEM authoring system (Major, Ainsworth and Wood 1997) is designed to 

allow teachers to build or customise their own computer-based coursework. Whereas 

conventional computer-aided instruction (CAI) generally presents educational 

material in a non-adaptive fashion, REDEEM allows individual teachers to overlay 

their strategies by categorising the material and describing key features about it such 

as familiarity, difficulty, generality, passiveness, questioning style and level of 

hinting. They may also add questions (and answers) associated with each page of 

material. They then describe the teaching strategy to be used for a given group of 

students such as level of student choice over presentation, teaching versus testing, 

generality of material to be chosen and hinting/feedback levels. All quantitative 

features (e.g. level of generality) are specified via a GUI interface by moving sliders 

to the appropriate position. 

REDEEM also contains a tutoring shell, which presents the material to students 

using the information provided during the authoring phase. Students are assigned to 

one of the strategy groups, which determine how they should be taught. REDEEM 

also contains a pedagogical “black box” , which makes further fine-grained decisions, 

such as when to move from general to specific material, based on hard-coded rules 

derived from interviewing real teachers.  
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In a formative analysis (Ainsworth, Grimshaw and Underwood 1999) Ainsworth 

et al. found that teachers were able to easily tailor existing CAI material to their own 

teaching strategies. Variation between different teachers’  strategies (plus the feedback 

given by the teachers) also indicated that being able to modify the strategies was 

worth the effort required. Two teachers with no previous experience of REDEEM or 

computer-based training completed a six to eight hour teaching session in around ten 

hours, much less than the 200 hours per hour of training estimated to create tutors 

from scratch (Woolf and Cunningham 1987). However, the time to create the 

coursework in the first place has not been considered. While prior coursework would 

benefit the creation of any ITS, in REDEEM the material can be used directly. 

REDEEM was designed specifically for use by teachers to rapidly create or 

customise new courseware, and so is both easy to use and very general: any domain 

that can be taught using a storybook approach can be authored using REDEEM. 

However, the resulting system is shallow in that it does not contain a domain model 

with which it can provide detailed feedback or plan teaching operations (such as 

which problem to present next) to any fine degree. 

7.1.2 Demonstr8: programming by demonstration 

At the other end of the spectrum is Demonstr8 (Blessing 1997), an authoring tool for 

model tracing tutors. This system provides assistance in the creation of deep systems 

but for a limited domain set. It may currently be used only to generate arithmetic 

tutors, although Blessing claims the approach should be general enough to lend itself 

to other domain types. However, he says this would require the creation of new 

authoring systems. It aids tutor production at both the macro-level—by including the 

main components of a model-tracing tutor such as the model tracer, student model, 

and user interface—and at the micro level, by assisting the authoring of the 

underlying domain model. In Demonstr8, the author first uses GUI tools to define the 

interface using specialised widgets whose behaviour is domain-dependent. They then 

define the underlying declarative chunks or working memory elements (WMEs) by 

grouping together elements from the interface. For example, in a subtraction problem 

WMEs are created for each column of the problem/solution area by grouping together 

cells that are aligned vertically, and for problems by grouping together columns. Such 
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WMEs may be made directly from the interface components (e.g. grouping cells into 

columns) or by grouping other WMEs together (e.g. grouping columns into 

problems). The author must also define knowledge functions, i.e. functions relevant to 

the domain that the student would need to be able to perform. In subtraction for 

example, the student needs to be able to subtract two digits, so the tutor must also 

contain this function. 

The most powerful part of Demonstr8 is the procedure-inducing tool. This uses 

programming by demonstration (Cypher 1993) to infer the procedural steps being 

carried out by the author as they demonstrate the solving of a problem in the domain: 

each time the author takes a step (i.e. changes a value in the interface), they either 

communicate to the tool how they did it (e.g. they add “5”  to the rightmost column of 

a subtraction problem, by invoking the subtract function) or they simply carry out the 

step and leave the system to infer what they did, based on the WMEs and knowledge 

functions available. In Demonstr8 all actions are assumed to be the result of applying 

a knowledge function. If more than one function may have been applied, the author is 

asked to choose the correct one. Demonstr8 now builds a default production rule 

based on what it believes to be the conditions currently applying to the problem that 

are relevant to the step just taken, and the function used to take it. For example: 

 
For  t he r i ght most  col umn C whose answer  cont ai ns BLANK 
 
I f   

t he t op and bot t om el ement s of  C ar e appl i ed t o t he SUBTRACT 
f unct i on 

THEN  
t he r esul t  can be pl aced i n t he answer  f i el d of  col umn C.  

 

By default, Demonstr8 applies the heuristic that the production being created for the 

current situation should be generalised in one dimension. For example, the procedure 

previously given may have been generated while subtracting numbers in column 3, 

yet the production generally applies to any column. 

Many tasks require the modelling of subgoals. In subtraction for example, a 

subgoal may be the “carry procedure” . In Demonstr8, it is up to the author to decide 

when to form a subgoal, and inform the system by providing the name of the subgoal. 

Authoring then proceeds as usual until the author indicates that the subgoal is 
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complete. A final task is to specify what the “skills”  of the domain are for 

presentation by a skillometer. These are a high-level summary of the domain: each 

production is labelled according to what skill (or skills) is being utilised. 

Once the procedures have been learned Demonstr8 now contains all the 

information necessary to function as a tutor in the specified domain. It includes a 

problem generator, which by default provides random numbers for problems. The 

generator can be constrained so that for example, only subtractions not requiring a 

“carry”  are presented by ensuring the range of numbers available for the second row 

are always less than those for the top row. Demonstr8 provides a standard interface 

for the student in which they drag items (numbers) from a “palette”  into the cells of 

the problem. 

Within the context of arithmetic tutors, Demonstr8 has been shown to 

dramatically reduce the effort required to build a new tutor: 10 minutes versus many 

hours for a from-scratch implementation. However, this does not take into account the 

time spent building the authoring system and how many tutors would need to be built 

to recoup this effort. Although Blessing contends that the approach used in 

Demonstr8 could be broadened to other domains, the current system can only author a 

limited domain set. It contains many components that are specific to arithmetic 

domains, including the interface widgets, standard arithmetic knowledge functions 

(addition, subtraction, decrementing) and the problem generator. We do not know the 

effort required to build these, so are unable to judge whether it would have been 

quicker to simply author tutors directly in the arithmetic domain, perhaps building one 

and then copying and modifying it to produce others. 

Finally, a considerable level of expertise (over and above domain knowledge) is 

required to build a tutor using Demonstr8. During the authoring session, many steps 

that may seem obvious to an expert in model tracing are not at all intuitive to domain 

experts. For example, how would an arithmetic teacher understand that they need to 

group cells into columns and problems in order that Demonstr8 can generate the 

necessary WMEs to represent the required procedures? In this regard many of the 

tools in Demonstr8 (including the WME generator) might be thought of as high level 

programming tools rather than end-user systems. A programmer is probably still 

required to build much of the system. 
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7.1.3 Teaching by simulation: RIDES 

A very different type of tutor is based on simulation, where the student is given an 

artificial world in which they may carry out tasks in the chosen domain. RIDES 

(Munro, Johnson, Pizzini, Surmon, Towne and Wogulis 1997) is an authoring tool for 

automating the development of such tutors. As such, it falls somewhere between the 

extremes of REDEEM and Demonstr8: while the type of delivery is limited to 

simulation, the set of domains that may be taught in this way is more diverse than 

Demonstr8 (currently arithmetic), although not as broad as what may be taught by the 

story-book approach of REDEEM. Further, RIDES provides support for domain 

modelling, although the depth to which simulations are modelled is fairly low, hence 

it falls short of Demonstr8’s ability to generate models to arbitrary complexity. As 

with both Demonstr8 and REDEEM, RIDES is both an authoring system and a shell: 

as well as providing help for generating the tutor, it runs the resulting system. 

Authors generate tutors for procedural domains in RIDES by building a 

simulation of the procedure to be taught. RIDES provides a set of editors for creating 

the graphical components necessary to portray the domain and specifying how these 

objects behave. For example, a switch may have an attribute “State” , whose value is 

toggled between the values “off”  and “on”  as the result of a mouse click. Similarly, a 

light may have a control “colour”  which is set to “ red”  or “green” depending on the 

value of an attribute of another object (e.g. “green” if the “value”  attribute of the 

“ temperature gauge”  object is 90 or less, otherwise “ red”). The author then simulates 

the procedure to be learned by simply carrying it out, while RIDES records the 

actions taken. 

RIDES automatically offers three modes of tutoring: demonstrate, practise and 

test. All three play back the simulation, but they vary in how this is controlled. In 

“demonstrate”  mode, the simulation is simply played back verbatim, with the 

student’s control being limited to pacing the display via mouse click. In “practise” , 

the student is required to perform the necessary actions in response to the prompt 

“perform the next action” . If they get it wrong, they are so informed and required to 

try again. After three attempts they are told what they should have done and the 

relevant item in the simulation is highlighted. In “ test” , RIDES behaves similarly to 

the previous mode except the student is immediately told whether or not each action is 
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correct, but are not told why they are wrong. RIDES records their actions and the state 

(right or wrong) of each. 

RIDES greatly reduces the effort required to build tutors by heavily scaffolding 

the simulation authoring process, and automating the entire tutoring session. Sundry 

items such as text to be presented to the student before, during and after a procedure 

are created from “canned” text, such as “you shoul d have set  <OBJECT> 

t o <ATTRI BUTE- VALUE>.”  Control of the session is also fixed, both at the 

procedural level (display initial text, step through the procedure, display final text) 

and at the session level. RIDES also automates the student modelling and presentation 

process: given a list of “objectives”  and the mapping between objectives and 

procedures, RIDES decides which procedure to present next and when to move on to 

the next objective. However, the author may override many of these items using 

further editors to modify text, adjust the flow of a simulation, add new components to 

a simulation etc. Thus the authors of RIDES have overcome the dilemma of ease-of-

use versus flexibility by providing two tools targeted at different audiences. 

Like Demonstr8, RIDES uses a (basic) form of programming by demonstration to 

author the procedures. The main difference is that Demonstr8 tries to infer new rules 

based on incomplete information about why the user has carried out the step. Further, 

it tries to generalise the actions performed to other, similar actions. In contrast, 

RIDES simply records exactly what has been carried out and makes no inferences 

about it. Thus, whereas Demonstr8 tries to infer a deep, detailed model of the domain, 

RIDES creates models that by default are very shallow: in RIDES a particular step is 

necessary because the teacher performed that step. In contrast, an action in 

Demonstr8 may be applicable because the appropriate conditions have been met that 

make it valid to perform next. 

In spite of the shallow modelling abilities of RIDES, it has been a very popular 

tool for simulation-based tutoring. This has been partly because the simulation tools 

themselves are so powerful that it has been integrated into other systems where 

simulation is required. It can also be used to generate tutoring environments, where 

the student is free to “play”  in the domain and observe the consequences, rather than 

being required to follow a rigorous procedure. For example, a tutor for injection 

moulding gives the student the tools necessary to “create”  a part, for which the system 
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then develops a mould to illustrates to the student the consequences of their design 

decisions (e.g. by combining two simple shapes into one, the mould now requires five 

parts whereas two separate moulds would only require two each). What is not clear is 

how well the intelligent tutoring parts of RIDES support learning. 

7.1.4 Support for  author ing the domain model 

The domain model is generally the most difficult part of an ITS to build, so is a prime 

candidate for authoring aids. There are two major approaches: assisting the editing 

and visualisation of the model, and knowledge induction. 

Demonstr8, described in the previous section, is an example of both approaches. It 

provides domain knowledge induction using programming by demonstration, with the 

output of the induction step being a default set of production rules for the actions 

taken. Demonstr8 also provides GUI editors for the creation of knowledge chunks 

(WMEs) and the creation/editing of production rules. In this system the user never 

directly modifies the code of the WMEs or production rules, but rather interacts with 

a dialog that is an abstraction of the underlying element. However, Demonstr8 still 

requires the author to identify working memory elements, decide how to use them to 

solve the problem and identify sub goals. Further, to date Demonstr8 has not been 

shown to be effective beyond the authoring of arithmetic tutors, nor is it obvious that 

the effort required to build the tool in the first place is justified. Importantly, it is not 

clear how it would fare for more complex domains. 

Using a totally different approach, DNA (Shute, Torreano and Ross 1999) 

provides dialogues for extracting the important knowledge elements of a domain from 

a domain expert but does not encode it in any machine-useable way. A knowledge 

engineer is still required to encode the resulting domain model. However, DNA’s 

approach may still be useful, since often the hardest part of developing a domain 

model is not deciding how to encode it, but rather what to encode. DNA makes 

explicit the kinds of knowledge required by defining the domain knowledge along 

three axes with associated dialogues for each. Procedural knowledge elements (PK) 

are lists of steps to be carried out, where each step can be further divided into sub-

procedures analogous to goals and sub goals in ACT-R. Symbolic knowledge 

elements (SK) describe static facts, such as the definition of the term “mean” in 
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statistics. Conceptual knowledge elements (CK) describe relationships between SKs, 

such as how the mean relates to the shape of the underlying distribution. In a trial 

evaluation Shute et al. found that DNA allowed three people conversant in statistics 

(but not in ITS) to provide 62% of the knowledge elements needed for a statistics 

tutor (Stat Lady (Shute and Gawlick-Grendell 1993)) in only nine combined hours. A 

further aim of DNA is to produce a semantic network that captures the knowledge 

elicited, but for now this remains a major task. 

Other authoring tools provide knowledge visualisation and editing functions. 

LEAP (Sparks, Dooley, Meiskey and Blumenthal 1999) builds systems that teach 

customer contact employees (CCEs) the skills for effectively responding to customer 

requests. The essential nature of a course unit is a dialogue between the CCE and the 

system (an artificial customer). LEAP allows for great variation and flexibility in how 

dialogues unfold. Authoring of such dialogues is supported by an array of GUI tools. 

A Script Editor provides the basic mechanism for developing a dialogue. In this editor 

the author creates each step in the dialogue, filling in the main attributes and leaving 

the rest to the system. The Subdialogue Graph Editor provides a graphical overview 

of the entire dialogue as dialogue nodes and transition nodes. Items may be added, 

deleted or expanded using this editor. The Transition Editor is for adding or 

modifying the details of a transition node, such as what response is required before 

the call can proceed from “discuss problem” to “determine problem”. The Node 

Editor and Action Editor are similar screens for entering the details of these 

components. LEAP thus provides a rich, multi-level means of editing and visualising 

the domain model, but does not help to induce its content. Other examples of this 

approach are IDE (Russell, Moran and Jordan 1988), Eon (Murray and Woolf 1992), 

and CREAM-Tools (Nkambou, Gauthier and Frasson 1996). 

7.2 WETAS: A web-enabled CBM tutor  author ing system 

While CBM reduces the effort of building domain models for ITS, the task of 

building a new system is nevertheless still large. Several tutors we implemented in 

CBM share in common a textual user interface. To reduce the authoring effort, we 

have developed WETAS (Web-Enabled Tutor Authoring System), a web-based 
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tutoring engine that performs all of the common functions of text-based tutors. To 

demonstrate the flexibility of WETAS we have re-implemented SQL-Tutor (Mitrovic 

1998), and developed a new ITS for teaching English Language skills (LBITS). 

Although these domains share the property of being text-based, they have very 

different problem/solution structures. WETAS is based on constraint-based 

modelling. It utilises the new constraint representation described in Chapter 4 to 

maximise the work performed by generic code. The architecture borrows heavily from 

SQLT-WEB, the web-based SQL-Tutor system (Mitrovic and Hausler 2000), with 

two main differences. First, the new constraint representation is utilised, along with a 

new constraint evaluator. This significantly reduces the amount of domain-dependent 

code in the solution evaluation part of the system, and cleanly separates the 

constraints from the evaluator. Second, a further “ layer”  of data input is added: as 

well as splitting the domain into problem subsets (“databases”  in the case of SQLT-

WEB), the system now further splits the overall tutoring information into domains. 

Thus, a problem presented to the student now belongs to a particular subset (e.g. 

database) of one of several domains. The constraint evaluation process has access to 

all of these things, so that constraints can be specific to individual problems 

(although, in practice, they never are), subsets (for example, in SQLT-WEB when 

testing for a valid attribute, the answer depends on which schema is currently active), 

and the domain being taught. The overall architecture is depicted in Figure 17. 

7.2.1 Scope 

(Murray 1999) divides systems for creating ITS into “authoring tools”  and “shells” . The 

former provide extensive aid in developing ITS, while the latter are merely a 

framework for building tutors, and so they support low-level tasks (such as interface 

development and data storage), while failing to decrease the effort involved in 

developing the “ intelligent”  aspects of the tutor. We consider WETAS to be an 

authoring tool (as well as a shell) because it provides many of the adaptive functions 

required of an ITS (problem selection, evaluation, feedback, student modelling, etc). 

It also provides custom representation for easily describing the problem set and the 

domain model. We now describe the scope of WETAS with regard to the four main 
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functions of an ITS: the student interface, domain model, pedagogical module and 

student model. 

Student inter face.  WETAS completely automates the student interface. The layout 

is fixed, consisting of four panels: problem selection, problem/solution presentation, 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 17.  WETAS architecture 
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scaffolding and feedback. Further, all but the scaffolding panel are driven 

automatically from the data.  

Domain model.  In WETAS authoring of the domain model is supported insofar as a 

language is provided for constructing the domain including macros for sub-rules. This 

language simplifies the creation of the domain model by removing the need to learn a 

complex programming language. WETAS also provides a generic domain modeller, 

in the form of the constraint evaluator. No further support is currently provided for 

writing the domain model, however we have undertaken some preliminary 

investigation into constraint editing and induction. This is discussed in Section 7.3. 

Pedagogical module.  Instructional planning in WETAS is fixed. All domains 

supported by WETAS are of the “ learning by doing”  kind. WETAS chooses the next 

problem to solve by evaluating the structural and conceptual difficulty (Brusilovsky 

1992) of each candidate problem, and choosing the one that best fits the student’s 

current knowledge state and level of ability. The problems themselves may be hand-

written, or generated from the domain model using the algorithm described in  

Chapter 6. 

Student model.  Like most other authoring systems (Murray 1999), WETAS uses an 

overlay student model: each constraint includes a count of the number of times it has 

been relevant and how many times it has been violated, plus a trace of the behaviour 

of this constraint over the life of the model. The last four “hits”  are used to decide 

whether the state of the constraint is currently “not learned” or “ learned”, with two 

successes in a row indicating that the constraint is learned. This information is used to 

calculate the conceptual difficulty of each problem, by increasing the difficulty by a 

constant amount for every relevant constraint that is not learned. Similarly, we 

increase the conceptual difficulty by another constant for every constraint relevant to 

this problem that has never previously been relevant. These constants are currently set 

to 5 and 10 respectively, i.e. a constraint that has been seen but not learned adds five 

times the difficulty to the problem as one that has been mastered, while a constraint 

that has never been seen adds ten times the difficulty. These constants were obtained 

empirically by using the system and observing which problems were selected. In 
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practise WETAS is not overly sensitive to these values. The difficulty each constraint 

adds to the problem is determined automatically by tallying up the number of terms in 

the constraint’s match patterns, giving a measure of the effort required to complete the 

minimum parts of the solution necessary to satisfy this constraint. 

When building ITS authoring systems, there is inevitability a trade-off made 

between flexibility (or generality) and depth (Murray 1999). The WETAS system 

supports deep tutoring by providing a robust constraint evaluator, student modelling 

functions and problem selection. It provides flexibility by supporting any domain 

where the problem and solution can be represented as (structured or unstructured) 

text. Further, it is possible to extend WETAS’ capabilities to graphical domains, 

provided the problem and solution can be sufficiently described using text (see 

Section 7.2.9). The main trade-off is that WETAS does not currently provide 

flexibility of the student model and teaching strategy. However, the advantage of this 

is that the author is freed from such considerations. In the future we may modify the 

system to allow such components (or parts of them) to be provided by the author as 

“plug-ins” , which is the case for scaffolding information now. 

7.2.2 Implementation of WETAS 

WETAS is a web-based tutoring engine that provides all of the domain-independent 

functions for text-based ITS. It is implemented as a web server, written in Lisp and 

using the Allegroserve Web server. WETAS supports students learning multiple 

domains at the same time; there is no limit to the number of domains it may 

accommodate. Students interact through a standard web browser such as Netscape or 

Internet Explorer. Figure 18 shows a screen from SQL-Tutor implemented in 

WETAS. The interface has four main components: the problem selection window 

(top), which presents the text of the problem, the solution window (middle), which 

accepts the students input, the scaffolding window (bottom), which provides general 

help about the domain, and the feedback window (right), which presents system 

feedback in response to the student’s input. 

 WETAS performs as much of the implementation as possible in a generic 

fashion. In particular, it provides the following functions: problem selection, answer 

evaluation, student modelling, feedback, and the user interface. The author need only 
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provide the domain-dependent components, namely the structure of the domain (e.g. 

any curriculum subsets), the domain model (in the form of constraints), the 

problem/solution set, the scaffolding information (if any) and, possibly, an input 

parser, if any specific pre-processing of the input is necessary. Each of these is now 

described. 

The domain structure 

All of the domain information in WETAS forms a hierarchy, where the top-level 

structure is the domain record. There is a domain record for each domain that the 

system supports. This record tells the system the name of the domain, the directory 

name where files relating to that domain may be found, where to find the scaffolding 

information for this domain, the name given to problem subsets, and the parser (if 

needed) for parsing the student’s input prior to evaluation. 

Exercises in each domain may be partitioned into subsets. For example, in SQL-

Tutor the student may choose to answer questions that require queries to be written 

pertaining to one of several relational databases. Some information required by the 

system (including the problem set) is subset-specific, so each domain record includes 

 

Figure 18.  WETAS interface (SQL domain) 
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a list of subset records containing this information. Also, the domain model may vary 

for each subset, so this is also stored at the subset level. Finally, each subset has its 

own list of problems. Figure 19 depicts the structure of the data input. 

The domain model 

The domain model is implemented as a modular set of constraints using the 

representation described in Chapter 4. Each domain may record constraints at two 

levels: those that are common to all subsets are stored at the domain level, while 

subset-specific constraints may also be provided. This allows the constraint set to vary 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Figure 19.  WETAS input files 
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between subsets if needed without duplicating the common ones. For example, in the 

Language Builder domain, the puzzle “Rhyming Pairs”  requires the answer to be two 

words that rhyme, as well as having the correct meaning. A constraint specific to this 

subset tests for rhyming pairs of words, while the words themselves and their 

meanings are stored at the domain level.  

Many constraints require enumerations of the allowed values of a term in a match 

pattern. For example, a constraint in SQL that tests a table name is valid for the 

current database requires a list of all valid table names for that database. Further, 

some general concepts, such as “arithmetic symbol” , are also encoded by enumerating 

the list of valid values. Thus each domain requires a taxonomy that describes the 

atoms of the domain. However, some elements of the taxonomy are also subset 

dependent, such as “valid table”  just described. The taxonomy is therefore also 

recorded both at the domain level (for domain-wide atoms such as “arithmetic 

symbol” ) and at the subset level. The taxonomy is recorded as a set of macros, using 

the same representation as the constraints. 

Problem Representation 

As stated earlier, CBM critiques the student’s attempt by comparing it to an ideal 

solution. Each problem is therefore represented by the text of the problem plus the 

ideal solution. In WETAS problems and their solutions may be structured. In SQL-

Tutor each problem consists of a text message describing the database query that must 

be written, while the solution consists of each of the six possible clauses of an SQL 

query (SELECT, FROM, WHERE, GROUP-BY, HAVING and ORDER-BY). In the 

Language Builder domain each problem consists of a set of clues, where the student 

must provide an answer for each clue (for example, they must type the plural version 

of each clue word). WETAS caters for different problem/solution structures by 

allowing a problem to have any number of clauses. Each clause nominally consists of 

the clause name, a text string that represents an ideal solution for that clause, an 

(optional) additional clue for that clause and the default input for that clause. 

However, the solution part of the clause may itself be a list of sub clauses again 

containing the sub clause name, ideal solution, a clue and the default field value. This 
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structuring may occur to any depth. In the Language Builder domain for example, 

nesting occurs to one level (see Section 7.2.5). 

Scaffolding and parsing 

Before a solution is fed to the constraint evaluator, it may require parsing to convert 

the text input into a list of words (or terms) that the pattern matcher can use. A default 

parser is provided, which splits text into words using white space and non-

alphanumeric symbols as boundaries. However, some domains may have other 

parsing requirements. Each domain record contains a field that identifies the parser, 

which may be NULL (no parsing required), DEFAULT or the name of a LISP 

function that accepts the text input and returns the parsed result in a list. Similarly, 

domains may optionally provide scaffolding information. WETAS allows the author 

to specify either static HTML pages or dynamic functions. 

WETAS has been implemented in prototype form and used to build two tutors to 

explore its capabilities and evaluate its effectiveness in reducing the ITS building 

effort. 

7.2.3 Building an ITS using WETAS 

Because WETAS is data driven, authoring a new ITS consists entirely of creating the 

data files needed to instruct it how to operate. The steps involved are: 

1. Create the domain  record; 

a. Decide upon the domain to be taught, and give it a name; 

b. Create the domain record (in domains.cl), including the definitions 

for any subsets; 

c. Create a directory  that will hold all the files for this domain, as a 

subdirectory of the WETAS main directory. 

2. Create the problem set; 

a. Decide how the problem will be presented, i.e. how it will be 

broken up. For SQL-Tutor, the exercises are split into the six 

clauses of a SELECT statement; for Language Builder, they are 

represented by repeated clues; 
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b. Create the file <subset-name>.probans for each subset, containing 

the problem definitions for that subset. 

 

3. Create the domain knowledge base; 

a. Create the semantic and syntactic constraints that are valid for the 

entire domain, and the top level taxonomy (files constraints-

semantic.cl, constraints-syntax.cl, and taxonomy.cl); 

b. Create any subset-specific constraints and taxonomies, if necessary 

(constraints-semantic-<subset-name>.cl, constraints-syntax-

<subset-name.cl>, taxonomy-<subset-name>.cl). 

4. Create optional components; 

a. Create a parser, if necessary; 

b. Create the scaffolding web page and/or functions, if necessary. 

5. Create the login page for  this domain; 

6. Run the newly created  ITS. 

a. Run “ load-domains”  to load the new domain; 

b. Restart the WETAS web server. 

The main steps are now described in more detail. 

1. Create the domain record 

The file WETAS/ DOMAI NS. CL contains the definitions of each domain supported by 

WETAS. Each entry includes the domain short and long names, the scaffolding type 

(FILE, COMPUTED or NIL), the generic name given to subsets, the name of the 

parser (if any) and a list of all subsets. Each subset entry contains the subset long and 

short names, The size of the field(s) that will accept the answer and the default 

problem text. The latter is used when there is no specific textual problem statement 

for each exercise. In Language Builder for example, the problem is specified at a 

lower level by a series of clues, so the top-level problem statement is blank. The 

default problem statement is therefore used to provide a general message about 

solving the problem. Figure 20 shows a domain file with just a single domain 
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(Language Builder), which contains two subsets: “Scrambled words”  and “Last two 

letters” . The comments indicate what each field represents. 

 

2. Create the problem set 

As described in 7.2.2, each solution is represented as a set of clauses where each 

clause may either be a single text string or a list of subclauses, which themselves can 

consist of further subclauses nested to any depth. Problem text can be attached at any 

level. In the two domains described, we have used fairly simple representations: SQL-

Tutor uses a set of six text clauses, while Language Builder consists of a single 

clause—“clues”—for which there are a number of subclauses, together with a clue for 

each. Figure 21 shows problem entry 202 for the Language Builder domain, for the 

 
( set q * domai ns*  
  ' (   
     ;  domai n r ecor d 
     (  
        " Language Bui l der "    ;  l ong name 
        " LBI TS"         ;  shor t  name 
        NI L               ;  scaf f ol di ng t ype 
        NI L               ;  scaf f ol di ng name 
        " puzzl e"        ;  what  you cal l  a subset  
        NI L               ;  par ser  name 
 
        ;  subset s 
        (  
          ( " Scr ambl ed wor ds -  unscr ambl e t he l et t er s t o make a wor d  
    t hat  mat ches t he c l ue"   ;  l ong name 
           " SCRAMBLED- WORDS"    ;  shor t  name 
           20         ;  answer  s i ze 
           " unscr ambl e t he l et t er s i n t he br acket s t o make a wor d  
    t hat  mat ches t he c l ue. "  ;  def aul t  pr obl em t ext  
          )  
                 
          ( " Last  Two Let t er s -  each wor d begi ns wi t h t he l ast  t wo  
            l et t er s of  t he answer  bef or e i t . "  
           " LAST- TWO- LETTERS"  
           20 
           " Each wor d begi ns wi t h t he l ast  t wo l et t er s of  t he  
    answer  bef or e i t . "  
           )  
        )  
     )  
   )  
)  
 

Figure 20.  DOMAINS.CL 
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“ last two letters”  subset. Each numbered line is a separate clue. The first string in each 

clue is a number that identifies this clue. Next is the answer for this clue, e.g. 

“SHADE”. The third string is the text of the clue itself, e.g. “Out of the sun (5)” . The 

last string, which in this case is used only for the first clue, is used to initialise the 

answer field. 

Although WETAS is design to accept free-form text, it is possible to use the 

structured nature of problem specifications to allow other types of interface. Consider 

the domain of Lewis diagrams in chemistry. The problem might be presented as a 

textual question (e.g. “what is the Lewis diagram for methanol?”) where the student is 

required to draw the corresponding diagram. WETAS could do this by using the 

nesting ability of the problem specification to represent the problem solving interface 

as a grid of character fields, where the student enters the appropriate chemical 

elements and bond symbols. Figure 22 gives an example of such a problem statement. 

Each entry, labelled “1”  through “5” , is a line of a 7x5 grid. Each cell within this line 

(labelled “1”  through “7”) is a single cell in this row of the grid. Each cell is either 

empty or contains a symbol. Figure 23 illustrates how this would appear on the 

screen. Note that there is no requirement for the problem structure to be static across 

domains or subsets; each problem could be structured differently according to the 

needs of the question being asked. 

3. Create the domain knowledge base 

The knowledge base consists of the constraints for the domain, any subset-specific 

constraints and the taxonomies for the domain and subset. First, the pedagogically 

 
( 202 
 NI L ;  no t op- l evel  pr obl em t ext  
 (  
   ( " CLUES"  
  ;     i d  answer   c l ue                       def aul t  i nput   
      ( " 1"  " SHADE"   " Out  of  t he sun ( 5) "   " SH" )  
      ( " 2"  " DEAL"   " Hand out  t he car ds ( 4) " )  
      ( " 3"  " ALI VE"  " Not  dead yet  ( 5) " )  
      ( " 4"  " VEI L"   " Cover  ( 4) " )  
   )  
 )  
)  
 

Figure 21.  Example problem from LBITS/LAST-TWO-LETTERS.PROBANS 
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significant states are decided upon. Constraints fall into two broad categories—

semantic and syntactic—and there is a file for each. Syntactic constraints are authored 

by deciding what are the important principles of constructing any solution in this 

domain. In SQL-Tutor these relate to syntax and grammar rules for constructing an 

SQL query. In Language Builder they are mostly related to spelling.  

Figure 24 gives an example of syntactic constraint from each domain. In the 

constraint for Language Builder, the relevance condition first extracts the clause 

 

 
 

Figure 22.  Screen appearance of Lewis diagram question 

( 1 
 " Dr aw t he Lewi s di agr am f or  met hanol . "  
 (  
   ( " DI AGRAM"  
( " 1"   
 ( ( " 1"  "  " ) ( " 2"  "  " ) ( " 3"  " H" ) ( " 4"  "  " ) ( " 5"  "  " ) ( " 6"  "  " ) ( " 7"  "  " ) )  
)  
( " 2"   
 ( ( " 1"  "  " ) ( " 2"  "  " ) ( " 3"  " | " ) ( " 4"  "  " ) ( " 5"  "  " ) ( " 6"  "  " ) ( " 7"  "  " ) )  
)  
( " 3"   
 ( ( " 1"  " H" ) ( " 2"  " - " ) ( " 3"  " C" ) ( " 4"  " - " ) ( " 5"  " O" ) ( " 6"  " - " ) ( " 7"  " H" ) )  
)  
( " 4"   
 ( ( " 1"  "  " ) ( " 2"  "  " ) ( " 3"  " | " ) ( " 4"  "  " ) ( " 5"  "  " ) ( " 6"  "  " ) ( " 7"  "  " ) )  
)  
( " 5"   
 ( ( " 1"  "  " ) ( " 2"  "  " ) ( " 3"  " H" ) ( " 4"  "  " ) ( " 5"  "  " ) ( " 6"  "  " ) ( " 7"  "  " ) )  
)  
  )  
 )  
)  

Figure 23.  Example of a Lewis diagram problem Figure 22.  Example of a Lewis diagram problem 

Figure 23.  Screen appearance of Lewis diagram question 
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number and answer word from a clause in the student’s answer. Then, it uses 

TEST_SYMBOL to test the letters within the word for “ i ”  and “e” , and binds 

?l et t er  to the preceding letter. The relevance condition then checks that the 

preceding letter is not a “c” . If it is, the constraint has been violated.  

Semantic constraints relate the student's solution to the ideal solution in order to 

determine whether the question has been answered. They must be suitably flexible 

that they permit correct solutions that differ from the ideal solution. In SQL-Tutor the 

semantic constraints check that all of the necessary entities are present (tables, and 

attributes) and that they have been processed in the correct way, e.g. that conditions 

represent the same subset of records as those in the ideal solution. In Language 

Builder they check that the answers given have the same meaning as the clues. Figure 

25 is an example of a semantic constraint for each domain.  

The distinction between semantic and syntactic constraints can sometimes be 

blurred. In Language Builder constraints that test for appropriate letter groups in the 

answer are classed as syntactic because they are primarily checking that the word has 

been spelled correctly, yet they could also be called semantic since they are 

comparing the student and ideal solutions. 
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;  synt act i c  const r ai nt  f r om SQL- Tut or  
( 61 
 " A subquer y i n t he HAVI NG cl ause must  be encl osed wi t hi n 
br acket s. "  
          
 ( mat ch SS HAVI NG ( ?*  " SELECT"  ?* ) )  
          
 ( mat ch SS HAVI NG ( ?*  " ( "  " SELECT"  ?*  " FROM"  ?*  " ) "  ?* ) )  
          
 " HAVI NG"  
)  
    
;  synt act i c  const r ai nt  f r om LBI TS 
( 103 
 " Remember :  I  bef or e E except  af t er  C! "  
 
 ( and 
   ( mat ch SS CLUES ( ?num ?*  ?wor d ?* ) )  
   ( t est _symbol  SS ?wor d ( ?*  ?l et t er  " i "  " e"  ?* ) )  
 )  
          
 ( not - p ( t est  SS ( " c"  ?l et t er ) ) )  
 " CLUES"  
)  
 

Figure 24.  Examples of syntactic constraints 



164 

 

 
;  semant i c const r ai nt  f r om SQL- Tut or  
( 55 
   " You do not  need al l  t he t abl es you used i n FROM. "  
          
  ( and ( not - p ( mat ch SS WHERE ( ?*  " SELECT"  ?* ) ) )  
       ( or - p ( mat ch SS FROM ( ?*  ( ^name ?t )  ?*  " ON"  ?* ) )  
             ( and 
                ( not - p ( mat ch SS FROM ( ?*  " ON"  ?* ) ) )  
                ( mat ch SS FROM ( ?*  ( ^name ?t )  ?* ) )  
             )  
       )  
  )  
          
  ( or - p  
     ( mat ch I S WHERE ( ?*  " FROM"  ?*  ?t  ?* ) )  
     ( mat ch I S FROM ( ?*  ?t  ?* ) ) )  
          
     " FROM" )  
 
;  semant i c const r ai nt  f r om LBI TS 
( 2002 
   " The wor ds ' wear ' ,  ' war e' ,  ' wer e'  and ' wher e'  mean di f f er ent   
    t hi ngs.  Have you used t he r i ght  one?"  
 
  ( and 
    ( mat ch I S CLUES ( ?num ?wor d1 ?* ) )  
    ( mat ch SS CLUES ( ?num ?wor d2 ?* ) )  
    ( t est  I S ( ( " wear "  " war e"  " wer e"  " wher e" )  ?wor d1) )  
    ( t est  SS ( ( " wear "  " war e"  " wer e"  " wher e" )  ?wor d2) )  
  )  
 
 ( t est  SS ( ( ?wor d1)  ?wor d2) )  
 " CLUES" )  
 

Figure 25.  Examples of semantic constraints 

 

4. Create optional components 

If the domain requires any special parsing of the input (e.g. SQL parses 

TABLE.ATTR into the list ( " TABLE"  " . "  " ATTRI BUTE" ) ), a custom parser 

must be written. It may be either written in LISP, or callable from the LISP code. The 

standard parser, which splits a text string by white space and symbols, can be used as 

a guide. 

Scaffolding information may also be provided. This can be either a collection of 

HTML documents or a function. For the former, the author provides a list of 

filenames to be published as URLs, where the file relating to the first member of the 
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list will be displayed in the scaffolding window, and the other members are assumed 

to be linked to it. If the scaffolding is provided by a function, this must be written in 

LISP or callable from the Allegroserve server. 

5. Create the login page 

Each domain has its own HTML login page. Any format is acceptable provided it 

passes the domain name, student login name and student difficulty level to the server 

by posting the URL WETAS/LOGIN. The login page must be located in the domain 

subdirectory and be named LOGIN.HTML. A template page is provided.  

6. Run the new ITS 

WETAS has now been provided with everything it needs to tutor in the new domain. 

The function LOAD-DOMAINS reads the domain file, including the new domain 

entry, and loads all the other files associated with each domain. It builds a domain 

entry in memory containing all the information from the domain file plus the problem 

and constraint sets for each domain. It also calculates the problem selection statistics 

for all domains by calculating the structural difficulty of each problem and the 

conceptual difficulty that would be added by each constraint. Finally, the WETAS 

server is restarted and the new domain is published along with all existing domains. 

The new ITS is ready for use.  

We now describe two domains that we have implemented in WETAS. 

7.2.4 Example domain 1: SQL-Tutor  

SQL-Tutor (Mitrovic 1998) teaches the SQL database query language using 

Constraint-Based Modelling. It is available to the general public on the web 

(http://ictg.cosc.canterbury.ac.nz:8000/sqlt-web-login), and is used at Canterbury 

University in second and third year database courses. Students are given a textual 

representation of a database query that they must perform and a set of input fields 

(one per SQL clause) where they must write an appropriate query. This system was 

implemented in 1998 as a standalone tutor, in 1999 as a Web-enabled tutor, and has 

been re-implemented in WETAS.  

Figure 18 (Section 7.2.2) shows a screen shot of WETAS running SQL-Tutor. 

When WETAS is first run it loads the domain information for all supported domains, 
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including the domain model and the set of problems to present. The student first logs 

on via a hard-coded HTML page that is specific to this domain. Once the student has 

entered their username and submitted the form, WETAS creates (if this is the first 

time the user has used this domain) or loads their student model and generates a 

student record stating which domain this student is currently using. After logging on, 

the user may select one of available databases on which they can practise queries; 

each database is a separate subset as described in Section 7.2.2. The student may 

change subsets at any time. WETAS stores a separate student model for each domain 

that this student is studying, and the current subset (i.e. database) is stored in the 

student model. The initial logon page is one of the few domain-specific parts of the 

WETAS system: nearly all functions are generic and data-driven from the student 

model, domain model and problem sets. 

WETAS then selects a problem using the method described in Section 7.2.2 and 

presents it to the student. They then enter their solution and submit it for evaluation. 

The solution is first passed to an SQL-specific parser, which separates the input text 

into words. It then post-parses any qualified names (i.e. TABLE. FI ELD) into LISP 

lists (i.e. ( TABLE " . "  FI ELD) ) so that the constraints may test the individual 

parts of the name. The constraint evaluator compares the solution to the ideal solution 

using the constraint set for this domain and subset. In the SQL-Tutor domain there are 

no subset (i.e. database)-specific constraints as such, however around half of the 

macros (such as “valid_table”  and “attribute_of” ) are database-specific.  Based on the 

results of this evaluation the feedback panel then conveys appropriate feedback, such 

as a success message, a list of error messages (obtained directly from the violated 

constraints) or the correct solution to the problem. The feedback types provided are 

the same as the original SQL-Tutor (see Section 2.4.5). 

WETAS provides two mechanisms for scaffolding information: the author may 

provide either an HTML page or a LISP function that generates the information 

dynamically. In SQL-Tutor the latter is used to provide multiple levels for 

information about the database, from a description of each table to detailed help about 

field data types.  

We have successfully reimplemented SQL-Tutor in WETAS with no difficulties 

arising. The only domain-specific parts of the system are the constraints, the problem 
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set, the login page, the scaffolding information and the parser. Of these, only the 

constraints may be considered an “ intelligent”  component. Thus, the author is freed to 

concentrate on the most complex part, namely development of the domain model. 

7.2.5 Example domain 2: Language Builder  ITS (LBITS) 

Language Builder is an existing paper-based teaching aid that is currently being 

converted to a computer system. It teaches basic English language skills to elementary 

and secondary school students by presenting them with a series of “puzzles”  such as 

crosswords, synonyms, rhyming words and plurals. For a subset of these puzzles, the 

general form is that of a set of clues where the student must perform some action on 

each clue to obtain the result, e.g. provide a word starting with “bl”  that matches the 

meaning of the clue or provide the plural of the clue word. Figure 26 shows LBITS in 

action.  

We created an ITS from Language Builder (LBITS) by adding a domain model so 

that feedback could be expanded from a simple right/wrong answer to more detailed 

information about what is wrong, such as that the meaning of their answer didn’ t 

match the meaning of the clue or they have got the letters “ i”  and “e”  reversed. No 

special parser was required for this domain, nor was any scaffolding information 

 

Figure 26.  WETAS running the Language Builder (LBITS) domain 
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needed. Since the problems were already provided in paper form, the authoring task 

was limited to producing instantiations of the problems, encoding them in a suitable 

form and writing the constraints that form the domain model. For the latter we used a 

standard school spelling reference book (Clutterbuck 1990). Most of the constraints 

came directly from this resource book. For example, Clutterbuck groups words by 

letter groupings, such as those containing “able” . For each group we wrote a 

constraint that tests that if the ideal solution contains this pattern of letters, so does the 

student’s answer. Other constraints checked for commonly confused homonyms, such 

as “ lose”  and “ loose” . We then added a few general constraints, such as one for each 

letter of the alphabet, to check the student had not missed any letters.  

A problem consists of a list of clues, each requiring a word to be filled in. To 

achieve this, we took advantage of the ability to nest structures, as described in 

Section 7.2.2. For example, the problem specification for the exercise being solved in 

Figure 26 is:  

( 1  
   ;  I S -  ( #  answer   c l ue  def aul t - i nput )  
   (   ( " CLUES"  
  ( " 1"  " r oad"   " l ong st r eet "   " r o" )   
  ( " 2"  " advent ur e"  " exci t i ng j our ney"  " " )  
  ( " 3"  " r est "   " st op f or  a whi l e"  " " )  
  ( " 4"  " st one"  " smal l  r ock"   " " )  
  ( " 5"  " nest "   " home f or  a bi r d"   " " )   
      )  
    )  
)  
 

In this puzzle the user must enter a word that has the same meaning as the clue, 

where the first two letters of each answer is the same as the last two letters of the 

previous word. There is only one clause (“CLUES”), but this clause, instead of having 

a single text answer (as is the case for SQL), consists of a set of clues, each with their 

model answer and the default value for the solution. WETAS thus presents this 

structure as a table of clues with one entry field per clue for the answer. 

 Language Builder includes other puzzles, however these are graphical in 

nature, and are currently beyond the scope of WETAS (see section 7.2.8). The puzzles 

we have so far implemented are: 

1. Scrambled Words. The student is presented with a set of letters and a clue. 

They must use the clue to build a word from the letters; 
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2. Last two letters. For each clue, think of a word that has the same 

meaning, where the first two letters of the word are the same as the LAST 

two of the answer to the previous clue; 

3. Plurals. Produce the plural of each clue word, e.g. “oxen” for “ox; 

4. Rhyming word pairs. Given a clue phrase, produce a pair of rhyming 

words that have the same meaning, e.g. for “beautiful energy” , an answer is 

“ flower power” . 

For the evaluation, we authored problems for the first two types of puzzle: 

“Scrambled letters” , and “ last two letters” . For “scrambled words”  the problems were 

created by calculating the structural difficulty of each word using the algorithm 

described in Section 6.4. The words were then sorted by difficulty and grouped into 

sets of around five, each of which forms a single problem, giving a total of 200 

problems. A clue was then written for each word. For “ last two letters”  we used 

generated sets of (up to six) words that met the “ last two letters”  rule plus an 

additional rule that no words be repeated. This yielded 22 problems. 

LBITS makes use the hierarchical nature of constraints but not of the taxonomy, 

since the “world”  from which answers may be drawn is the same for all puzzles, i.e. 

an English vocabulary suitable for the target audience. Examples of subset-dependant 

constraints are: in “Rhyming word pairs”  each pair must rhyme; in “scrambled words”  

each word must use the letters provided; in “ last two letters”  each word must begin 

with the last two letters of the previous answer. The system consists of between 20 

and 200 problems per puzzle and a total of 315 constraints. 

7.2.6 Evaluation 

To determine how WETAS supports ITS building we rebuilt SQL-Tutor and built the 

Language Builder ITS. We tested LBITS in an elementary school classroom of nine 

children aged 11 and 12 from Akaroa Area School, to evaluate whether or not it was 

an effective learning tool. This trial was formative only: we were interested in what 

the students attitude was towards the system and whether or not their performance 

indicated that learning took place during the trial. To test the system subjectively we 

requested that each student fill out a questionnaire at the conclusion of an initial one 
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hour evaluation session (see Appendix B). At the end of the evaluation we plotted the 

constraint error rates for the group, in the hope of attaining the expected “power 

curve” . Table 10 summarises the evaluation session. “Attempts”  is the total number of 

attempts made to solve a problem during the 50 minute session. “Problems 

completed”  is the number of problems the student answered correctly, irrespective of 

whether or not they required help. “Attempts/problem” is the number of attempts for 

each solved problem (i.e. excluding attempts for the last problem, which they 

abandoned at the conclusion of the session). “Final score”  lists the difficulty rating for 

each student at the end of the session. The last row lists the averages of these figures, 

with standard deviations in parentheses. The nine students solved an average of just 

over seven problems each, (SD=4.2), taking an average of 3.2 attempts per problem. 

Two students (4 and 6) performed much worse than the others, while students 1 and 3 

seemed to find the problems the easiest. This corroborates with observations during 

the session.  

The students were very positive towards the LBITS tutor. Table 11 summarises 

their responses to the survey. Note that the first columns do not add up to nine 

because some participants ticked more than one box. Column one shows which 

Log Attempts Problems 
completed 

Attempts/ 
Problem 

Final score 

1 32 11 2.6 860 
2 60 12 4.7 860 
3 19 6 2 920 
4 1 1 1 600 
5 26 6 3.7 620 
6 3 0 N/A 440 
7 37 7 4.4 680 
8 44 12 3.6 920 
9 35 9 3.3 680 

Average 28.6 (17.8) 7.1 (4.2) 3.2 (1. 2) 731 (158) 

Table 10.  Summary data for the LBITS evaluation 

Which Puzzle Difficulty Ease of use Enjoyable? Learned? 
Scrambled: 9 Too easy: 2 Easy: 9 Fun: 8 A lot: 7 
Last two: 2 About right: 8 Okay: 0 OK: 1 A little: 2 

 Too hard: 2 Hard: 0 No: 0 None: 0 

Table 11.  LBITS survey results 
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problems the students attempted (“scrambled words”  or “ last two letters”). The 

second column indicates how difficult they found the problems (one student ticked all 

three boxes, while another ticked both “ too easy”  and “ two hard” , to indicate that 

some problems were too simple and others too difficult). Columns three and four 

indicate how easy they found the interface to use and whether they thought using the 

system was fun. The last column indicates how much they thought they learned. 

These results indicate that on the whole the students enjoyed using the system, felt 

that the difficulty of the problems was about right and felt they had learned a 

substantial amount. All of them found the interface easy to use. Note that it is not 

possible to determine the relationship between performance (table 10) and subjective 

evaluation (table 11) because there was no way to identify which participant was 

which. 

We plotted the probability of failing a given constraint as a function of the number 

of problems attempted for which this constraint is relevant, in the same manner as 

described in Section 6.8.5. Figure 27 shows the result obtained. It suggests that no 

learning took place. However, a number of the constraints arguably do not represent 

principles of the domain. Constraint 9000 checks that the student has filled in an 

answer, yet their failure to do so is most likely because they do not know the answer, 

rather than because they did not realise that one was necessary. It therefore does not 
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Figure 27.  Error rate for raw constraint data 
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represent a knowledge structure that the student is trying to learn. Similarly, 

constraints 201 to 226 test that each letter of the alphabet is present if it is required. 

Again, these constraints will be failed if the student fails to fill in the answer, yet this 

is probably because they failed to recognise the required word as a whole, rather than 

because they failed to notice that this particular letter is required. In other words, the 

situations in which a student failed to fill in a particular are probably not 

pedagogically equivalent, which is a fundamental requirement of constraints. This is 

particularly true for “scrambled words”  because students are given the letters as part 

of the clue. In contrast, if a student fails to recognise the required word from the 

letters provided, it is possibly because they are weak on words of that form, which are 

represented by the constraints that test for common letter patterns, such as “ough”. 

We tested this by removing constraints 9000 and 201 to 226, and plotting the error 

curve again. Figure 28 shows the result. We now see the familiar “power curve” , with 

a good degree of fit (R2 = 0.83). This suggests that the students learned the domain 

with respect to these constraints during the session. Note that, as described in section 

6.8.5, the power curve degrades as the number of attempts increases, because of the 

decrease in data volume. The graph in figure 28 is cut off at the point where the power 

curve fit is maximal. 
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7.2.7 Conclusions 

Constraint-Based Modelling (CBM) is an effective approach that simplifies the 

building of domain and student models. We have developed a prototype authoring 

system called WETAS for web-enabled tutors using constraint-based modelling, 

which we intend to use to develop further tutors for continued research into CBM and 

for release into classrooms. Of the two tutors built using WETAS so far, SQL-Tutor is 

a mature ITS that has been used in the classroom for two years and will continue to do 

so. Language Builder has been implemented in prototype form and evaluated on 

elementary school students. The evaluation demonstrated that LBITS, a system that 

was built in a very short time, is a usable, effective ITS. The reimplementation of 

SQL-Tutor under WETAS was straightforward, and the conversion of Language 

Builder from a paper-based instructional system to a full ITS has been similarly 

efficient, with the only major effort being the construction of the domain model. 

However, even this later task is made easier by the simple pattern matching language. 

By building an effective authoring tool using the constraint representation introduced 

in Chapter 4, we have satisfied Hypothesis 4.  
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Figure 28.  Error rate for revised constraint set 
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WETAS draws upon the strengths of CBM, plus research carried out to date in 

practical implementations of CBM. It appears to be a promising tool for easier 

development of new tutors and a useful step towards the large-scale deployment of 

Intelligent Tutoring Systems. 

7.2.8 Further  work 

The problem set used in any tutor supported by WETAS is currently static. We have 

developed an algorithm for generating new problem sets automatically from the 

domain model, however this is currently an offline process that requires human 

intervention. We are investigating expanding this algorithm to be able to generate new 

problems from the student model on the fly. Such an approach would allow the fit 

between problem selection and student knowledge to be controlled to a very fine 

degree. The major obstacle is the potential for the generated problems and their 

solutions to be incorrect or semantically unsuitable because of errors or 

incompleteness in the domain model. However, this approach is practical for simpler 

domains, such as LBITS. 

When authoring an ITS the most difficult task is creating the domain knowledge 

base. Although the modular nature of constraints reduces the complexity of the model 

and our constraint representation simplifies the mechanics of encoding the constraints, 

nevertheless the complex task of determining what should be in the model and how to 

represent it remains. We discuss two possible solutions in Section 7.3. 

WETAS currently only supports text-based problem solving. However, this 

limitation is only imposed because of the standardised user interface: as long as it is 

possible for the requirements of the problem and solution to be represented using text, 

the CBM approach is still valid (e.g. KERMIT, a CBM-based ITS for entity-

relationship modelling (Suraweera and Mitrovic 2001)). We would like to extend 

WETAS to include tutors with graphical interfaces, possibly via plug-in interface 

modules. 

Finally, the student model and teaching strategy in WETAS are fixed. We would 

like to be able to specify these as “plug-ins”  such that different strategies might be 

tried and, more importantly, that individual domains may have different strategies and 

associated models. 
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7.2.9 Other domain paradigms 

The domains described so far are all text-based, which is a limitation of the user 

interface. The constraint representation has no such limitation: all that is needed is an 

appropriate representation of the problem and solution such that constraints may be 

written that can critique the student’s answer.  

Consider an ITS for database design, such as KERMIT (Suraweera and Mitrovic 

2001). The problem is set as a textual description and the answer entered as a 

diagram, from which key information is used to populate structures that represent 

each graphical object, such as entities and relationships. To be included in WETAS, 

some form of graphical editing facility would need to be provided, which is beyond 

the scope of what is discussed here. However, once the solution has been obtained it 

is a simple matter to convert the resulting data structures into strings, where each 

string represents some facet of the solution (e.g. “ENTITIES”) and the values consist 

of an identifier followed by the various data fields from the original structure. The 

constraints can then test against these field values by matching against some sort of 

delineator, the identifier and the field value being tested. For example, consider the 

following (abridged) constraint from KERMIT, which checks that all entity and 

relationship names are unique: 

I d  = 10 
Rel Cond = " t "  
Sat Cond = " uni que( j oi n ( SSE,  SSR) ) "  
Feedback  = " Check t he names of  your  ent i t i es and r el at i onshi ps.     
       They must  be uni que"  
 

Suppose that entities are represented by a clause “ENTITIES”, and relationships 

similarly in “RELATIONSHIPS”. The above constraint could now be encoded as in 

Figure 29. 

7.3 Prospective author ing tools 

The authoring system described so far focuses on the delivery of intelligent tutoring, 

and provides a substantial framework for authoring new domains. The other approach, 

as already mentioned, is to provide micro tools for building the various components. 

We now describe two possible additions to the authoring system. 
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7.3.1 Constraint learner  

Although encoding an individual constraint is relatively straightforward, building an 

entire domain model is difficult and time-consuming. There are two main problems 

that can arise. First, the model may be missing one or more constraints and so the set 

of solutions that it describes will include some that are incorrect. When adding new 

problems, it is hard to evaluate the existing model to determine which necessary 

constraints already exist and which need to be added. We might achieve this by trying 

incorrect solutions and seeing if the constraint set detects the error. However, this is a 

very time-consuming task. Also, since the set of incorrect solutions to a given 

problem is large (if not infinite), it is highly unlikely that all potential (or even likely) 

problems will be found. 

Second, an existing constraint may be too specific and so a valid answer to a new 

problem may be rejected. This too is difficult to detect. For example, the most 

obvious French translation to an English sentence may be accepted but an equally 

acceptable alternative rejected because a constraint has been too specific in detailing 

the equivalent meaning in French. 

The modularity of constraints makes it possible to add new constraints 

individually provided that they aren’ t duplicated. Each constraint is a “ truth”  in its 

own right. This property suggests that it might be practical to learn constraints 

( 10 
" Check t he names of  your  ent i t i es and r el at i onshi ps.  They  
             must  be uni que"  
( or - p  
   ( mat ch SS ENTI TI ES ( ?*  ?name ?* ) )  
   ( mat ch SS RELATI ONSHI PS ( ?*  ?name ?* ) )  
)  
 
( or - p 
   ( and ( mat ch SS ENTI TI ES ( ?*  ?name ?* ) )  
        ( not - p ( mat ch SS ENTI TI ES ( ?*  ?name ?*  ?name ?* ) ) )  
        ( not - p ( mat ch SS RELATI ONSHI PS ( ?*  ?name ?* ) ) )  
   )  
   ( and ( mat ch SS RELATI ONSHI PS ( ?*  ?name ?* ) )  
        ( not - p ( mat ch SS RELATI ONSHI PS ( ?*  ?name ?*  ?name ?* ) ) )  
        ( not - p ( mat ch SS ENTI TI ES ( ?*  ?name ?* ) ) )  
   )  
" ENTI TI ES- RELATI ONSHI PS"  
)  

Figure 29.  Constraint for checking uniqueness of relationship names 
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automatically. A machine learning tool for constraint acquisition might provide three 

of the types of assistance that an authoring tool can offer: (Murray 1997) 

1. Make knowledge/data entry more efficient; 

2. Help the author articulate implicit knowledge, and; 

3. May create new knowledge beyond what the expert might know or deduce. 

We now describe an application of machine learning to constraint model acquisition. 

Automating the Acquisition of Constraints 

A constraint is a generalised form of a problem and solution. We could trivially build 

a domain model that consists of a set of patterns that represent problems and their 

(single) solutions, for example: 

( " You have t r ansl at ed t he sent ence i ncor r ect l y .  Pl ease t r y agai n. "  
 ( MATCH PROBLEM " My name i s Suky" )  
 ( MATCH SOLUTI ON " Je m’ appel l e Suky" )  
)  

 
Such a model is not very helpful because it cannot give the student any reasons for 

mistakes. Furthermore, it will reject alternative answers. One solution is to generalise 

each problem/solution pair such that it tests some underlying concept of the domain 

that is relevant to this problem. For example, we could generalise the previous 

example by ignoring all but the proper noun and replacing the value of the proper 

noun with a test for nouns, giving: 

( " You have used a noun whi ch i s  not  speci f i ed i n t he pr obl em. "  
    ( MATCH SS ( ?*  ( ! noun ?n)  ?* )   
    ( MATCH I S ( ?*  ?n ?* )  
)  
 

Assuming that some of the underlying concepts such as “noun”  already exist, we 

could automate the process of generalising the “ trivial”  constraint represented by the 

problem and solution by systematically generalising combinations of terms. Each 

potential constraint could then be compared against the existing set to ensure it is not 

a duplicate of an existing constraint. Finally, all possible problem/solution pairs could 

be generated which satisfy the constraint, with a human teacher evaluating them to 

determine whether or not they are valid. 
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Unfortunately this approach is vastly inefficient. First, the potential search space 

is immense. In the previous simple example, we would need to test a problem/solution 

pair for every proper noun, which could easily be dozens, if not more. The more 

generalised terms in the constraint, the larger the set of combinations is. Second, there 

will be many duplicate candidate constraints generated using this method, which will 

then need to be tested against the existing set and deleted. To overcome these 

problems, we look to the field of machine learning. 

Learning by Asking Questions 

MARVIN (Sammut and Banerji 1986) is a machine learning system that learns new 

concepts by generalising examples using existing knowledge. A teacher provides 

MARVIN with an example of each concept to be learned. MARVIN then uses its 

existing knowledge to generalise the example and produce a new trial concept. It then 

tests the trial by constructing an example, which is presented to the teacher. If the 

example is negative, the concept is incorrect and is either specialised or discarded. 

Conversely if the example was correct, the trial concept is still consistent and is 

subjected to further generalisation. Once this process has been exhausted the new 

concept is complete. It is then named (by the teacher) and added to MARVIN’s long-

term memory. Other concepts may now be built which include this latest one. 

This approach is similar to that described in the previous section. However, 

MARVIN uses some heuristics to guide the search for the concept. First, MARVIN is 

able to specialise as well as generalise. If only generalisation were possible, MARVIN 

would only be able to make new trials involving a single extra concept, since it 

generalises one aspect at a time. However, there may be cases where a term in the 

example can be generalised provided that a conjunction of one or more already known 

concepts is true. This allows it to make generalisations that would otherwise be 

impossible. Specialisation is performed by looking for further concepts that match at 

least one of the original problem predicates that was discarded in the generalisation 

process. This heuristic efficiently searches the set of possible conjunctions of concepts 

to find those that are most likely to yield a consistent new one. 

The second heuristic caters for the problem of enumerating and testing all possible 

instances of the new concept. MARVIN creates just a single critical example, which 
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has a high likelihood of failing if the concept is inconsistent. To do so, it creates the 

list of all elaborations of the initial example, i.e. the list of all known predicates which 

are true for the example. Next, it does the same for the trial concept. The critical 

example is then built, which is a valid example of the trial concept, but which does 

not satisfy any predicates for the initial example which are not valid for the current 

trial concept, i.e. it does not satisfy any conditions of the set  

 

(All_Elaborations(Example) – All_elaborations(Trial)) 

 

Any such example has a high likelihood of being incorrect if the trial concept is 

inconsistent. For example, suppose we are trying to learn the concept “stackable” , 

where stackable objects are blocks. We have a simple domain theory, and present a 

single example of a stackable object as follows: 

Domai n Theor y:  
 Any_shape( X)  : -  r ect angl e( X) .  
 Any_shape( X)  : -  squar e( X) .  
 Any_shape( X)  : -  t r i angl e( X) .  
 
 Bl ock( X)  : -  r ect angl e( X) .  
 Bl ock( X)  : -  squar e( X) .  
 
St ackabl e exampl e:  r ect angl e( A) .  

 

 

MARVIN first elaborates the example, by building a list of all matching 

predicates, giving: 

 

All_elaborations(Example) = { rectangle(A), block(A), any_shape(A). 

 

The most general possible trial concept is any_shape(A). This is now elaborated, 

however no other predicates apply, so the elaboration set is just: 

 

All_elaborations(Trial) = { any_shape(A)} . 

 

Finally, MARVIN creates a crucial example, i.e. an example of the new trial that 

is not a member of { rectangle(A), block(A)} . The only possible example is 
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“ triangle(A)” . MARVIN presents this example to the teacher, who rejects it. 

MARVIN now repeats the exercise for the trial concept “block(A)” , and presents 

“square(A)” . This is accepted, so the concept “stackable(X) :- block(X)”  has been 

learned. 

In MARVIN this algorithm is performed recursively for each new example given 

to it, and so each example generates a single new concept. In the case of learning 

constraints, each example may embody multiple constraints. The task therefore is to 

construct as many valid concepts as possible from each example. Some parts of the 

example will be superfluous to each concept to be learned, while others will be 

critical. Further, whereas MARVIN can add the newly learned concept to the domain 

theory and use it to generate others, a constraint is the end of the line: constraint-based 

models are non-hierarchical. Finally, MARVIN uses first order predicate logic to 

define concepts, whereas we use pattern matches to define constraints. We therefore 

need a modified version of the MARVIN algorithm. 

Learning constraints 

We use a variation of the MARVIN algorithm to learn as many constraints as possible 

for each example by generalising combinations of terms in the problem text and 

finding the corresponding pattern for the solution text. A heuristic is used to try to 

limit the number of combinations: a combination is only valid if the terms are all 

adjacent. For example, in the problem text “ I am called Suky” , “am called”  is a valid 

test combination, while “ I called”  is not. Each combination is then subjected to 

generalisation. 

Unlike a concept in MARVIN, which is represented by (potentially) a single 

condition, a constraint is always represented by a conjunction of the relevance and 

satisfaction condition, i.e. a correct problem/solution example that is relevant to this 

constraint will satisfy both conditions. Both the relevance and satisfaction conditions 

can refer to either the problem or the solution. Finally, a constraint can represent a 

very loose concept, which is suitable for pedagogical purposes but of limited value in 

checking the correctness of the answer. Other constraints will be needed that are more 

specific versions of these weaker ones. In this discussion, we limit the constraints we 

are trying to learn to those where: 
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1. Each constraint is the most specific test required, and; 

2. The relevance condition refers to the problem specification only, and the 

satisfaction condition refers to just the solution. 

Both of these restrictions affect the heuristics used to guide the algorithm. By 

limiting the generated constraints to the most specific only, we are able to be concise 

in what we want from the teacher: given a particular example, is it likely that the 

solution fragment shown is both required and correct. The second restriction guides 

how we generalise the examples. For any constraint, we want the most general 

relevance condition possible so that the constraint is maximally applicable. Therefore 

if a trial constraint turns out to be too general, we begin by trying to specialise the 

satisfaction condition. Only if that fails do we resort to specialising the relevance 

condition. 

We begin by selecting the combination of words in the problem text that we wish 

to try to generalise. At this stage we don’ t know which corresponding terms are 

relevant in the solution, so we begin by finding this out from the teacher. Next, we 

begin generalising. As with MARVIN, we start by listing the set of all elaborations of 

the problem and solution. Next, we choose the first elaboration for each of the 

problem and solution text, and use them to create a trial concept. Since there may be 

many, we adopt a generality bias and pick the concept with the largest number of 

members. We then produce a critical example and present it to the teacher. If it is not 

correct, we refine the trial concept until we either exhaust the possibilities or the 

concept is consistent, in which case we build a constraint from it. We then move on to 

the next combination of terms, and try to build another constraint. At all times we first 

check whether the target constraint already exists before presenting an example to the 

teacher. 

Example 

Suppose we are trying to build a tutor for teaching French to English-speaking 

students. The concepts that we have already encoded are: 

 
Pr onoun_Engl i sh( v1)     : = ( I ,  you,  he,  she,  we,  t hey) ( v1)  
 
Pr onoun_Fr ench( v1)      : = ( Je,  t u,  i l ,  el l e,  nous,  vous,  i l s ,  
                            el l es) ( v1)  
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Fi r st _Per son_Engl i sh( v1) : = ( I ,  my)  ( v1)  
 
Fi r st _Per son_Fr ench( v1)  : = ( j e,  ma,  mon)  ( v1)  
 
Tr ansl at i on( v1,  v2)     : = ( ( Je,  I ) , ( t u,  you) , ( i l ,  t hey) ,  ( el l e,  
t hey) ( vous,  you) , ( nous,  we) ,  ( vous,  you) , ( ma,  my) , ( mon,  my) , ( not r e,  
our ) , ( i l s ,  t hey) …)  ( v1,  v2)  
 

At this stage we have no constraints in the system. We now present the following 

problem and solution: 

 
" I  am cal l ed Suky"  " Je m’ appel l e Suky"  

 
We begin by taking the first problem term, “ I” . We ask the teacher which of the 

solution terms relates to “ I” , and are told “Je” . We now attempt to generalise. We 

begin by building the set of all possible elaborations for “ I”  and “Je” . In MARVIN’s 

terminology, this set appears as follows: 

 
I ( X)            ( 1)    Je( Y)         ( 2)
  
Pr onoun_Engl i sh( X)      ( 3)    Pr onoun_Fr ench( Y)       ( 4)  
Fi r st _Per son_Engl i sh( X)  ( 5)     Fi r st _Per son_Fr ench( Y)  ( 6)  
Tr ansl at i on( Y,  X)      ( 7)  

 
The most general substitutions are (3) and (4), and so we pick them. Note that (7) 

is directional, i.e. Translation (Y, X) means that Y is a translation of X. Therefore, 

this represents all translations of “ I” , not all possible translations of a term X, so it has 

only one member, “Y=je” . The trial concept is now: 

 
Pr onoun_Engl i sh( X)  
Pr onoun_Fr ench( Y)  

 
A critical example is now built, by finding an example that is a member of the trial 

concept, but does not satisfy ANY of the other conditions from the original, fully 

elaborated set. In other words, it must be a pronoun, but not first person, the French 

word must not be a translation of the English. We then present it to the teacher, for 

example: 

 
“ you”     “ I l ”  

 
This is incorrect: “ il”  means “he” , which is not a valid example of the concept, so 

the trial concept is too general. We now attempt to correct the generalisation. As 

mentioned earlier, we first try to make the satisfaction condition (i.e. the conditions 
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for the solution) more specific. As for MARVIN, we select another elaboration that 

was lost in the first generalisation. The most general we can choose is 

First_Person_French, giving: 

 
Pr onoun_Engl i sh( X)  
Pr onoun_Fr ench( Y)  
Fi r st _Per son_Fr ench( Y)  

 
We again construct a critical example. Again the trial is too general, so we add a 

further condition, Translation(Y,X). However, we now find that we cannot construct a 

critical example: There is no English pronoun that is not in the first person, for which 

there exists a French translation which is a pronoun in the first person. We are 

therefore forced to backtrack and drop the condition First_Person_French(Y). The 

process continues by trying the next most general condition, i.e. Translation(Y, X). 

The trial is now: 

 
Pr onoun_Engl i sh( X)  
Pr onoun_Fr ench( Y)  
Tr ansl at i on( Y, X)  

 
A new critical example is made, i.e. one which satisfies the trial, but does not 

contain “ I”  or “Je” , for example: 

 
“ you”     “ t u”  

 
 

This is correct. The teacher now helps to build a new constraint from the trial 

concept, by adding an appropriate message, and the system translates the new rule 

into pattern matches and tests, for example: 

 
 
 

( “ You ar e mi ssi ng a r equi r ed pr onoun. ”  
( MATCH PROBLEM ( ?*  ( ^pr onoun_engl i sh ?p1)  ?* )  
 
( AND  
 ( MATCH SOLUTI ON ( ?*  ( ^pr onoun_f r ench ?p2)  ?* ) )  
 ( TEST SOLUTI ON ( ^ t r ansl at i on ( ?p2 ?p1) )  
 )  
)  

Correcting Overspecialisation 

A problem with the generalise-and-test method as described is that it only tests that a 

constraint is not too general. In MARVIN’s case, overspecialisation is unfortunate but 
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not catastrophic, because we can simply add an alternative concept later, such that 

satisfying any description of concept C implies that the new example is an instance of 

the concept. In our case, this is true of the relevance condition. However, if the 

satisfaction condition is too specific, the constraint will reject valid solutions. 

To overcome this problem, each new training example is first tested against the 

current set of constraints. If a constraint is violated, it must be reviewed and corrected 

or rejected. From the above example, suppose we wish to allow any valid French 

phrase that represents the problem statement, including the following. This example 

will violate the previously learned constraint: 

 

“ I  am cal l ed Suky”       “ Ma nom est  Suky”  
 
 

Suppose that we wish the above to be accepted. The previously constructed constraint 

will fail for this input, so must be refined. To do this, we first select the relevant part 

of the problem, and ask the teacher which parts of the solution are relevant, giving: 

 
 “ I ”        “ Ma”  
 

Next, we build the elaboration list for this example: 

 
I ( X)            ( 1)   Ma( Y)     ( 2)  
Pr onoun_Engl i sh( X)     ( 3)   Fi r st _Per son_Fr ench( Y)  ( 4)  
Fi r st _Per son_Engl i sh( X)  ( 5)    

 
We now build a rule as before. We find that there is no correct solution that can be 

built using (3), so we are forced to backtrack and consider the next most general 

clause, First_Person_English(X). This finally yields a new trial of: 

 
 

Fi r st _Per son_Engl i sh( X)    
Fi r st _Per son_Fr ench( Y)    

 
A crucial example is now constructed. To ensure that we do not accidentally pick 

an example that satisfied the original constraint (and hence this one might be similarly 

flawed), we add the extra restriction that the example must not satisfy any satisfaction 

conditions of the original constraint that are not conditions of the new one. In this 

example, the term Y must not be a pronoun and must not be a translation of X. The 

example created is: 
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 " I "      " Mon"  

 
This is accepted, so the constraint is complete. A new constraint is now built that 

replaces the old: 

 
( " The sent ence i s i n t he f i r s t  per son.  Pl ease check t hat  your s i s  
t oo. "  
 
( MATCH I S ( ?*  ( ^ f i r s t _per son_e ?p1)  ?* )  
  ( MATCH SS ( ?*  ( ^ f i r s t _per son_f  ?p2)  ?* ) )  
)  

 

Conclusions 

Using a machine learning algorithm to learn domain constraints such as that described 

might enables teachers to build constraint-based models by example. It would remove 

the burden of being able to program constraints and provide a consistent means of 

reviewing the domain model and making refinements.  

We have described how the MARVIN algorithm might be adapted to learn 

constraints and given a very simple example of how it might work. There are still 

many questions that must be answered, for example: 

� How easy is it for the teacher to comprehend what they are trying to 

achieve? The example given was for a semantic constraint involving a 

single term. What about multi-term constraints and syntactic constraints? 

Can a teacher be reasonably expected to understand and be competent at 

such a task? 

� Is the "build-by-example" approach appropriate? Would it be easier to 

learn how to write constraints and do that instead?  

� What happens when the underlying concept information is incomplete? 

Does the system simply produce a greater number of more specialised 

constraints or does it fail altogether? 

� Is the method of correcting overspecialisation sufficient or could it cause 

the system to "flip-flop" between two or more constraint definitions, none 

of which are satisfied for all possible solutions to the problem? 
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� It might be more efficient to allow the teacher to enter a list of alternative 

questions and answers, all with the same meaning, for which any pairing is 

correct. Could the algorithm be modified to deal with multiple examples at 

the same time? 

� Is it better to train the system on a problem-by problem basis to accept a 

desired set of problems, or to train it concept-by-concept? 

� We have used language translation as an example. Does the approach 

make any sense in other domain types? 

These questions need to be answered before the approach can be considered 

useful. However, it appears possible for at least some domains. 

7.3.2 Constraint editor  

The constraint representation introduced in Chapter 4 is a simple language that 

contains only six constructs: the MATCH function for general pattern matching, the 

TEST function to test an individual variable value, the TEST_SYMBOL function for 

performing general pattern matching within a single symbol (rather than a clause) and 

the logical connectives “AND”, “OR”  and “NOT”. Each of the three specialised 

functions has a fixed set of arguments, and thus a fixed syntax. The AND, OR and 

NOT connectives have the same syntax as their LISP counterparts. 

The match pattern argument to the MATCH and TEST_SYMBOL functions (and, 

to a lesser degree, the TEST function) also has a restricted syntax. A match pattern is 

a list of match elements, where each may be a literal, a list of literals, a 

comparison/assignment of one variable to another and a macro call. Similarly, macros 

have a single fixed syntax, where the “body”  of the macro follows the same syntax as 

a constraint condition. 

Because the language is so restricted, it is highly deterministic. It would therefore 

be feasible to construct a language-sensitive editor to aid the writing of constraints. 

This could be similar to the interface used in the LISP tutor, in that it could provide a 

template for a new constraint, which is expanded by the user. As the author proceeds, 

new templates are added, for example: 

 
<CONSTRAI NT> 
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expands to  

<NUM> 
<FEEDBACK> 
<REL CONDI TI ON> 
<SAT CONDI TI ON> 
<CLAUSE> 

If the user types MATCH in the <REL CONDI TI ON> slot, it is expanded to 

( MATCH <SOLUTI ON> <CLAUSE> <PATTERN>)  

 

Scaffolding information could also be provided. For example, the names of all 

macros could be listed such that these can be “pasted”  into the constraint at any time, 

and doing so would result in a template being provided that is specific to the chosen 

macro. For example, selecting ^at t r i but e- name in SQL-Tutor would yield: 

 
( ^name ( <??n> <??a> <??t >) )  
 

Ideally the constraint editor could itself be an ITS, so that it also provided 

adaptive help when an author was making errors. In any case, it could test authored 

constraints and macros for syntactic correctness. 
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8 Conclusions 

Constraint-Based Modelling is a promising new method for representing domain and 

student models in Intelligent Tutoring Systems. Its efficacy has been demonstrated in 

the implementation, evaluation and, in some cases, deployment of several CBM tutors 

including SQL-Tutor, CAPIT and KERMIT. However, CBM tutors have lacked some 

of the features of the state of the art ITS method, Cognitive tutors. In particular, they 

are unable give the student specific, tailored advice on how to proceed when she has 

made an error because they lack a problem solver. Also, building CBM tutors (like all 

ITS) is hard. 

We have explored ways of making CBM tutors more powerful and easier to 

implement. In doing so we have made several contributions to the field of ITS. Our 

contributions are now summarised. 

8.1 New representation 

Ohlsson left open the problems of implementing CBM tutors. In particular, he does 

not specify how to represent the domain knowledge beyond the basic constraint 

schematic of { relevance condition, satisfaction condition and feedback} . We have 

developed a representation for the relevance and satisfaction conditions that is purely 

pattern matching and have shown its effectiveness in encoding domain models for two 

domains: SQL and English Language. Further, we have discussed how it might be 

applied to other domain types such as procedural and graphical domains. The 

language is complete in that all aspects of the domain model should be able to be 

encoded using it without the need for external calls. For example, tests for set 

membership (e.g. checking whether a word in English has been spelled correctly) can 
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be encoded using macros in the same language. Functions such as arithmetic can be 

similarly encoded by enumerating the inputs and outputs.  

The use of a pattern matching language has several advantages. First, the language 

is quite simple, consisting only of the three functions MATCH, TEST and 

TEST_SYMBOL, the logical connectives AND, OR and NOT, and the syntax for 

defining macros (macro name, arguments, expression). This makes learning the 

language fairly straightforward and simplifies the authoring of constraints. Second, 

pattern matching is fast. During evaluation, SQL-Tutor had no problems coping with 

the demands of multiple users (up to fifteen simultaneously), despite running on a 

relatively modest server (300MHz PC with 64Mb of memory, running Microsoft 

Windows NT 4.0). Most student answers are evaluated in under a second. Further 

improvements could be obtained by compiling the constraints into a dedicated 

structure such as a RETE network (Forgy 1982). Finally, the new representation is 

designed to be transparent to the system such that it may reason about the constraints 

in other ways than simply evaluating them. 

8.2 Solution generation 

We identified that a shortcoming of our existing CBM tutors was the inability to solve 

problems, which means that feedback, in terms of “what to do next?”  is limited to 

showing part or all of an ideal solution that may not coincide with the student’s 

attempts. At worst, partial feedback is inconsistent with the student’s partially correct 

answer, and leads to abandonment of the problem.  

We designed and implemented an algorithm for generating a correct solution 

using the constraints. For a null state, this equates to a problem solver. For a student’s 

partial (or incorrect) solution, this algorithm generates a correct solution that is very 

similar to their attempt. In particular, it employs the same problem solving strategy as 

the student, thus coping with variations between the student’s chosen strategy and the 

author’s. We demonstrated in a complex domain (SQL) that this algorithm was able to 

correct all erroneous solutions from an evaluation study.  

A possible drawback to using constraints in this manner is that it imposes the onus 

of completeness and correctness: if the constraint set is not sufficiently complete and 
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correct, the problem solver may produce erroneous solutions or fail to terminate. We 

found that for SQL a considerable amount of work was necessary to attain sufficient 

correctness/completeness to perform problem solving. However, many of the 

problems were picked up while using the algorithm to simply build a solution from 

scratch. Once this was achieved, we tested the algorithm on a small set of student 

logs. Having corrected the problems encountered with this first set, the number of 

subsequent  corrections/additions necessary to the constraint set to deal with 

subsequent incorrect solutions was very much smaller. Further, having attained the 

necessary level of completeness/correctness to deal with a subset of the evaluation 

students, very few changes were needed to cope with the rest of the students, or 

indeed a different evaluation population. This suggests that it is feasible that after 

observing the system for some time and making necessary corrections, the constraints 

would be sufficient to render the probability of failure negligible. 

Finally, while the task of improving the constraint set may seem onerous, a 

positive side effect is that a more complete constraint set catches more problems and 

so the tutoring performance of the system might be expected to increase. The reason 

there were so many additional constraints needed to perform problem solving was 

chiefly that exhaustively testing the constraint set is a prohibitively large job and had 

thus never been performed. From our evaluation it appears that in attaining a level of 

constraint completeness that allowed problem solving, we found and eradicated a 

large proportion of the omissions in the constraint set. This was demonstrated in the 

reduction in the number of problems misdiagnosed, from 4.6% to less than 1%. 

Implementing the problem solver has therefore provided us with a valuable method of 

testing the completeness of the constraint set. 

8.3 Problem generation 

A problem affecting all ITS with static problem sets is that they can run out of 

exercises to present to the student. In CBM tutors the problem is ensuring that the 

entire curriculum (i.e. all of the constraint set) is covered by problems. Further, 

problems need to be set over a range of difficulties for all possible combinations of 

constraints, such that a suitable problem can always be found that fits the student 



191 

model. In a domain with a large number of constraints such as SQL this is a huge 

undertaking. 

We have overcome this problem by implementing an algorithm that automatically 

builds problems from the constraint set. This is an extension of the problem-solving 

algorithm. Starting with a partial solution that is relevant to a particular constraint (or 

set of constraints), it applies the problem-solving algorithm and generates a novel 

SQL statement. An author then produces a natural language problem statement for 

this new “ ideal solution” , and the problem is now suitable for presentation to the 

student. We showed how this algorithm was used to generate 200 problems in the 

SQL domain in around three hours, a much shorter time than the many days that it 

took to manually author the 82 problems previously in SQL-Tutor. 

There are many different ways to select the next problem to present based on the 

student model. The method originally used in SQL-Tutor was to select a problem for 

which the most-often violated constraint was relevant. However, constraints are 

extremely specific, and there was a high likelihood that no problem would be suitable. 

We proposed a method for automatically inducing a more high-level student model by 

identifying groups of constraints of similar meaning, which were either violated or not 

yet learned. This increases the single violated constraint to a pool of similar 

constraints, and thus increases the likelihood that a suitable problem can be found. 

An alternative strategy is to assess the difficulty of each problem according to 

how it fits the student model as a whole. We developed an algorithm for doing this, 

which calculates the overall relative difficulty of each problem as the sum of 

structural (how many concepts are required) and conceptual (what is the student’s 

understanding of each of these concepts) difficulties. We evaluated a version of SQL-

Tutor where we used the generated problem set together with this new method of 

problem selection, and determined that—based on the rate at which constraint errors 

are reduced—students learn faster using this system. However, we did not determine 

whether the improvement was due to the problem selection method or because there 

were more problems to choose from. 
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8.4 Author ing 

Building ITS is hard. Previous CBM tutors built by our group were created from 

scratch. In SQL-Tutor the constraints were implemented in LISP and supported by a 

substantial body of domain-dependent functions. The tutor engine and domain model 

were heavily intertwined. CAPIT and KERMIT were written in Visual Basic. 

KERMIT similarly used custom functions to parse solutions and evaluate constraints, 

while CAPIT used a generic pattern matcher. However, the problems and solutions in 

CAPIT are of a very simple structure. 

The new constraint representation makes the division between the tutor and the 

domain knowledge more clearly defined, and arguably reduces the complexity of code 

(in the pattern matching language) that must be written to specify the constraints and 

their supporting functions (macros). We took advantage of this to turn SQL-Tutor into 

an authoring tool, WETAS, for CBM tutors in text-based domains. We generalised 

the code of the web version of SQL-Tutor by separating out the other domain-

dependent parts and making the interface functions data-driven. We demonstrated the 

flexibility of WETAS by implementing two very different domains: SQL-Tutor and 

LBITS (in the domain of the English Language). We found that WETAS was suitable 

for implementing SQL-Tutor and enabled us to rapidly deploy the new LBITS ITS for 

English. We evaluated LBITS on an elementary school class, who found it easy to use 

and effective. In future, we would like to include the problem and solution generation 

algorithms in WETAS. 

Finally, we have made initial investigations into induction of Constraint-Based 

Models using a machine learning algorithm based on MARVIN. While this idea is at 

a very early stage, it does show some promise and may develop into a useful 

authoring tool. 

8.5 Concluding remarks 

The ITS field is maturing, and some methods have achieved a high level of success, 

such as Cognitive Tutors. These have been shown to be effective for a large number 

of domains, and have a high level of cognitive fidelity. However, they are very 

difficult to build and may not be suitable for some domains such as open-ended tasks. 
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Constraint-based modelling is an alternative method that, like Cognitive Tutors, is 

also built upon a plausible cognitive foundation. CBM is arguably easier to develop 

and appears more suitable to open-ended domains. However, current attempts have 

been limited by their inability to solve problems. Regardless of the modelling method 

used, building tutors is a large task. 

Our aim in this research has been to reduce the effort required to build intelligent 

tutors without sacrificing effectiveness. We believed CBM was a viable complement 

to Cognitive tutors, however it had shortcomings that needed to be addressed. We 

proposed the following four hypotheses: 

� Hypothesis 1: It is possible to build a constraint-based domain model that 

contains sufficient information to solve problems and correct student 

solutions, by adopting a constraint representation that makes all of the 

logic in each constraint transparent to the system; 

� Hypothesis 2: Using the representation defined in hypothesis 1, it is 

possible to develop an algorithm for solving problems and correcting 

student answers, which does not need further domain information to 

achieve this; 

� Hypothesis 3: CBM can also be used to generate new problems that fit the 

student’s current beliefs, and this is superior to selecting one from a pre-

defined list; 

� Hypothesis 4: Because the new representation is domain-independent, it 

may form the basis of an ITS authoring tool that supports the development 

of new CBM tutors. 

To a student the only major difference between current Cognitive and constraint-

based tutors is that the former can solve problems (and thus show the student what the 

next step is) while the latter cannot. Hypotheses 1 and 2 aimed to show that CBM can 

indeed be used for problem solving. We produced a representation and solution 

generation algorithm that worked satisfactorily for two domains. We therefore 

showed that hypotheses 1 and 2 are true for at least some domains. In doing so, we 
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have raised the external functionality of a constraint-based tutor to be equal to that of 

Cognitive tutors. 

Our other aim was to make tutors easier to build. Hypotheses 3 and 4 identify two 

means of doing so: by facilitating the authoring of new problems, and by automating 

as much of the tutor-building process as possible. We demonstrated that it is possible 

to use the new solution generation algorithm to build novel structures in the domain 

being taught, such as novel queries in the case of SQL. The WETAS authoring system 

automates most of the other functions, the major exception being authoring the 

domain model. The new representation simplifies this latter task, and we are 

considering other tools for this purpose too, such as a constraint editor and constraint 

induction. We believe we have achieved our aim of helping make CBM tutors easier 

to build, making them a viable alternative to Cognitive tutors. 

Intelligent tutoring systems have come a long way since the 1970s. They are now 

being used in real classroom settings and are producing significant gains in student 

performance. The next step is widespread deployment, but it has been held back by 

the huge effort required to build effective systems. We have addressed this by 

enhancing constraint-based modelling, a simple but effective method, so that it may 

provide all the domain and student modelling requirements of an ITS. We have 

developed algorithms and tools that make CBM tutors much easier to build, making 

CBM a practical tool for ITS deployment. With the number of students ever 

increasing and the internet opening up the prospective audience of education software, 

ITS is poised to have an enormous positive impact on  education in the near future. 
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Appendix A. SQL-Tutor evaluation tests 

Pretest 

Username  
 
Please note down this username. You will be able to access SQL-Tutor only by identifying yourself by 
this username. 
 
 
 
 
Please answer the following questions, based on the MOVIES database: 
 
1. We want to retrieve titles of all comedies and dramas. Is the following SQL statement correct?  

select TITLE 
from MOVIE 
where TYPE = 'comedy' or 'drama'; 

 
Yes      No 

 
 
2. Show how many dramas were made in each of the following years: 1981, 1982 and 1983. 

Which of the following statements will achieve that? 
 

Query Yes/No 

select COUNT(*) 
from MOVIE 
where YEAR in (1981, 1982, 1983) and TYPE=’drama’ 

 

select COUNT(*) 
from MOVIE 
where TYPE='drama' 
group by YEAR 
having YEAR=1983 or YEAR=1982 or YEAR=1981; 

 

select COUNT(*) 
from MOVIE 
where YEAR>=1981 and YEAR<=1983; 
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3. What is the type of movie that had the highest number of movies made in 1980? Select ALL 
correct answers. 

Query Yes/No 

select TYPE 
from MOVIE 
where YEAR=1980 
group by TYPE 
having MAX(COUNT(*)); 

 

select TYPE 
from MOVIE 
where YEAR=1980 
group by TYPE 
having COUNT(*) >= all (select COUNT(*) 

from MOVIE  
where YEAR=1980 

                                                group by TYPE); 

 

select TYPE 
from MOVIE 
where YEAR=1980 and  

COUNT(*) = (select MAX(COUNT(*)) 
from MOVIE 
where YEAR=1980) 

group by TYPE; 

 

select TYPE, MAX(COUNT(*)) 
from MOVIE 
where YEAR=1980 
group by TYPE; 

 

select TYPE 
from MOVIE 
where YEAR=1980 and MNUMBER=MAX(COUNT(*)); 
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Post-test 

Please circle one option: 

1. I have not used SQL-Tutor 

2. I have used this username while working with SQL-Tutor: 

  

 

3. I have used SQL-Tutor, but I do not remember my username. 

 
 
 
Please answer the following questions, based on the MOVIES database: 
 

4. We need to find the titles of all movies other than comedies. Will the following SQL 
statement achieve that? 

SELECT TITLE  
FROM MOVIE  
WHERE TYPE = NOT('comedy') 

 
Yes      No 

 
 
5. We need to find the total number of awards won by comedies in 1983. Which of the following 

statements will achieve that? 
 

Query Yes/No 

select SUM(AAWON) 
from MOVIE 
group by TYPE 
having TYPE IN ('comedy') and YEAR=1983; 

 

select SUM(AAWON) 
from MOVIE 
where TYPE='comedy' and YEAR=1983; 

 

select SUM(AAWON) 
from MOVIE 
where TYPE='comedy' and YEAR=1983 
group by MNUMBER; 
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6. Now, we need to find the title of the movie that has won the most awards. Select ALL correct 
answers. 

Query Yes/No 

select TITLE 
from MOVIE  
where AAWON = MAX(AAWON); 

 

select TITLE 
from MOVIE 
group by MNUMBER 
having AAWON = MAX(AAWON); 

 

select TITLE 
from MOVIE 
where AAWON = (select MAX(AAWON) from MOVIE); 

 

select TITLE 
from MOVIE 
group by TITLE 
having AAWON = (select MAX(AAWON) from MOVIE) 

 

select TITLE 
from MOVIE 
where AAWON>=ALL (select AAWON  

    from MOVIE 
                                        where AAWON IS NOT NULL); 
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Appendix B. Language Builder survey questions 

Which puzzle(s) did you play? 
 
 Scrambled Words 
 
 Last Two Letters 
 
 
How were the questions? 
 
 Too easy 
 
 About right 
 
 Too hard 
 
 
How easy was the software to use 
 
 Easy to use 
 
 Okay  
 
 Hard to use 
 
 
Did you enjoy using Language Builder? 
 
 Yes, it was fun 
 
 It was OK 
 
 No 
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How much do you think you learned 
 
 A lot 
 
 A little bit 
 
 Nothing 
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Appendix D. Example constraints for Section 5.5 

( 650 
 " You do not  have al l  t he r equi r ed at t r i but es i n t he SELECT cl ause. "  
  
 ( and 
  ( mat ch I S FROM ( ?*  ( ^ t abl e- i n- db ?t 1)  ?* ) )     
  ( or - p 
   ( mat ch I S SELECT ( ?*  ( ^at t r i but e- of  ( ?n1 ?a1 ?t 1) ) ) )  
   ( mat ch I S SELECT ( ( ^at t r i but e- of  ( ?n1 ?a1 ?t 1) )  ?* ) )  
   ( and ( mat ch I S SELECT ( ?*  ?bef or e ( ^at t r i but e- of  ( ?n1 ?a1 ?t 1) )  ?af t er  ?* ) )  
        ( not - p ( and ( t est  I S ( " ( "  ?bef or e) )  ( t est  I S ( " ) "  ?af t er ) ) ) )  
        )  
   )  
  )  
  
 ( or - p ( and           
        ( or - p 
         ( and ( mat ch SS SELECT  
       ( ?*  ?bef or e2 ( ^at t r i but e- i n- f r om ( ?n2 ?a2 ?t 2) )  ?af t er 2 ?* ) )  
              ( not - p ( and ( t est  I S ( " ( "  ?bef or e2) )  ( t est  I S ( " ) "  ?af t er 2) ) ) )  
              )  
         ( mat ch SS SELECT ( ?*  ( ^at t r i but e- i n- f r om ( ?n2 ?a2 ?t 2) ) ) )  
         ( mat ch SS SELECT ( ( ^at t r i but e- i n- f r om ( ?n2 ?a2 ?t 2) )  ?* ) )  
         )  
          
        ( t est  SS ( ^same- at t r i but es ( ?a2 ?t 2 ?a1 ?t 1) ) )  
        )  
        ( or - p 
         ( and ( mat ch SS SELECT ( ?*  ?bef or e2 ?n1 ?af t er 2 ?* ) )  
              ( not - p ( and ( t est  SS ( " ( "  ?bef or e2) )  ( t est  SS ( " ) "  ?af t er 2) ) ) )  
              )  
         ( mat ch SS SELECT ( ?*  ?n1) )  
         ( mat ch SS SELECT ( ?n1 ?* ) )  
         )  
       )  
 " SELECT" )  
 
 
( 462 
 " Check t he compar i son oper at or  you used i n t he WHERE cl ause t o compar e t he val ue of  
t he at t r i but e t o a number . "  
          
 ( and ( mat ch I S WHERE ( ?*  ( ^at t r i but e- p ( ?n ?a ?t ) )  ( ^ r el - p ?op1)  ( ^number p ?c)  ?* ) )  
      ( mat ch SS WHERE ( ?*  ( ^at t r i but e- p ( ?n1 ?a1 ?t 1) )  ( ^ r el - p ?op2)  ?c ?* ) )  
      ( t est  SS ( ^same- at t r i but es ( ?a1 ?t 1 ?a ?t ) ) )  
 )  
 
( or - p  
    ( and ( t est  I S ( " <>"  ?op1) )  ( t est  SS ( " ! ="  ?op2) ) )  
    ( and ( t est  I S ( " ! ="  ?op1) )  ( t est  SS ( " <>"  ?op2) ) )  
    ( t est  SS ( ( ?op1)  ?op2) )  
)  
" WHERE" )  
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( 6500 
 " Ar e you sur e you need al l  t he at t r i but es i n t he SELECT cl ause?"  
  
 ( and 
  ( not - p ( mat ch I S SELECT ( " * " ) ) )  
    ( or - p 
   ( mat ch SS SELECT ( ?*  ( ^at t r - name ( ?n1 ?a1 ?t 1) ) ) )  
   ( mat ch SS SELECT ( ( ^at t r - name ( ?n1 ?a1 ?t 1) )  ?* ) )  
   ( and ( mat ch SS SELECT ( ?*  ?bef or e ( ^at t r - name ( ?n1 ?a1 ?t 1) )  ?af t er  ?* ) )  
        ( not - p ( t est  I S ( " ( "  ?bef or e) ) )  
        ( not - p ( t est  I S ( " ) "  ?af t er ) ) )  
        )  
   )  
 
  ( or - p 
   ( mat ch I S SELECT ( ?*  ( ^at t r i but e- i n- f r om ( ?n ?a ?t ) ) ) )  
   ( mat ch I S SELECT ( ( ^at t r i but e- i n- f r om ( ?n ?a ?t ) )  ?* ) )  
   ( and ( mat ch I S SELECT ( ?*  ?bef or e1 ( ^at t r i but e- i n- f r om ( ?n ?a ?t ) )  ?af t er  ?* ) )  
        ( not - p ( t est  I S ( " ( "  ?bef or e1) ) )  
        ( not - p ( t est  I S ( " ) "  ?af t er 1) ) )  
        )  
   )  
 
 
  ( t est  SS ( ^at t r i but e- i n- db ( ?a1 ?t dummy) ) )  
  )  
  
 ( and                        
  ( or - p 
   ( mat ch I S SELECT ( ?*  ( ^at t r i but e- i n- f r om ( ?n2 ?a2 ?t 2) ) ) )  
   ( mat ch I S SELECT ( ( ^at t r i but e- i n- f r om ( ?n2 ?a2 ?t 2) )  ?* ) )  
   ( and ( mat ch I S SELECT ( ?*  ?bef or e2 ( ^at t r i but e- i n- f r om ( ?n2 ?a2 ?t 2) )  ?af t er 2 ?* ) )  
        ( not - p ( t est  I S ( " ( "  ?bef or e2) ) )  
        ( not - p ( t est  I S ( " ) "  ?af t er 2) ) )  
        )  
   )  
   
  ( or - p 
   ( and  
    ;  BI M 21/ 3/ 2001 -  needs t o be i n FROM f or  t hi s t o be val i d 
    ( t est  SS ( ^at t r i but e- i n- f r om ( ?n1 ?a1 ?t 1) ) )       
    ( t est  SS ( ^same- at t r i but es ( ?a1 ?t 1 ?a2 ?t 2) ) )  
    )  
    ( t est  SS ( ( ?n2)  ?n1) )  
    )      
   )  
  " SELECT" )  
 
 
( 350 
 " Ther e shoul d be a comma bet ween ever y t wo expr essi ons i n t he SELECT cl ause. "  
 
( and  
  ( mat ch SS SELECT ( ?* w1 ?name1 ?name2 ?* w2) )  
  ( not - p ( t est  SS ( " AS"  ?name1) ) )  
  ( not - p ( t est  SS ( " AS"  ?name2) ) )  
  ( or - p 
    ( t est  SS ( ^name ?name1) )  
    ( t est  SS ( " ) "  ?name1) )  
    ( and 
        ( or - p  
            ( t est  SS ( ^aggr p ?name1) )  
 ( t est  SS ( ( " ABS"  " SI N"  " SQRT"  " COS"  " ATAN"  " EXP"  " LOG" )  ?name1) )  
        )  
        ( not - p ( t est  SS ( " ( "  ?name2) ) )  
    )  
  )  
  ( or - p 
    ( t est  SS ( ^name ?name2) )  
    ( t est  SS ( ^aggr p ?name2) )  
    ( t est  SS ( ( " ABS"  " SI N"  " SQRT"  " COS"  " ATAN"  " EXP"  " LOG" )  ?name2) )  
    ( t est  SS ( " DI STI NCT"  ?name2) )  
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    ( and 
      ( t est  SS ( " ( "  ?name2) )  
      ( not - p ( t est  SS ( ^aggr p ?name1) ) )  
      ( not - p ( t est  SS ( ( " ABS"  " SI N"  " SQRT"  " COS"  " ATAN"  " EXP"  " LOG" )  ?name1) ) )  
    )  
  )  
)  
 
( and 
 ( mat ch SS SELECT ( ?* w1 ?name1 " , "  ?name2 ?* w2) )  
 ( not - p ( mat ch SS SELECT ( ?* w1 ?name1 ?name2 ?* w2) ) )  
)  
" SELECT" )  
 
( 372 
 " Check t hat  you have al l  t he necessar y st r i ng const ant s i n WHERE -  you need t o 
speci f y mor e. "   
 ( and ( mat ch I S WHERE ( ?*  ( ^sql - st r i ngp ?n)  ?* ) )  
      ( mat ch SS WHERE ( ?*  ?what  ?* ) )  
 )  
   
 ( mat ch SS WHERE ( ?*  ?n ?* ) )  
          
" WHERE" )  
 
 
( 2730 
" Check whet her  you ar e compar i ng t he at t r i but e t o t he r i ght  k i nd of  ar gument  i n WHERE"  
 
( and 
 ( mat ch SS WHERE  
( ?*  ( ^at t r - name ( ?n ?a ?t ) )  ( ^ r el - p ?op)  ( ^at t r - name ( ?what  ?a2 ?t 2) )  ?* ) )   
 ( mat ch I S WHERE ( ?*  ( ^at t r - name ( ?n2 ?a ?t ) )  ( ^ r el - p ?op2)  ( ^sql - st r i ngp ?what 2)  ?* ) )  
 ( not - p ( mat ch SS WHERE ( ?*  ?n ?op ?what 2 ?* ) ) )   
 ( not - p ( mat ch I S WHERE  
( ?*  ( ^at t r - name ( ?n3 ?a ?t ) )  ( ^ r el - p ?op3)  ( ^at t r - name ( ?n4 ?a4 ?t 4) )  ?* ) ) )  
)  
 
( t est  SS ( ( ?what 2)  ?what ) )  
 
" WHERE" )  
 
 
( 347 
 " Check t hat  you use l ogi cal  connect i ves ( AND,  OR)  bet ween condi t i ons i n t he WHERE 
cl ause. "  
          
 ( or - p ( mat ch SS WHERE ( ?* w1 ( ^name ?n)  ( ^ r el - p ?op)  ( ^sql - st r i ngp ?v)  ?c ?* w2) )  
       ( mat ch SS WHERE ( ?* w1 ( ^name ?n)  ( ^ r el - p ?op)  ( ^number p ?v)  ?c ?* w2) )  
 )  
          
 ( or - p 
       ( t est  SS ( ( " AND"  " OR"  " ) " )  ?c) )  
       ( and 
          ( mat ch SS WHERE ( ?* w1 ?n ?op ?v ( ( " AND"  " OR" )  ?l c)  ?c ?* w2) )  
          ( not - p ( mat ch SS WHERE ( ?* w1 ?n ?op ?v ?c ?* w2) ) )  
       )  
 )  
          
" WHERE" )  
 
 
( 454 
  " You need t o speci f y an at t r i but e t o compar e t he st r i ng const ant  t o i n WHERE. "  
          
 ( mat ch SS WHERE ( ?*  ?what  ( ^ r el - p ?op)  ( ^sql - st r i ngp ?c)  ?* ) )  
          
 ( t est  SS ( ^at t r i but e- p ( ?what  ?a ?t ) ) )  
         
" WHERE" )  
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( 20_A 
" When you compar e t he val ue of  an at t r i but e t o a const ant ,  t hey must  be of  t he same 
t ype. "  
                  
  ( and  
    ( mat ch SS WHERE ( ?*  ( ^at t r i but e- p ( ?n ?a ?t ) )  ( ^ r el - p ?op)  ?c ?* ) )  
    ( t est  SS ( ^sql - st r i ngp ?c) )  
  )  
                  
  ( or - p 
    ( t est  SS ( ^ t ype- p ( ?a " dat e" ) ) )  
    ( t est  SS ( ^ t ype- p ( ?a " st r i ng" ) ) )  
  )  
                  
" WHERE" )  
 
 
( 175 
  " Check t hat  you ar e compar i ng t he st r i ng const ant  t o t he r i ght  at t r i but e i n t he 
WHERE condi t i on. "   
 
  ( and 
     ( mat ch I S WHERE  

( ?*  ( ^at t r i but e- i n- f r om ( ?bi m1 ?a1 ?t 1) )  ( ^ r el - p ?op1)  ( ^sql - st r i ngp ?c)  ?* ) )  
     ( mat ch SS WHERE ( ?*  ( ^at t r - name ( ?bi m2 ?a2 ?t 2) )  ( ^ r el - p ?op2)  ?c ?* ) )  
     ( t est  SS ( ^ t ype- p ( ?a2 " st r i ng" ) ) )  
   )  
          
  ( or - p  
      ( and  
   ( t est  SS ( ^at t r i but e- i n- f r om ( ?bi m2 ?a2 ?t 2) ) )  
   ( t est  SS ( ^same- at t r i but es ( ?a2 ?t 2 ?a1 ?t 1) ) )  
      )  
      ( t est  SS ( ( ?bi m1)  ?bi m2) )  
   )  
          
" WHERE" )  
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