

Lernumgebungen für die Softwareentwicklung

- Report -

Monica Roxana Gavrila

University of Hamburg
Computer Science Department

gavrila@informatik.uni-hamburg.de
Matrikel no: 5425534

Contents
Abstract
Introduction
1. Intelligent Tutoring Systems

1.1. Architecture
1.1.1. The Expert Module
1.1.2. The Student Module
1.1.3. The Tutoring Module

1.2. Conclusions
1.3. Examples

1.3.1. The LISP TUTOR
1.3.2. PLOT

2. Lernumgebungen für die Softwareentwicklung (LuSe)
2.1.Description of the Project
2.2.The LuSe Architecture

2.2.1. The Front-end Layer
2.2.2. The Backend Layer
2.2.3. The Resources Layer

2.3.The LuSe Evaluation
2.4.Present Limitations of the Project and Future Developments

3. Conclusions
References
Annex 1. LuSe General Architecture
Annex 2. Some Snapshots of the LuSe Graphical Interface
Annex 3. Several Testing Results
Annex 4. Several Data about the LuSe Project

Abstract
This paper presents a web-based system (Lernumgebungen für Softwareentwicklung – LuSe)

that was developed at Hamburg University, Computer Science Department during two semesters
(summer semester 2003 and winter semester 2003/ 2004). It is part of the Hamburg E-Learning
Initiative (ELCH). This system wants to help the student to understand PROLOG and solve PROLOG
exercises. In the first part of the paper presented a short overview of Intelligent Tutoring Systems
(ITS) is, being also showed the main components of such a system. The second part describes LuSe
Project and explains the technologies used.

Introduction
Currently, web-based educational systems are a challenging research and developing

area. Among the benefits of web-based education are independence of teaching and learning
with respect to time and space. Courses can be installed in one place and may be used by a
huge number of users all over the world.

This paper introduces the LuSe Project, a web-based system built for helping students
to learn PROLOG by solving several types of problems: database queries and recursion
problems.

After an introduction on Intelligent Tutoring Systems, the architecture and the features
of the LuSe Project will be presented.

1. Intelligent Tutoring Systems
The notion of intelligent machines for teaching purposes can be traced back to 1926

when Sidney L. Pressey1 built a machine with multiple choice questions and answers. This
machine delivered questions and provided immediate feedback to the user. Educational
psychologists have since reported that carefully designed individualized tutoring produces the
best learning for most people.

The predecessors of Intelligent Tutoring Systems (ITS) were known as Computed
Aided Instruction or Computed Aided Learning Systems (CAIS or CALS). These traditional
systems were developed to provide users with instruction in a particular area after which they
were tested. Answers to questions, usually multiple choices, were used to direct the course of
the study.

Recognizing the deficiencies of the traditional CAIS (These systems are incapable of
dynamically generating a response to a particular situation as a human tutor would be able to
do.), ITS were subsequently developed which attempted to adapt the speed and level of
presentation to that required by a student.

1 Sidney L. Pressey was a psychologist at Ohio State University and contributed to some of the earliest works of
automated-instruction in the 1920s. His work was done during the time that the field of psychology and
educational technology was closely related. He created devices that showed that automated-instruction facilitated
learning by providing for immediate reinforcement, individual pace setting, and active responding. He
commented, "teaching machines are unique among instructional aids, in that the student not merely passively
listen, watches, or reads but actively responds." (Teaching Machines and Sidney Pressey, 1964)

 2

1.1. Architecture
The architecture of an Intelligent Tutoring System is made of three components:

1. The expert module: This module interfaces with the domain knowledge. Domain
knowledge embedded in the system represents an expert’s knowledge and problem
solving characteristics.

2. The student module: The function of this module is to capture a student’s
understanding or not of the domain knowledge

3. The tutoring module: This module contains teaching strategies and essential
instructions. Strategies must be tailored by this module to the student’s needs without
the intervention of a human tutor. The main purpose of this module is to reduce the
knowledge differences between the expert and the student to a minimum or to none.

These modules are described more detailed in the following subsections.

1.1.1.The Expert Module

Early Intelligent Tutoring Systems incorporated an expert system and a number of
systems were built around pre-existing expert systems.

Typically an expert system aims to provide expert like solutions to problems in a
specific domain. An expert system will often have to deal with uncertain and incomplete
information and should be able to explain its decisions and underlying reasoning, as human
experts are capable of doing. Figure 1 shown below illustrates a simple expert system
architecture.

Figure 1. A simple architecture of an expert system

There are three modules within an expert system. These are the user interface, which
caters for smooth communication between the user and the system. The second module is the
inference engine, which is an interpreter for the knowledge base. It produces results and
explanations for problems presented to it. The inference engine and the user interface are
commonly viewed as a single component known as the expert system shell. The heart of the
expert system and the final component in figure 1 is the knowledge base, which contains the
problem solving knowledge of a particular application. The knowledge base itself is isolated
from the expert system shell to allow reuse of the shell in other application domains.

A number of strategies for representing knowledge within the knowledge base have
been explored:

1. if-the rules: If-then rules, often called production rules, have been by far the most
widely used method of representing domain knowledge in expert systems. A typical
production rule will be of the form : IF condition(s) THEN conclusion(s). Two
strategies for reasoning with production rules, which will be performed by the
inference engine, are forward chaining and backward chaining. In both cases an

 3

inference path is sought between what is currently known and a goal. When forward
chaining is employed the known starting conditions are input into the left hand side of
the production rules to generate a set of conclusions. These are checked to see if they
match the desired goal, if not, these conclusions are used by subsequent rules to draw
further conclusions. When backward chaining is employed rules are selected whose
right hand sides will achieve the desired goal. The left had sides are considered as
intermediate goals that must be satisfied and rules to achieve these are accessed. This
process attempts to find a situation where all the left hand sides are known to be true
by the system.

2. if-then rules with uncertainty measures: Uncertainty measures can be used in rule
based systems to indicate the level of confidence associated with a production rule.
For example, suppose an ideal world with everlasting light bulbs and an interruptible
power source. A production rule may state: IF light switch turned to on THEN light
comes on. In this case no uncertainty measures are required due to the unrealistic
assumptions made. In the real world the power may be cut off or the bulb may blow
and an uncertainty measure associated with this rule as follows: IF light switch turned
to on THEN light comes on WITH 95% CONFIDENCE.

3. semantic network representations: A semantic network represents knowledge as a
set of nodes connected by labeled arcs. The arcs represent the relationships between
the nodes.

4. frame based representations: A frame is a collection of attributes and values and can
be regarded as an extension of a semantic network. The use of the frame can greatly
simplify a semantic network. Frames have also been incorporated into production rule
based systems with frames defining the objects that occur in the rules.

1.1.2.The Student Module

The student module forms a framework for identifying a student’s current state of
understanding of the subject domain. The knowledge that describes the student’s current state
of mind is stored in a student model.

In order to make any learning environment adaptable to individual learners it is
essential to implement a student model within the system. The student module should permit
the system to store relevant knowledge about the student and to use this stored knowledge to
adapt the instructional content of the system to the student’s needs.

In order to identify a student’s needs a number of student modeling architectures have
been devised. The differences or similarities between the expert and the student model are
described in terms of misconceptions and missing conceptions. Missing conceptions can be
described as some knowledge, which is possessed by the domain expert but not by the
student. A misconception is knowledge that the student has but not the expert.

Student models have been devised that record either misconceptions, missing
conceptions or a combination of both:

• Overlay student models: The overlay student model has been used in a number of
Intelligent Tutoring Systems. It is particularly appropriate when the teaching material
can be represented as a prerequisite hierarchy. Within this model the student’s
knowledge is assumed to be a subset of the expert’s knowledge and the goal of
tutoring is to enlarge this subset as shown in figure 2:

 4

Figure 2. A representation of an overlay model showing the effects of tutoring.

This model assumes that the student will not learn anything that the expert does not
know. Specifically it does not cater for misconceptions or bugs that the student may
have or acquire during tutoring. A second issue with the overlay model is that there is
no mechanism to differentiate between knowledge the student has not yet grasped and
knowledge the student has not yet been exposed to which have implications for the
tutoring strategy. The differential student model addresses this point

• Differential student models: The differential student model is an extension of the
overlay model. Knowledge is separated into that which the student has been exposed
to and that which the student has not. A differential student model is depicted in figure
3.

Figure 3. A representation of a differential student model.

The differential student model partitions the domain knowledge into already presented
knowledge and that, which has not yet been presented to the student. An overlay
model as described above is applied to that knowledge exposed to the student. As with
the overlay student model, the differential model does cater for student
misconceptions or bugs.

• Perturbation student models: The perturbation or buggy student model is depicted
in figure 4. This model caters for knowledge possessed by the student that is not
present in the expert domain knowledge.

 5

Figure 4. A representation of the perturbation or buggy student model.

The perturbation student model extends the experts knowledge with the addition of a
bug library. The process to create a bug library can be enumerative or generative. The
enumerative process lists all possible bugs usually via an analysis of the problem
domain and the errors that students make. The generative approach attempts to
generate bugs from an underlying cognitive theory.

1.1.3.The Tutoring Module

The function of the curriculum and instruction or tutoring module is three fold. Firstly
it must control the presentation, ordering and selection of material most appropriate for the
student. Secondly it must be able to answer questions from the student and thirdly it must
determine which type of help should be given to students.

Any global tutoring strategy should be based on sound educational and psychological
principals with reference to needs identified within the student model. These needs are
identified by the student diagnosis process and can result in guidance or remedial instruction
being feedback to the student.

Beyond the presentation of material inline with the overall tutoring strategy the system
may provide feedback to the student in a number of forms:

• A facility may exist to allow the student to request help when stuck with a problem. In
this situation the system should provide suitable and relevant hints.

• Assistance may be provided in the problem solving process allowing the student to
concentrate on specific issues while gaining an appreciation of other relevant issues.

• The students may be given the facility to review their own decision-making processes
during or after a problem-solving episode. If this facility is given during problem
solving a back tracking facility should allow the errors to be corrected.

• The tutoring system may provide reactive feedback by challenging a student’s
decisions and forcing a justification for a decision.

• The system may provide model answers so that the student can see the expert at work.

The tutoring module may provide over the shoulder coaching by monitoring porgies and
providing relevant advice. This could take the form of remedial advice, further information,
and encouragement for a correct solution or a warning that the student’s current solution
strategy is not optimal.

 6

Student diagnosis is the process to evolving the student model. In order to evolve the
student model interactions between the student and the Intelligent Tutoring System need to be
analyzed. This analysis is typically performed by checking answers to questions posed by the
system or analyzing the steps taken during a problem solving session. Other factors such as
requests for assistance or the analysis of browsing patterns within hypertext-based systems
can also be used.

One simple approach to student diagnosis is known as performance measuring.
Performance measuring checks a student’s domain related knowledge by looking at solutions
to problems. Counters within the student model can be set to indicate what has and has not yet
been learned. Although this is a straight forward method of measuring a student’s
performance it gives reasonable clues about what type and how much information the learner
will need.

Model tracing systems analyze problem solving episodes and maintain a model of
problem solving which is traced against the student’s activities. At a given state of problem
solving, rules, which model the problem solving activities within the domain, are selected and
fired to predict the next state. Expert and bug rules are fired with the goal of matching the
student’s new state. The student is assumed to be using the rule that predicted the new state
and the student model updated to reflect this. Any deviation between the student’s solution
and the systems can be acted upon and suitable action taken.

A popular approach to student diagnosis has been to use an expert system. The expert
system is employed to analyze answers or conclusions drawn by the student and the
conclusions of the expert system are used to maintain the student model.

1.2. Conclusions
The "Traditional Trinity" (the three modules) has formed the basis for a number of

Intelligent Tutoring Systems. However, in the literature it is suggested that recent trends in
intelligent tutoring research do not map well to it.

These trends have seen tutoring strategies moving away from fact based tutoring
towards the tutoring of problem solving strategies and the analysis of these strategies. This
meta-level knowledge is less easy to represent within the domain knowledge base.

There has also been a move towards multiple representations of the domain
knowledge in order to cater for specific situations and contexts. It has been recognized that
the expert and learner work in different ways. The student will go through several phases
while attaining expert problem solving skills. Alternative domain representations may be
required as these phases are established and progressed through. Multiple domain
representation does not map well to the overlay and bug rule based student models.

The emergence of alternative learning environments such as those that allow for
experimentation and simulation and an increased range of interaction are not well catered for
either by the "Traditional Trinity".

One interaction style that has recently been gaining in popularity is hypertext. There is
significant advantage associated with hypertext and a number of tutoring systems have been
devised that incorporate a hypertext component.

Machine learning techniques have also been used in a number of recent intelligent
tutoring systems.

 7

A student can learn from an Intelligent Tutoring System by solving problems. The
system selects a problem and compares its solution with that of the student and then it
performs a diagnosis based on the differences. After giving feedback, the system reassesses
and updates the student skills model and the entire cycle is repeated. As the system is
assessing what the student knows, it is also considering what the student needs to know,
which part of the curriculum is to be taught next, and how to present the material. It then
selects the problems accordingly. In the following figure, the structure of such a system is
presented:

Figure 5. The structure of an Intelligent Tutoring System

1.3. Examples
 In this section two examples will be shortly presented: a LISP Tutor and a web-based
PROLOG Tutor (PLOT).

1.3.1.The LISP TUTOR

The LISP TUTOR is an Intelligent Tutoring System developed to teach the basic
principles of programming in LISP.

In the LISP TUTOR the expert model was created as a series of correct production
rules for creating LISP programs and a learner model was built as a subset of these correct
production rules along with common incorrect production rules. LISP TUTOR is based on the
principle of "learning by doing", where the learner discovers the productions while working
through problems. The tutor acts as a problem-solving guide, but never states the productions
to be learned.

LISP TUTOR is an application of Andersons ACT* theory. ACT* theory is one of the
earliest attempts to establish a complete theory of human cognition. It combines declarative
knowledge in the form of semantic nets with procedural knowledge in the form of production

 8

rules. In ACT* learning is accomplished by forming new procedures through the combination
of existing production rules. The main principles of the ACT theory are:

• Cognitive functions can be represented as a set of production rules. The use of a
production depends on the state of the system and the current goals.

• Knowledge is learned declaratively through instructions. The learner must carry out
the process of knowledge compilation if the productions are to be properly understood
and integrated into their existing knowledge and later recalled and used.

Anderson and his team used GRAPES (Goal Restricted Production System
Architecture) to represent the knowledge in LISP TUTOR as approximately 325 production
rules. The system also embodies around 425 buggy production rules that represent
misconceptions that any novice programmer can easily have. LISP TUTOR employs model
tracing to provide a learner with detailed feedback. The learner is given a problem and the
tutor monitors the learner’s input character by character. The tutor generates all the possible
next characters using both correct and buggy production rules.

• If the character is predicted by the correct rule the learner is allowed to continue.

• If the character is predicted by a buggy production rule, then remedial instructions are
given.

• If the character is not predicted the tutor says that it cannot understand and asks the
learner to try again. After several tries the tutor explains the next step.

This method has the advantages of early diagnosis of learner misconceptions and of
giving immediate feedback to the learner. The learner never strays far from a correct solution.
However, this can be viewed as unnecessarily restrictive and counter productive as the student
is never allowed to explore incorrect behavior. More information about this project can be
found in (Etienne Wegner 1987, chapter 13).

1.3.2.PLOT

 PLOT is a web-based intelligent educational System for PROLOG developed at
University of Osnabrück.

 Among the goals of this project we can find:

• The tutoring system is addressed to a large number of users who learn PROLOG;

• The Possibility for students to use the system from different places;

• Enabling the user to work with a familiar working space

• Privacy of user data

• Quick and efficient system administration

It is a client-server application that used a JAVA client as user front-end. The system
compares the student solution with the example solution. Error analysis is accomplished in
several steps by different modules (parser analyzer, syntax checker, comparing with the
example solution). For more details on how the system works and what it can offer, see
(Christoph Peylo et al, 2000).

2. Lernumgebungen für die Softwareentwicklung (LuSe)
 9

Lernumgebungen für Softwareentwicklung (LuSe) is a project developed during two
semesters at Hamburg University, Computer Science department (for more details see Annex
3). The LuSe Project is a web-based system built for helping students to learn PROLOG by
solving several types of problems: database queries and recursion problems.

Figure 6. LuSe Logo

 The LuSe Project is implemented in Prolog, and has an interface based on PLHT2
and HTML, and it uses the XPCE server.

2.1. Descriptions of the Project
 Many Computer Science students have problems with learning programming,
especially logic programming. With the project LuSe, it is tried to attain the following aims:

• find out the typical difficulties that a novice programmer normally has to meet.

• build a web-based environment that reads the approach to a specified problem of the
student and analyze his/her solution.

• generate the appropriate feedbacks that correspond to the concept of the programming.
With the feedbacks the student can improve his/her solution successively and override
the blockades of learning programming in the early phase.

2.2. The LuSe Architecture
 The set of problems considered in LuSe is divided into two categories: database
query problems, and recursion problems. In the following figure, the flow for recursion
exercises can be seen.

 The program flows for database query exercises and recursion exercises are
somehow similar, the only differences being:

1. In the database case if there are syntax errors, the feedback is generated without doing
other operations;

2. In the database case an instantiation checking and a simplification of unification
equations are done.

2 PLHT is the abbreviation for Prolog Hypertext Processor and it was created by Yannick Versley (student at
Hamburg University, Computer Science Department).

 10

no
example
solution

no error

error

exists

Feedback

Analyse

Testing

Example
Solution

Typify

Syntax Checker

no error / error

Figure 7. The general flow for recursion problems

 The architecture of LuSe can be divided into three layers: front-end, backend and
resource layer (see Annex 1).

 The front-end layer is responsible for reading solutions to a described exercise and
representing the feedbacks. Front-end works on the HTTP server of SWI-Prolog and is
supported by the PLHT library written by Yannick Versley. PLHT is an approach similar to
Java Server Pages that tries to make separation of presentation and application logic possible
for applications written in Prolog.

 The backend layer analyses student's solution and generates diagnose by comparing
this solution with a sample solution. At present we just have one sample solution for one
exercise. The diagnose process goes through following components: ‘normalizer’, Syntax
Checker, type checker, and analyzer. The ‘normalizer’ brings the student solution back to the
normal form. The Syntax Checker verifies the student's input if it is syntax conform. The
semantic checking begins with type checker that examines the types used in the input.
Semantic errors will be found by the analyze components as Auswertung, Idiom, Test engine.
The backend layer uses a base library of session management, iterative deepening search and
feedback generation.

 The resource layer contains exercise descriptions and sample solutions that are
saved in form of XML files and PROLOG database.

 These three parts will be described in the following subsections.

 11

2.2.1.The Front-end Layer

 The LuSe Front-end is formed of the .plht files and of the XPCE server.

 PLHT is web based user interface that can be used with any browser, without the need
of any installation on the side of the user. “PLHT tries to make this separation of presentation
and application logic possible for applications written in PROLOG using the HTTP support
library and a compiler which transforms XML input into PROLOG predicates…” (Yannick
Versley, 2003).

 In PLHT there are tags for looping, if-then conditions, writing atoms and terms,
calling a PROLOG predicate, handling form values, session management, and for including
other files. For more details see (Yannick Versley, 2003).

 XPCE is a toolkit for developing graphical applications in PROLOG and other
interactive and dynamically typed languages. XPCE follows a rather unique approach of for
developing GUI applications, which is summarized using the points below.

• Add object layer to Prolog: XPCE's kernel is an object-oriented engine that allows
for the definition of methods in multiple languages. The built-in graphics are defined
in C for speed as well as to define the platform-independence layer. Applications, as
well as some application-oriented libraries are defined as XPCE-classes with their
methods defined in Prolog. As of XPCE-5, Prolog-defined methods can receive
arguments in native PROLOG data, native PROLOG data may be associated with
XPCE instance-variables and XPCE errors are (selectively) mapped to PROLOG
exceptions. These features make XPCE a natural extension to your PROLOG
program.

• High level of abstraction: XPCE's graphical layer provides a high abstraction level,
hiding details on event-handling, redraw-management and layout management from
the application programmer, while still providing access to the primitives to deal with
exceptional cases.

• Exploit rapid PROLOG development cycle: Your XPCE classes are defined in
PROLOG and the methods run naturally in Prolog. This implies you can easily cross
the border between your application and the GUI-code inside the tracer. It also implies
you can modify source-code and recompile while your application is running.

• Platform independent programs: XPCE/Prolog code is fully platform-independent,
making it feasible to develop on your platform of choice and deliver on the platform of
choice of your users. As SWI-Prolog saved-states are machine-independent,
applications can be delivered as a saved-state. Such states can be executed
transparently using the development-environment to facilitate debugging or the
runtime emulator for better speed and space-efficiency.

LuSe Graphical Interface is generated using a mixture of PLHT and HTML. In
Figure 8 we can see the LuSe homepage.

 The Graphical Interface is very simple and perhaps it does not offer all the support
needed by the student. There are no many graphical elements (buttons, check boxes, etc.) and
all the student has to do is type in the solution of the exercise into a text area and press a
button. He will receive in a table the list of errors and possible solutions to them.

 12

Figure 8. Snapshot with the LuSe homepage

2.2.2.The Backend Layer

 The backend layer part is formed of several modules:

• LuSe Diagnose Module

• LuSe Normalize Module

• LuSe Syntax Checker

• LuSe Type Checker

• LuSe Evaluation Module

• LuSe Idiom Detector

• LuSe Testing Module

• LuSe Session Manager

• LuSe Iterative Deepening Search

• LuSe Structure

• LuSe Feedback Generator

Below are presented some of LuSe modules:

LuSe Diagnose Module
 The diagnose module differs for the two types of problems (database query and
recursion problems). The predicates used are:

• For database query: diagnose_db(+Id, +Anfrage, -ErrorList, -CorrectedTerm). It
gathers the diagnosis information from syntax checker, type checker, and instantiation

 13

checker. The parameters are the following: Id is the id of the exercise, Anfrage is the
student solution, Errorlist contains the errors the system found in the student solution,
and CorrectedTerm is the possible correction the system provides.

• For recursion: diagnose_rec(+Id, +Program, -Errs). It gathers the diagnosis
information from syntax checker, type checker, and the testing module and offers the
user the list of errors and possible solutions.

LuSe Normalize Module

In LuSe there are several way of bringing a clause in a so-called ‘normal form’, and
these forms are described below.

Form 1: first the head and the body of a clause are separated using the predicate
normalize(+Klausel, -NormalisierteKlausel) and then, using normalizBody(+ClauseBody,
-BodyList, []), the body is transformed as follows:

If at the beginning the ClauseBody is of the form,
(append(Rest1,[Element|Rest2],List),length(Rest1,Pos),append(Rest1,Rest2,Rest))

it becomes a list of the form:

[append(_G989, [_G986|_G987], _G991), length(_G989, _G994), append(_G989, _G987,
_G998)]

Form 2: It follows the rule. no equation of the form Var=Term occurs in the body. This is
done by the predicate simplifyUni(What, TermsIn, TermsOut) that replaces the subgoals of
the form Var=Expr in TermsIn by substituting Var with Expr. The result is TermsOut, and the
list of simplified equations is put in What.

Form 3: The head of a clause contains only variables as an argument and the body of a clause
contains equations with a variable on the left side and a functor with only variables as
arguments on the other and predicate calls with only variables as arguments

LuSe Syntax Checker
 LuSe Syntax Checker is based on the Backus-Naur Form (BNF)3 definition of
PROLOG syntax.
 program ::= sentence { "." sentences}
 sentence ::= head ":-" body "." | head "."
 body ::= goal
 goal ::= compound_term | term " " "is" " " expr
 goal ::= term infix_operator2 term | term infix_operator3 term
 goals ::= goal | goal {"," goals}
 compound_term ::= atom "(" terms ")" | list
 compound_terms ::= compound_term | compound_term {"," compound_terms}
 expr ::= simpleExpr | simple_expr infix_operator simple_expr
 simple_expr ::= term | "(" expr ")"
 term ::= constant | variable | "_" | compound_term
 terms ::= term | term {"," terms}
 infix_operator ::= "+" "-" "*" "/" "mod"
 infix_operator2 ::= "==" |"=" |"=\="
 infix_operator3 ::= "=<"|"<" \|">"| ">=" |"@="|"=:="

3 The Backus-Naur form (BNF) (also known as Backus normal form) is a metasyntax used to express context-
free grammars.

 14

 list ::= "[" "]" | "[" terms "]" | "[" terms "|" term "]"
 atom ::= lowercaseChar | nameChars
 constant ::= integer | atom
 integer ::= digit | digits
 digit ::= "0" ...| "9"
 variable ::= uppercaseChar | uppercaseChar nameChars
 lowercaseChar ::= "a" ...| "z"
 uppercaseChar ::= "A" ...| "Z"

The Syntax Checker provides following functionalities:

• check_program_syntax(+Program, -Clauses, -ErrorList) reads a PROLOG program
that has several clauses and returns a list of corrected clauses and a list of errors. The
error list has this form: [1-[error([0], missing())), error([1, 0], missing(]))]]. The
number 1 followed by the list of errors indicates that the errors belong to the first
clause.

• check_clause_syntax(+String, -Term, -Errors) reads just one clause as input and
returns a corrected term with a list of errors. In this error list we will not have the
number in front of error list because in this case we just have one clause.

• check_query_syntax(+String, -Term ,-Errors) does the same as check_clause_syntax
but just be applied for a query.

LuSe Type Checker
 The Module verifies if the parameters in the solution respect the type constraints. This
is done by the predicate typify_query(Query, Errors, VarTypes), which uses the predicate
get_types_from_exprs(Exprs), for which Expr is a list of terms from a PROLOG clause.

LuSe Evaluation Module

The evaluation is done by the predicate auswertung(+Loesung, +AufgabenId, -
Fehler), which has as input the student solution and the id of the problem and as output the
errors. It uses the Iterative Deepening Module for looking for the errors.

LuSe Idiom Detector
 This module tries to find idioms inside a student solution and in sample solution and
then compare the found idioms. If there are differences, a list of errors is given as output. It
uses the predicate idiom_detector(Pred1, Pred2, Errs).

LuSe Testing Module
 This module can be find in the file test_recursive.pl, and the main predicate is
test_with_goal(Clauses1, Clauses2, Goal, Errors) that compares the solution sets of two
predicates and has among the parameters Clauses1: the clauses of the sample predicates and
Clauses2: the clauses of the user predicates. These two have to be lists of clauses in the form
Head-[BodyGoals]. This predicate uses the predicate dprove(Goal, Vars, Clauses,
MaxDepth, Result), which is a depth-limited prover whose arguments are: Goal: the goal we
want to test (this can be a subgoal), Vars: what it is wanted to have in the goal, Clauses: the
clauses of the predicate in Head-[Bodylist] form, MaxDepth: the depth that is left, and the
result of the proving.

 15

LuSe Session Manager
 The session management is done by PLHT, which offers a limited facility for the
persistence of data throughout the browsing session of the user. One can get the contents of a
session variable with the PROLOG predicates session_getValue(+Key, -Var) and
session_setValue(+Key, +Var). The session_getValue predicate fails if there is no given
value for the given key. It can also be implemented user specifiable defaults by using the
PLHT pl:sessionparam tag.

LuSe Iterative Deepening Search

Iterative deepening search is a graph search algorithm. When searching for a path
through a graph from a given initial node to a solution node with some desired property, a
depth-first search may never find a solution if it enters a cycle in the graph. We can either add
an explicit check for cycles so that we never extend a path with a node it already contains or
we can use iterative deepening where we explore all paths up to length (or "depth") N, starting
from N=0 and increasing N until a solution is found.

In LuSe there are several predicates named ids_search, built one on top of the other.
The one used in the evaluation modules is ids_search/7´. The arguments of the predicate
ids_search(Query, Pos0, State0, State1, MinPenalty, MaxPenalty, Errors) are Query the
description of the search space, Pos0 the initial position, State0 the beginning state of the
object to be operated, State1 the last state, MinPenalty a minimum bound, set at 0,
MaxPenalty the maximum depth bound (set at 100), and Errors the solution path of error
terms.

LuSe Feedback Generator
 The Feedback Generator has a database of possible feedbacks. If any diagnose
component of the Backend layer finds an error in the student solution, the Feedback Generator
will produce the appropriate feedback. The Feedback Generator does the following if it is
called with a list of errors as input: It rewrites the student's input and locates the error in this
input by emphasizing it.

A feedback is chosen which tells position where, what the error is and how it should
be solved.

 There are three groups of feedbacks. The first group covers the possible syntax errors
(priority 1-20). The second group handles the semantic errors (priority 21-80), and the last
one includes the errors that can be identified by the LuSe system (priority greater than 81).

 The feedback has the following structure: feedback(-Priority, +ErrorTerm, -Where,
-What, -How), where the parameters are the following: Priority of the feedback for this error,
ErrorTerm has the structure error([ErrorPosition], ErrorDescription) (e.g.
error(_,missing('('))), Where is the generic name of the error (this parameter is sometimes not
specified), What is the short description of the error, and How a manner to handle this error.
Errors, which can be identified and are solvable, have the higher priority.

Example:
feedback(15,
error(_,misspelled_predicate(Misspelled,Corrected)),
Misspelled,
'Dieses Prädikat gibt es nicht.',
 ['Meintest du ',Corrected,'?']).

 16

Having such a structure, the feedback messages can be easily extended. The feedback
messages are ordered according to the priority and a message is shown once, even the error
appears several times.

 The Feedback Generator provides two functionalities:

locate_error_in_term(+ErrorList ,+Term): This reads a list of errors as input and a
normalized input, and then writes into the output stream (in this case HTML) a term with
emphasized positions which are errors.

return_the_feedbacklist(+ErrorList, -FeedbackList): This reads a list of errors and finds
appropriate feedbacks, then returns them to Front-end.

2.2.3.The Resource Layer

 In LuSe architecture there are used three types of files:

• .xml files,

• database files, and

• data types files.

 .xml files are used for introducing exercises, either for database queries, or for
recursion problems.

 The structure of the files used for both types of exercises (database query and
recursion) is somehow similar:

1. Database query
 <! ELEMENT domain (description, aufgabe*)>
 <! ATTLIST domain name CDATA #REQUIRED>
 <! ATTLIST domain db CDATA #REQUIRED>
 <! ATTLIST domain types CDATA #REQUIRED>
 <! ELEMENT description #PCDATA>
 <! ELEMENT aufgabe (text, loesung)>
 <! ELEMENT text (#PCDATA, match*) *>
 <! ELEMENT loesung #PCDATA>
 <! ELEMENT match #PCDATA>
 <! ATTLIST match var CDATA #OPTIONAL>
 <! ATTLIST match constant CDATA #OPTIONAL>
 <! ATTLIST match functor CDATA #OPTIONAL>
where:
<domain> is the root tag that has 3 attributes: name (generic name of the database), db (the
database file), and types (the type file).
<description> contains a short overview on the database, so that the student can have a
glimpse in LuSe interface.
<aufgabe> contains the information about the exercises.
<text> contains the text of the exercise
<loesung> contains the example solution for the corresponding exercise
<match> is used for generating feedback (the text between this tag will appear bold to the
student so that he/she knows where to look in the exercise in order to make the corrections)

Example of an entry:
<aufgabe>

 17

<text>
In <match var="Strasse">welchen Strassen</match> gibt es
<match constant="mfh">Mehrfamilien<match functor="obj">häuser</match>
</match>?
</text>
<loesung>
obj(_,mfh,Strasse,_,_)
</loesung>
</aufgabe>

2. Recursion
 <! ELEMENT rekursion (description, aufgabe*)>
 <! ATTLIST rekursion name CDATA #REQUIRED>
 <! ELEMENT description #PCDATA>
 <! ELEMENT aufgabe (titel, text, loesung, testfall)>
 <! ELEMENT text #PCDATA>
 <! ELEMENT loesung #PCDATA>
 <! ELEMENT testfall #PCDATA>
where:
<rekursion> is the root tag; it has an attribute name (a generic name).
<description> is a short description of the exercise types.
<aufgabe> contains information about the exercise.
<text> is the exercise (at this point there is no match tag for feedback).
<loesung> contains the example solution.
<testfall> contains a test case for the corresponding exercise, which will be used by the
testing module

Example of an entry:
<aufgabe>
<titel>Entfernen eines Elements</titel>
<text>
Schreiben Sie ein Predikat das ein Element von eine Liste entfernt:
entfernen(Liste, Element, Liste_ohne_Element)
</text>
<loesung>
entfernen([],X,[]).
entfernen([X|Xs],X,Ys):-entfernen(Xs,X,Ys).
entfernen([X|Xs],Z,[X|Ys]):-X \= Z, entfernen(Xs,Z,Ys).
</loesung>
<testfall>
entfernen([1,2,3],1,X).
</testfall>
<testfall>
entfernen([1,2,3,2,3,2,1],2,X).
</testfall>
<testfall>
entfernen([],1,X).
</testfall>
</aufgabe>

 The database files used at this moment are: haeuser.xml and test.xml, and the recursion
file used is recursion.xml.

 The database query exercises are taken from the P1 home-works (Hamburg
University, Computer Science department). The exercises for recursion are limited at this
moment to list recursion and they are formulated in such a way that only one solution is
possible (in the exercise there is given the order and types of the predicate arguments). This
fact restricts very much the user’s solution.

 18

 The XML files are read with consumeTree predicate: consumeTree(+XMLTags).
.

 The database files are normal .pl files in which the information is given. The database
files used at this moment are: bibliothek.pl and haeuser1.pl. Below there is an example taken
from bibliothek.pl.

%leser(LeserNr,Name,Vorname,Adresse,Geburtsjahr)
leser(2264,hiller,michael,modderkamp_13,1957).
%buch(Signatur,Autor,Titel,Standort)
buch(a3325,mueller,vom_sinn_und_unsinn,regal117).
%ausleihe(LeserNr,Signatur,Rueckgabe,Verlaengert,Mahnung).
ausleihe(2264,a3325,d(22,11,2000),0,nein).
%vorbestellung(LeserNr,Signatur,Datum).
vorbestellung(2264,c5674,d(15,10,2000)).

 In data types files are declared types that appear in the databases or in the recursion
problems: type_decl, enum_decl, range_decl. These are defined in infer_types.pl. The data
types files used at this moment are: bibliothek_typen.pl, haeuser_typen.pl, recursive_typen.pl.
Below it is an example taken from bibliotek_typen.pl:

type_decl(buch(signatur,autor,titel,standort)).
type_decl(ausleihe(leserNr,signatur,datum,anzahl,janein)).
enum_decl(leserNr, [2264, 3167, 4238]).
enum_decl(datum, [d(tag, monat, jahr)]).
range_decl(tag, 1, 31).
range_decl(monat, 1, 12).

2.3. The LuSe Evaluation
Evaluation ‘in a broader sense, is a process aiming at the investigation of any quality of

an object’. According to the classification from (W. von Hahn, L. Tessiore 2000) it can be
classified in at least five classes:

• Evaluation (narrow sense): it can be seen as establishing the utility of an object with
respect to a specified user

• Verification: it means verifying the resemblance of an object to a stated requirement

• Validation: it verifies the compatibility of a system by exposing to users

• Test: it means discovering whether an object supports a specific feature or not

• Assessment: it can show that a specific task runs correctly

Concerning the methods given above, LuSe was evaluated by testing and assessment.
The participants at the projected tested with concrete examples the program.

The system was also tested by Chr. Walters and the results can be seen in (Chr.
Walters, 2004). The conclusion of this evaluation is that “The LuSe system is capable of
aiding the user in solving simple programming tasks in a restricted range of possible
mistakes”.

2.4. Present Limitations of the Project and Future Developments
After analyzing the way LuSe was evaluated and comparing to the initial goal of the

project the following limitations and possible future developments can be extracted

 19

Limitations

• The project has no real student model that would be very helpful for guidance, and
choosing exercises. The only observations that were taken into consideration were the
ones offered by the coordinators of the project (see Annex 3) that have experience in
working with students and in teaching PROLOG and by Yannick Versley, who is tutor
for students that are studying Prolog.

• The project has a very simple interaction model and a very simple graphical user
interface.

• There is no interface for the creation of new exercises or for modification of the types
used in exercises. If somebody wants to add exercises, he/she should be familiar with
the structure of the files used in LuSe.

• The actual feedback is quite simple (it indicates the user the place were the error is
located and possible solution, but there is no real connection with the theoretical part –
‘why’ a exercise should be solved in that certain way).

• At this moment there is no natural-language feedback for recursive programs.

• PLHT is not really ready for production use (XPCE web server has single threading,
PLHT is not thread safe, so it cannot be used with the threading web server).

• Sessions never time out.

• There are several syntax analysis problems (it sometimes fails because the search
space grows too big, several problems when it is missing a parenthesis and it can be
inserted in multiple places, etc.

• It can appear confusion of variables and atoms (X -> x). The rule used might be too
general.

• The following predicates were not taken into consideration: not/1, !/0.

• The user solution have to exactly match the sample solution, and this restricts the user:
the needed variables in the student solution should be in the same place in a predicate
and have the same meaning with the ones in the sample solution.

Future developments:

• To integrate syntax analysis with the type checker so that it can choose one possibility
from several ones (as in ausleihe(2264,a1234,d(1,1,2003,0,nein))

• It can be implemented a new way of testing: graft a (partial) trace from the sample
solution and see if this makes the trace correct

• To extend it by trying to construct invariants (e.g. peano_add)

• New methods for improving the speed of the ids_search (possible using heuristics)

• To find a way to integrate LuSe into the swi emacs editor

• Possible extensions to other languages (Sql, Pl-Sql, Scheme)

 20

3. Conclusions
 The paper presents a short introduction in Intelligent Tutoring Systems and then the
accent is put in describing the Lernumgebungen für Softwareentwicklung (LuSe) project,
developed at Hamburg University, Computer Science department.

After analyzing all the things said above, it can be said that the project is not a full
Intelligent Tutoring System, even though it follows the scheme presented in Figure 5, because
it does not offer complete explanations to the students. The student sees his/her errors, but no
theoretical background is shown to him/her and no explanations are given. There is no
response to the question: “Why these things are wrong?” and it cannot be said that using LuSe
a student can learn Prolog, without the guidance of a human tutor. It also misses a
documented student model.

Using this program a student can get help for solving some types of PROLOG
problems (database queries and some recursion problems).

References
LUSE HOMAPEGE, http://nats-informatik.uni-hamburg.de/view/LUSE/WebHome

W. VON HAHN, L. TESSIORE (2000). Functional validation of a Machine Interpretation
System: Verbmobil, p.611-631, “Verbmobil: Foundations of Speech-to-Speech Translation”,
Springer

CHRISTOPH PEYLO ET AL. (2000). A Web-Based Intelligent Educational System for PROLOG,
Institute for Semantic Information Processing, University of Osnabrück

MARK URBAN-LURAIN. Intelligent Tutoring Systems: An Historic Review in the Context of the
Development of Artificial Intelligence and Educational Psychology,
http://www.cse.msu.edu/rgroups/cse101/ITS/its.htm

YANNICK VERSLEY (2003). PLHT: The PROLOG Hypertext Processor, manuscript

CHR. WALTERS (2004). Evaluation of the LUSE system, www.nats-informatik.uni-
hamburg.de

ETIENNE WEGNER (1987). Artificial Intelligence and Tutoring Systems. Computational and
Cognitive Approaches to the Communication of Knowledge, Morgan Kaufmann Publishers,
California

 21

Annex 1. LuSe General Architecture

DB Types

DB

Diagnose Normalize Auswertung Idiom Testing

Session ids Structure Feedback XPCE server

plht

Resources

XML

Backend

Syntax
Checker

Type
Checker

Front-end

 22

Annex 2. Some Snapshots of the LuSe Graphical Interface

Snapshot with the database query module

Snapshot with the recursion module

 23

Annex 3. Several Testing Results

Tests on databases query (database used: haueser.pl)

Question: In welche Strassen gibt es Mehrfamilienhauser?

Test 1: obj(_, mfh, _,_,_)
Result:
Diagnose
Ausgewählt: haeuser-1

Deine Anfrage passt nicht genau auf die gestellte Aufgabe. Achte besonders auf die fett
gedruckten Teile:
In welchen Strassen gibt es Mehrfamilienhäuser ?
[obj(_39, mfh, _41, _43, _44)]

Fehler

Erklärung

Hilfe

 (_41)

War diese Information in der
Aufgabe gegeben?

An dieser Stelle sollte es eine
Variable sein.

_41

An dieser Stelle sollte es eine
Konstante sein.

Finde diese Angabe in der
Aufgabestellung.

Test 2: obj(_,mfh,,_,_)
Diagnose
Ausgewählt: haeuser-1

[obj(_143, mfh, _145, _146)]

Fehler

Erklärung

Hilfe

Test 3: obj(_,mfh,X,_,_
Diagnose
Ausgewählt: haeuser-1

[obj(_463, mfh, X, _489, _490)]

Fehler

Erklärung

Hilfe

)

In deiner Eingabe fehlt dieses
Zeichen.

Das verursacht Syntaxfehler.

Test 4: obj(_,mfh,X,_,_)
Diagnose
Ausgewählt: haeuser-1

 24

Du bist perfekt. !!!
Probieren wir die Anfrage doch mal aus:
X= bahnhofsstr

Question: Welche Hauser(Objectnummer) sind vor 1970 erbaut worden

Test: obj(_,mfh,X,_,_)
Diagnose
Ausgewählt: haeuser-2

Deine Anfrage passt nicht genau auf die gestellte Aufgabe. Achte besonders auf die fett
gedruckten Teile:
Welche Häuser (Objektnummer) sind vor 1970 erbaut worden?
[obj(_1691, mfh, X, _1693, _1694)]

Fehler

Erklärung

Hilfe

1. Teilziel Dies reicht noch nicht. Bitte prüfe, wir müssen mehr
Teilziele haben.

(_1691) War diese Information in der
Aufgabe gegeben?

An dieser Stelle sollte es eine
Variable sein.

(_1694) War diese Information in der
Aufgabe gegeben?

An dieser Stelle sollte es eine
Variable sein.

X An dieser Stelle sollte es eine
Konstante sein.

Finde diese Angabe in der
Aufgabestellung.

_1691 An dieser Stelle sollte es eine
Konstante sein.

Finde diese Angabe in der
Aufgabestellung.

_1694 An dieser Stelle sollte es eine
Konstante sein.

Finde diese Angabe in der
Aufgabestellung.

Mfh Diese Information brauchst
Du nicht, oder?

Du kannst an dieser Stelle
eine anonyme Variable
haben.

Tests on recursion:
Errors are presented as follows:
 * _1773 - [error([],missing(.)),error([0],missing(])),error([0],missing([))]
 * error([2],atom_as_var([]))
 * error([1],atom_as_var(entfernen))
There is no natural language feedback and there are still problems.

 25

Annex 4. Several Data about the LuSe Project

The project took place at Hamburg University during the summer semester 2003 and
winter semester 2003 / 2004 and the participants were the following:

COORDINATORS:
Prof. Dr.-Ing. Wolfgang Menzel
Prof. Dr. Leonie Dreschler-Fischer

STUDENTS:
Yannick Versley (both semesters)
Anne Schick (1st semester)
Christoph Walters (1st semester)
Jens Wolfhagen (1st semester)
Manuchehr Sadeghian (1st semester)
Ralf Brandhorst (1st semester)
Le Nguyen Thinh (2nd semester)
Monica Roxana Gavrila (2nd semester)

 26

	XPCE is a toolkit for developing graphical applications in PROLOG and other interactive and dynamically typed languages. XPCE follows a rather unique approach of for developing GUI applications, which is summarized using the points below.
	
	
	LuSe Diagnose Module
	The diagnose module differs for the two types of problems (database query and recursion problems). The predicates used are:
	LuSe Normalize Module
	LuSe Syntax Checker
	LuSe Type Checker
	LuSe Evaluation Module
	LuSe Idiom Detector
	LuSe Testing Module
	LuSe Session Manager
	LuSe Iterative Deepening Search
	Limitations
	Future developments:

	Annex 1. LuSe General Architecture

