
Component Specification

I. StructureMatcher

Each solution represents a strategy or an algorithm. So it's a particular way of
solving a problem. This is what we call a solution pattern.

Each pattern has a structure and its constraints. The pattern specific constraints
describe the use of techniques in this pattern. A pattern also defines a class of
exercises which have the same strategy for the problem's solution. Bugs at this
level reflect lack of understanding of the task, or an incorrect or inefficient
strategy.

We divide the pattern mating process into two steps. The first step is looking for
the best pattern structure. The second step check the pattern and exercise
specific constraints.

1. Pattern structure matching

A best pattern structure should be found for a given student solution. If a
pattern structure can be found, that means that the system knows what kind of
strategy the student follows. Otherwise, the system will tell the user “Sorry, i
can't help you. Please choose one of the corresponding patterns for this
exercise.” A page with available patterns for this exercise will be shown to the
user.

 If a pattern structure is found and some errors occur. That means that the user
knows the solution strategy but he can not remember how to construct this
strategy correctly. He can use more or less arguments, subgoals or clauses than
needed. Errors occur here reflect lack of the mastery of this strategy. Help on this
level can link to a page where the pattern for this exercise is described.

Following are the possible errors which will occur while pattern matching
process. Penalty for an error is defined based on the the level of matching:
errors occur on clause level will get a penalty of 20 points, on the subgoal level 15
points and on the argument level 10 points.

Penalty range [1..5] is used for constraints.

Penalty on the IDS level is only used for internal searching process. Penalty
on the feedback level is used as a priority to correct the errors.

Errors while matching:

Error Penalty

Ids

Penalty

Feedback

Error description

match_bags/ match_clause/
superfluous/ missing 20 20

One or more clauses are
missing or superfluous

match_bags/ match_term/
superfluous/ missing 10 15

One or more subgoals are
missing or superfluous

match_arg, unmatchable

5 10

An argument of the student
solution and an argument of
the pattern can not be
matched.

superfluous_list_element
(match_list_struct) 5 10

One or more arguments are
superfluous.

missing_list_element
(match_list_struct) 5 10

One or more arguments are
expected.

Errors while typifying:

Error Penalty

Ids

Penalty

Feedback

Error description

misspelled_predicate
(Functor1,Functor)

5 15

There are predefined predicates:
append, member, not,=,\=. If in
any predicate definition uses
theses predefined predicates
misspelt, this kind of error will be
found and suggests a correct
predefined prediacte name.

unknown_predicate
(Functor)

30 15

The predicate which is used for
another predicate definition is
unknown.

conflicting_type
(Varname,Type) 5 10

A variable has two different
types.

must_be_number(Var)
5 10

The found argument must have
type of number

no_arithmetic_function
(X)

5 15

The term X is expected to be an
arithmetic term but X does not
unifies with any
current_arithmetic_function.

match_lists/typify_var/typ
e_expected 10 10

Error Penalty

Ids

Penalty

Feedback

Error description

lists_do_not_match
30 15

The argument list does not match
a given type list.

forgotten_list_element

5 10

The argument list can match a
given type list but one or more
arguments are expected.

misplaced_list_element

5 10

The argument list can match a
given type list but two arguments
are misplaced

superfluous_list_element

10 10

The argument list can match a
given type list but one or more
arguments are superfluous

2. Pattern constraint checking
A pattern is found. There are pattern specific constraints which will be
evaluated. Every constraint has its penalty. The pattern which has the least
penalty sum is the most candidate for the corresponding student solution.

Constraint checking may produce errors of the following form:

Error=idiom-error([Pos1], Term, ErrorExplanation, Penalty),
Error=idiom-error([Pos1,Pos2], Term, ErrorExplanation, Penalty)

Errors of this form supply information about location, type, explanation and
penalty points of error which will be used in FeedbackHandler component.

II.Diagnose_rec

the first step of diagnose is checking the input of student on the syntax level.
This is done by using the Prolog compiler (consumeAtom_rec, atom_to_term).

If the input is not syntax conform, then the diagnose process will be stopped and
returns the syntax errors to the user.

A syntax error returned from the compiler has following form:

error(syntax_error(operator_expected), string("deleteall([H|T],A,Result):-
H=>A,deleteall(T,A,Result) . ", 28))

If the input is syntax conform the diagnose continues with looking for the best
pattern.
After the best pattern has been found. A list of errors from matching and
constraint analyzing process will be collected.

Errors from the matching process will be converted to matching_errors.

Error matching_error Penalty

match_bags/
match_clause/ missing

matching_error(Position,
missing_basecase(Clause)) 20

match_bags/
match_clause/ missing

matching_error(Position,
missing_recursivecase(Clause)) 20

match_bags/
match_clause/superfluous

matching_error(Position,
superfluous_basecase(Clause)) 20

match_bags/
match_clause/ superfluous

matching_error(Position,
superfluous_recursivecase(Clause)) 20

missing_list_element
(match_list_struct)

matching_error(Position, missing_arg
(Arg)) 10

superfluous_list_element
(match_list_struct)

matching_error(Position, superfluous_arg
(Arg)) 10

match_bags/ match_term/
missing

matching_error(Position, missing_subgoal
(X)) 15

match_bags/
match_term/superfluous

matching_error(Position,
superfluous_subgoal(X)) 15

match_arg, unmatchable matching_error(Position, arg_unmatchable
(Arg1,Arg2)) 10

use_X_not_Y
(RealFunctor,Functor)

matching_error(Position,
wrong_right_func(Wrong,Right)) 10

misspelled_predicate
(Functor1,Functor)

matching_error(Position,
misspelled_predicate(Wrong, Right)) 15

unknown_predicate
(Functor)

matching_error(Position,
unknown_predicate(Functor)) 15

conflicting_type
(Varname,Type)

matching_error(Position,conflicting_type
(Varname,Type)) 10

must_be_number(Var) matching_error(Position, must_be_number
(Var)) 10

no_arithmetic_function(X) matching_error(Position,
no_arithmetic_function(X)) 15

lists_do_not_match,
forgotten_list_element,
misplaced_list_element,
superfluous_list_element
match_lists/typify_var/typ
e_expected

matching_error(Position,
general_type_error)

10

Examples of wrong codes and their explanation:
Code Error Explanation

no_doubles([X|Xs],[X|Ys]):- not
(member(X,3)), no_doubles
(Xs,Ys).

matching_error([1,1,1,2],
misplaced_argument_type
(1,X,2,lst(number))

X is guessed to be
of type list, so it
should be member
(3,X)

no_doubles([X|Xs],[X|Ys]):- not
(member(X,3,Xs)), no_doubles
(Xs,Ys).

matching_error([1,1,2],
arg_unmatchable(member
(X,3,Xs),op2(V9,V10)),10),

Member has two
much arguments

no_doubles([X|Xs],Ys):- ember
(X,Xs), no_doubles(Xs,Ys).

matching_error([1,3],
misspelled_predicate
(ember,member),15)

Ember (X,Xs) is
misspelled. It
should be member

no_doubles([X|Xs],[X|Ys]):- not
(member(X,Xs)), no_doubles
(Xs,Ys,5).

matching_error([3,2,2],
superfluous_argument_ty
pe(3,5)

The argument 5 is
superfluous in
no_doubles

no_doubles([X|Xs]):- ember(X,Xs),
no_doubles(Xs,Ys).

matching_error([0,3],
missing_arg(V17),10)

no_doubles has one
argument. One
argument is
missing.

