Because Size Does Matter: The Hamburg Dependency Treebank

Kilian A. Foth, Arne Köhn, Niels Beuck, Wolfgang Menzel
foth, koehn, beuck, menzel}@informatik.uni-hamburg.de

HDT in a nutshell
- **Source**: IT-news articles from 1996 to 2001 (heise.de)
- **Largest dependency treebank** available
- Twice as large as the Princeton Treebank
- Three times as large as the TIGER treebank and the PTB2
- **Free for scientific/academic use**
- ~261,000 German sentences with syntax annotation
- ~4 million hand-annotated tokens
- In development since 2001
- **Genuine dependency annotation**, i.e. not converted from phrase structure
- **Three classes of annotation**:
 - 102k sentences manually annotated and cross-checked (A)
 - 105k sentences manually annotated (B)
 - 55k sentences automatically parsed (C)

The Annotation Scheme
Target: provide **robust coverage** of phenomena that occur repeatedly in normal written text, reflect the limit of the disambiguating decisions **syntax-based dependency parsers** can reasonably make.

- **PoS annotated** using the Stuttgart-Tübingen TagSet
- 34 dependency labels on the syntax level
- One level for pronouns attached to their antecedent
- **Morphological information**
 - Case
 - Gender
 - Number
 - Etc.

Parser evaluation
What effect does data **quality** and **quantity** have on parsing performance?

- **No big difference between A and B subcorpus**
- Parsers differ in their ability to profit from additional data
 - **More training data** is clearly beneficial
- High parsing accuracies suggest low noise in annotation

The Annotation Process
Main goal: a Weighted Constraint Dependency Grammar for German.
We took an iterative approach:

- Parse sentences
- Correct annotations
- Adjust grammar
-Parsed sentences are inspected & annotations corrected
- WCDG is adapted to favor the corrected analysis
- Parsing continues with the adapted WCDG
- Regularly re-parse old sentences to make sure that no errors are introduced into the WCDG
Result: A grammar and an annotated corpus (the HDT)

Quality Assurance
- **Part A** was cross-checked with the DECCA toolkit (Boy et al., 2008)
 - Checks for consistency of PoS tags and dependency labels
 - Highlights different annotations in similar context
 - 8495 word pairs pointed out
 - In 1931 of them at least one occurrence was indeed erroneous
 - Resulting precision of the automatic consistency check: 22.7%
 - Checking with DECCA led to adjustments of 4% of the sentences

Statistics
- **Average sentence length**: 18.4 tokens
- 130,933 different word forms
- 77,397 of them appear only once (e.g. 3,5-ZOLL-Wechselplatte, 3.5 inch removable hard disk drive)
- 12.52% non-projective, 10.89% non-planar, 0.5% ill-nested
- Dependency label highly correlated with PoS of head & dependent
 - can be guessed with an accuracy of 91% from that alone
 - Prediction of head PoS with dependent PoS: 49% accuracy

Tools
- Transformation to CoNNL-X format
- Statistics generation scripts
- Web-based corpus search with WCDG constraints
- SVG generator for “real” trees

Get the HDT at http://nats-www.informatik.uni-hamburg.de/HDT/