
Chapter 13:

Reasoning about Individuals and Relations

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 1

Individuals and Relations

It is useful to view the world as consisting of individuals
(objects, things) and relations among individuals.

Often features are made from relations among individuals and
functions of individuals.

Reasoning in terms of individuals and relationships can be
simpler than reasoning in terms of features, if we can express
general knowledge that covers all individuals.

Sometimes we may know some individual exists, but not
which one.

Sometimes there are infinitely many individuals we want to
refer to (e.g., set of all integers, or the set of all stacks of
blocks).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 2

Role of Semantics in Automated Reasoning

in(kim,cs_building)

in(kim,r123).
part_of(r123,cs_building).
in(X,Y) ←
 part_of(Z,Y) ∧
 in(X,Z).

kim
r123
r023

cs_building
in(,)

part_of(,)
person()

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 3

Features of Automated Reasoning

Users can have meanings for symbols in their head.

The computer doesn’t need to know these meanings to derive
logical consequence.

Users can interpret any answers according to their meaning.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 4

Automated Reasoning

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 5

Representational Assumptions of Datalog

An agent’s knowledge can be usefully described in terms of
individuals and relations among individuals.

An agent’s knowledge base consists of definite and positive
statements.

The environment is static.

There are only a finite number of individuals of interest in the
domain. Each individual can be given a unique name.

=⇒ Datalog

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 6

Syntax of Datalog

A variable starts with upper-case letter.

A constant starts with lower-case letter or is a sequence of
digits (numeral).

A predicate symbol starts with lower-case letter.

A term is either a variable or a constant.

An atomic symbol (atom) is of the form p or p(t1, . . . , tn)
where p is a predicate symbol and ti are terms.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 7

Syntax of Datalog (cont)

A definite clause is either an atomic symbol (a fact) or of
the form:

a︸︷︷︸ ← b1 ∧ · · · ∧ bm︸ ︷︷ ︸
head body

where a and bi are atomic symbols.

query is of the form ?b1 ∧ · · · ∧ bm.

knowledge base is a set of definite clauses.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 8

Example Knowledge Base

in(kim,R)←
teaches(kim, cs322) ∧
in(cs322,R).

grandfather(william,X)←
father(william,Y) ∧
parent(Y ,X).

slithy(toves)←
mimsy ∧ borogroves ∧
outgrabe(mome,Raths).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 9

Semantics: General Idea

A semantics specifies the meaning of sentences in the language.
An interpretation specifies:

what objects (individuals) are in the world

the correspondence between symbols in the computer and
objects & relations in world
I constants denote individuals
I predicate symbols denote relations

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 10

Formal Semantics

An interpretation is a triple I = 〈D, φ, π〉, where

D, the domain, is a nonempty set. Elements of D are

individuals.

φ is a mapping that assigns to each constant an element of
D. Constant c denotes individual φ(c).

π is a mapping that assigns to each n-ary predicate symbol a
relation: a function from Dn into {TRUE, FALSE}.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 11

Example Interpretation

Constants: phone, pencil , telephone.

Predicate Symbol: noisy (unary), left of (binary).

D = {",%,.}.
φ(phone) = %, φ(pencil) = ., φ(telephone) = %.

π(noisy): 〈"〉 FALSE 〈%〉 TRUE 〈.〉 FALSE

π(left of):
〈","〉 FALSE 〈",%〉 TRUE 〈",.〉 TRUE

〈%,"〉 FALSE 〈%,%〉 FALSE 〈%,.〉 TRUE

〈.,"〉 FALSE 〈.,%〉 FALSE 〈.,.〉 FALSE

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 12

Important points to note

The domain D can contain real objects. (e.g., a person, a
room, a course). D can’t necessarily be stored in a computer.

π(p) specifies whether the relation denoted by the n-ary
predicate symbol p is true or false for each n-tuple of
individuals.

If predicate symbol p has no arguments, then π(p) is either
TRUE or FALSE.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 13

Truth in an interpretation

A constant c denotes in I the individual φ(c).
Ground (variable-free) atom p(t1, . . . , tn) is

true in interpretation I if π(p)(〈φ(t1), . . . , φ(tn)〉) = TRUE in
interpretation I and

false otherwise.

Ground clause h← b1 ∧ . . . ∧ bm is false in interpretation I if h is

false in I and each bi is true in I , and is true in interpretation I
otherwise.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 14

Example Truths

In the interpretation given before, which of following are true?

noisy(phone)

true

noisy(telephone)

true

noisy(pencil)

false

left of (phone, pencil)

true

left of (phone, telephone)

false

noisy(phone)← left of (phone, telephone)

true

noisy(pencil)← left of (phone, telephone)

true

noisy(pencil)← left of (phone, pencil)

false

noisy(phone)← noisy(telephone) ∧ noisy(pencil)

true

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 15

Example Truths

In the interpretation given before, which of following are true?

noisy(phone) true
noisy(telephone) true
noisy(pencil) false
left of (phone, pencil) true
left of (phone, telephone) false
noisy(phone)← left of (phone, telephone) true
noisy(pencil)← left of (phone, telephone) true
noisy(pencil)← left of (phone, pencil) false
noisy(phone)← noisy(telephone) ∧ noisy(pencil) true

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 16

Models and logical consequences (recall)

A knowledge base, KB, is true in interpretation I if and only if
every clause in KB is true in I .

A model of a set of clauses is an interpretation in which all
the clauses are true.

If KB is a set of clauses and g is a conjunction of atoms, g is
a logical consequence of KB, written KB |= g , if g is true
in every model of KB.

That is, KB |= g if there is no interpretation in which KB is
true and g is false.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 17

User’s view of Semantics

1. Choose a task domain: intended interpretation.

2. Associate constants with individuals you want to name.

3. For each relation you want to represent, associate a predicate
symbol in the language.

4. Tell the system clauses that are true in the intended
interpretation: axiomatizing the domain.

5. Ask questions about the intended interpretation.

6. If KB |= g , then g must be true in the intended interpretation.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 18

Computer’s view of semantics

The computer doesn’t have access to the intended
interpretation.

All it knows is the knowledge base.

The computer can determine if a formula is a logical
consequence of KB.

If KB |= g then g must be true in the intended interpretation.

If KB 6|= g then there is a model of KB in which g is false.
This could be the intended interpretation.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 19

Role of Semantics in an RRS

in(kim,cs_building)

in(kim,r123).
part_of(r123,cs_building).
in(X,Y) ←
 part_of(Z,Y) ∧
 in(X,Z).

kim
r123
r023

cs_building
in(,)

part_of(,)
person()

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 20

Variables

Variables are universally quantified in the scope of a clause.

A variable assignment is a function from variables into the
domain.

Given an interpretation and a variable assignment,
each term denotes an individual and
each clause is either true or false.

A clause containing variables is true in an interpretation if it is
true for all variable assignments.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 21

Queries and Answers

A query is a way to ask if a body is a logical consequence of the
knowledge base:

?b1 ∧ · · · ∧ bm.

An answer is either

an instance of the query that is a logical consequence of the
knowledge base KB, or

no if no instance is a logical consequence of KB.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 22

Example Queries

KB =

in(kim, r123).
part of (r123, cs building).
in(X ,Y)← part of (Z ,Y) ∧ in(X ,Z).

Query Answer

?part of (r123,B).

part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023). no
?in(kim,B). in(kim, r123)

in(kim, cs building)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 23

Example Queries

KB =

in(kim, r123).
part of (r123, cs building).
in(X ,Y)← part of (Z ,Y) ∧ in(X ,Z).

Query Answer

?part of (r123,B). part of (r123, cs building)
?part of (r023, cs building).

no
?in(kim, r023). no
?in(kim,B). in(kim, r123)

in(kim, cs building)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 24

Example Queries

KB =

in(kim, r123).
part of (r123, cs building).
in(X ,Y)← part of (Z ,Y) ∧ in(X ,Z).

Query Answer

?part of (r123,B). part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023).

no
?in(kim,B). in(kim, r123)

in(kim, cs building)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 25

Example Queries

KB =

in(kim, r123).
part of (r123, cs building).
in(X ,Y)← part of (Z ,Y) ∧ in(X ,Z).

Query Answer

?part of (r123,B). part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023). no
?in(kim,B).

in(kim, r123)
in(kim, cs building)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 26

Example Queries

KB =

in(kim, r123).
part of (r123, cs building).
in(X ,Y)← part of (Z ,Y) ∧ in(X ,Z).

Query Answer

?part of (r123,B). part of (r123, cs building)
?part of (r023, cs building). no
?in(kim, r023). no
?in(kim,B). in(kim, r123)

in(kim, cs building)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 27

Logical Consequence

Atom g is a logical consequence of KB if and only if:

g is a fact in KB, or

there is a rule
g ← b1 ∧ . . . ∧ bk

in KB such that each bi is a logical consequence of KB.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 28

Debugging false conclusions

To debug answer g that is false in the intended interpretation:

If g is a fact in KB, this fact is wrong.

Otherwise, suppose g was proved using the rule:

g ← b1 ∧ . . . ∧ bk

where each bi is a logical consequence of KB.
I If each bi is true in the intended interpretation, this clause is

false in the intended interpretation.
I If some bi is false in the intended interpretation, debug bi .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 29

Electrical Environment

light

two-way
switch

switch
off

on

power
outlet

circuit breaker

outside power
cb1

s1

w1
s2 w2

w0

l1

w3
s3

w4

l2
p1

w5

cb2

w6

p2

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 30

Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒

yes
?light(l6). =⇒ no
?up(X). =⇒ up(s2), up(s3)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 31

Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒ yes
?light(l6). =⇒

no
?up(X). =⇒ up(s2), up(s3)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 32

Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒ yes
?light(l6). =⇒ no
?up(X). =⇒

up(s2), up(s3)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 33

Axiomatizing the Electrical Environment

% light(L) is true if L is a light
light(l1). light(l2).
% down(S) is true if switch S is down
down(s1). up(s2). up(s3).
% ok(D) is true if D is not broken
ok(l1). ok(l2). ok(cb1). ok(cb2).

?light(l1). =⇒ yes
?light(l6). =⇒ no
?up(X). =⇒ up(s2), up(s3)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 34

connected to(X ,Y) is true if component X is connected to Y

connected to(w0,w1)← up(s2).

connected to(w0,w2)← down(s2).

connected to(w1,w3)← up(s1).

connected to(w2,w3)← down(s1).

connected to(w4,w3)← up(s3).

connected to(p1,w3).

?connected to(w0,W). =⇒

W = w1

?connected to(w1,W). =⇒ no
?connected to(Y ,w3). =⇒ Y = w2, Y = w4, Y = p1

?connected to(X ,W). =⇒ X = w0,W = w1, . . .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 35

connected to(X ,Y) is true if component X is connected to Y

connected to(w0,w1)← up(s2).

connected to(w0,w2)← down(s2).

connected to(w1,w3)← up(s1).

connected to(w2,w3)← down(s1).

connected to(w4,w3)← up(s3).

connected to(p1,w3).

?connected to(w0,W). =⇒ W = w1

?connected to(w1,W). =⇒

no
?connected to(Y ,w3). =⇒ Y = w2, Y = w4, Y = p1

?connected to(X ,W). =⇒ X = w0,W = w1, . . .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 36

connected to(X ,Y) is true if component X is connected to Y

connected to(w0,w1)← up(s2).

connected to(w0,w2)← down(s2).

connected to(w1,w3)← up(s1).

connected to(w2,w3)← down(s1).

connected to(w4,w3)← up(s3).

connected to(p1,w3).

?connected to(w0,W). =⇒ W = w1

?connected to(w1,W). =⇒ no
?connected to(Y ,w3). =⇒

Y = w2, Y = w4, Y = p1

?connected to(X ,W). =⇒ X = w0,W = w1, . . .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 37

connected to(X ,Y) is true if component X is connected to Y

connected to(w0,w1)← up(s2).

connected to(w0,w2)← down(s2).

connected to(w1,w3)← up(s1).

connected to(w2,w3)← down(s1).

connected to(w4,w3)← up(s3).

connected to(p1,w3).

?connected to(w0,W). =⇒ W = w1

?connected to(w1,W). =⇒ no
?connected to(Y ,w3). =⇒ Y = w2, Y = w4, Y = p1

?connected to(X ,W). =⇒

X = w0,W = w1, . . .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 38

connected to(X ,Y) is true if component X is connected to Y

connected to(w0,w1)← up(s2).

connected to(w0,w2)← down(s2).

connected to(w1,w3)← up(s1).

connected to(w2,w3)← down(s1).

connected to(w4,w3)← up(s3).

connected to(p1,w3).

?connected to(w0,W). =⇒ W = w1

?connected to(w1,W). =⇒ no
?connected to(Y ,w3). =⇒ Y = w2, Y = w4, Y = p1

?connected to(X ,W). =⇒ X = w0,W = w1, . . .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 39

% lit(L) is true if the light L is lit

lit(L)← light(L) ∧ ok(L) ∧ live(L).

% live(C) is true if there is power coming into C

live(Y)←
connected to(Y ,Z) ∧
live(Z).

live(outside).

This is a recursive definition of live.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 40

Recursion and Mathematical Induction

above(X ,Y)← on(X ,Y).

above(X ,Y)← on(X ,Z) ∧ above(Z ,Y).

This can be seen as:

Recursive definition of above: prove above in terms of a base
case (on) or a simpler instance of itself; or

Way to prove above by mathematical induction: the base case
is when there are no blocks between X and Y , and if you can
prove above when there are n blocks between them, you can
prove it when there are n + 1 blocks.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 41

Limitations

Suppose you had a database using the relation:

enrolled(S ,C)

which is true when student S is enrolled in course C .
You can’t define the relation:

empty course(C)

which is true when course C has no students enrolled in it.
This is because empty course(C) doesn’t logically follow from a
set of enrolled relations. There are always models where someone
is enrolled in a course!

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 42

Reasoning with Variables

An instance of an atom or a clause is obtained by uniformly
substituting terms for variables.

A substitution is a finite set of the form {V1/t1, . . . ,Vn/tn},
where each Vi is a distinct variable and each ti is a term.

The application of a substitution σ = {V1/t1, . . . ,Vn/tn} to
an atom or clause e, written eσ, is the instance of e with
every occurrence of Vi replaced by ti .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 43

Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

What’s the result of the following applications?

p(A, b,C ,D)σ1 =

p(A, b,C , e)
p(X ,Y ,Z , e)σ1 = p(A, b,C , e)
p(A, b,C ,D)σ2 = p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)
p(A, b,C ,D)σ3 = p(V , b,W , e)
p(X ,Y ,Z , e)σ3 = p(V , b,W , e)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 44

Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

What’s the result of the following applications?

p(A, b,C ,D)σ1 = p(A, b,C , e)
p(X ,Y ,Z , e)σ1 =

p(A, b,C , e)
p(A, b,C ,D)σ2 = p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)
p(A, b,C ,D)σ3 = p(V , b,W , e)
p(X ,Y ,Z , e)σ3 = p(V , b,W , e)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 45

Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

What’s the result of the following applications?

p(A, b,C ,D)σ1 = p(A, b,C , e)
p(X ,Y ,Z , e)σ1 = p(A, b,C , e)
p(A, b,C ,D)σ2 =

p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)
p(A, b,C ,D)σ3 = p(V , b,W , e)
p(X ,Y ,Z , e)σ3 = p(V , b,W , e)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 46

Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

What’s the result of the following applications?

p(A, b,C ,D)σ1 = p(A, b,C , e)
p(X ,Y ,Z , e)σ1 = p(A, b,C , e)
p(A, b,C ,D)σ2 = p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 =

p(X , b,Z , e)
p(A, b,C ,D)σ3 = p(V , b,W , e)
p(X ,Y ,Z , e)σ3 = p(V , b,W , e)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 47

Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

What’s the result of the following applications?

p(A, b,C ,D)σ1 = p(A, b,C , e)
p(X ,Y ,Z , e)σ1 = p(A, b,C , e)
p(A, b,C ,D)σ2 = p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)
p(A, b,C ,D)σ3 =

p(V , b,W , e)
p(X ,Y ,Z , e)σ3 = p(V , b,W , e)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 48

Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

What’s the result of the following applications?

p(A, b,C ,D)σ1 = p(A, b,C , e)
p(X ,Y ,Z , e)σ1 = p(A, b,C , e)
p(A, b,C ,D)σ2 = p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)
p(A, b,C ,D)σ3 = p(V , b,W , e)
p(X ,Y ,Z , e)σ3 =

p(V , b,W , e)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 49

Application Examples

The following are substitutions:

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {A/X ,Y /b,C/Z ,D/e}
σ3 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}

What’s the result of the following applications?

p(A, b,C ,D)σ1 = p(A, b,C , e)
p(X ,Y ,Z , e)σ1 = p(A, b,C , e)
p(A, b,C ,D)σ2 = p(X , b,Z , e)
p(X ,Y ,Z , e)σ2 = p(X , b,Z , e)
p(A, b,C ,D)σ3 = p(V , b,W , e)
p(X ,Y ,Z , e)σ3 = p(V , b,W , e)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 50

Unifiers

Substitution σ is a unifier of e1 and e2 if e1σ = e2σ.

Two expressions can have many different unifiers.

Expression e1 is a renaming of e2 if they differ only in the
names of variables. They are both instances of each other.

Substitution σ is a most general unifier (mgu) of e1 and e2 if
I σ is a unifier of e1 and e2; and
I if substitution σ′ also unifies e1 and e2, then eσ′ is an instance

of eσ for all atoms e.

If two atoms have a unifier, they have a most general unifier.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 51

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e}
σ2 = {Y /b,D/e}
σ3 = {X/A,Y /b,Z/C ,D/e,W /a}
σ4 = {A/X ,Y /b,C/Z ,D/e}
σ5 = {X/a,Y /b,Z/c ,D/e}
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 52

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e}
σ3 = {X/A,Y /b,Z/C ,D/e,W /a}
σ4 = {A/X ,Y /b,C/Z ,D/e}
σ5 = {X/a,Y /b,Z/c ,D/e}
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 53

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e} no unifier
σ3 = {X/A,Y /b,Z/C ,D/e,W /a}
σ4 = {A/X ,Y /b,C/Z ,D/e}
σ5 = {X/a,Y /b,Z/c ,D/e}
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 54

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e} no unifier
σ3 = {X/A,Y /b,Z/C ,D/e,W /a} unifier
σ4 = {A/X ,Y /b,C/Z ,D/e}
σ5 = {X/a,Y /b,Z/c ,D/e}
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 55

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e} no unifier
σ3 = {X/A,Y /b,Z/C ,D/e,W /a} unifier
σ4 = {A/X ,Y /b,C/Z ,D/e} most general unifier
σ5 = {X/a,Y /b,Z/c ,D/e}
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 56

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e} no unifier
σ3 = {X/A,Y /b,Z/C ,D/e,W /a} unifier
σ4 = {A/X ,Y /b,C/Z ,D/e} most general unifier
σ5 = {X/a,Y /b,Z/c ,D/e} no unifier
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e}
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 57

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e} no unifier
σ3 = {X/A,Y /b,Z/C ,D/e,W /a} unifier
σ4 = {A/X ,Y /b,C/Z ,D/e} most general unifier
σ5 = {X/a,Y /b,Z/c ,D/e} no unifier
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e} unifier
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e}
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 58

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e} no unifier
σ3 = {X/A,Y /b,Z/C ,D/e,W /a} unifier
σ4 = {A/X ,Y /b,C/Z ,D/e} most general unifier
σ5 = {X/a,Y /b,Z/c ,D/e} no unifier
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e} unifier
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e} most general unifier
σ8 = {X/A,Y /b,Z/A,C/A,D/e}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 59

Unification Example

Which of the following are unifiers of p(A, b,C ,D) and
p(X ,Y ,Z , e)? Which of them are most general unifiers?

σ1 = {X/A,Y /b,Z/C ,D/e} most general unifier
σ2 = {Y /b,D/e} no unifier
σ3 = {X/A,Y /b,Z/C ,D/e,W /a} unifier
σ4 = {A/X ,Y /b,C/Z ,D/e} most general unifier
σ5 = {X/a,Y /b,Z/c ,D/e} no unifier
σ6 = {A/a,X/a,Y /b,C/c ,Z/c ,D/e} unifier
σ7 = {A/V ,X/V ,Y /b,C/W ,Z/W ,D/e} most general unifier
σ8 = {X/A,Y /b,Z/A,C/A,D/e} unifier

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 60

Proofs

A proof is a mechanically derivable demonstration that a
formula logically follows from a knowledge base.

Given a proof procedure, KB ` g means g can be derived
from knowledge base KB.

Recall KB |= g means g is true in all models of KB.

A proof procedure is sound if KB ` g implies KB |= g .

A proof procedure is complete if KB |= g implies KB ` g .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 61

Bottom-up proof procedure

KB ` g if there is g ′ added to C in this procedure where g = g ′θ:

C := {};
repeat

select clause “h← b1 ∧ . . . ∧ bm” in KB such that
there is a substitution θ such that
for all i , there exists b′i ∈ C where biθ = b′iθ and
there is no h′ ∈ C such that h′ is more general than hθ

C := C ∪ {hθ}
until no more clauses can be selected.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 62

Example

live(Y)← connected to(Y ,Z) ∧ live(Z).

live(outside).

connected to(w5, outside),

connected to(w6,w5).

C = {live(outside),

connected to(w6,w5),

connected to(w5, outside),

live(w5),

live(w6)}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 63

Example

live(Y)← connected to(Y ,Z) ∧ live(Z).

live(outside).

connected to(w5, outside),

connected to(w6,w5).

C = {live(outside),

connected to(w6,w5),

connected to(w5, outside),

live(w5),

live(w6)}

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 64

Soundness of bottom-up proof procedure

If KB ` g then KB |= g .

Suppose there is a g such that KB ` g and KB 6|= g .

Then there must be a first atom added to C that has an
instance that isn’t true in every model of KB. Call it h.
Suppose h isn’t true in model I of KB.

There must be a clause in KB of form

h′ ← b1 ∧ . . . ∧ bm

where h = h′θ. Each bi is true in I . h is false in I . So this
clause is false in I . Therefore I isn’t a model of KB.

Contradiction.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 65

Fixed Point

The C generated by the bottom-up algorithm is called a
fixed point.

C can be infinite; we require the selection to be fair.

Herbrand interpretation: The domain is the set of constants.
We invent one if the KB or query doesn’t contain one.
Each constant denotes itself.

Let I be the Herbrand interpretation in which every ground
instance of every element of the fixed point is true and every
other atom is false.

I is a model of KB.
Proof: suppose h← b1 ∧ . . . ∧ bm in KB is false in I . Then h
is false and each bi is true in I . Thus h can be added to C .
Contradiction to C being the fixed point.

I is called a Minimal Model.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 66

Completeness

If KB |= g then KB ` g .

Suppose KB |= g . Then g is true in all models of KB.

Thus g is true in the minimal model.

Thus g is in the fixed point.

Thus g is generated by the bottom up algorithm.

Thus KB ` g .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 67

Top-down Proof procedure

A generalized answer clause is of the form

yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am,

where t1, . . . , tk are terms and a1, . . . , am are atoms.

The SLD resolution of this generalized answer clause on ai
with the clause

a← b1 ∧ . . . ∧ bp,

where ai and a have most general unifier θ, is

(yes(t1, . . . , tk)←
a1∧ . . .∧ai−1 ∧ b1∧ . . .∧bp ∧ ai+1∧ . . .∧am)θ.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 68

To solve query ?B with variables V1, . . . ,Vk :

Set ac to generalized answer clause yes(V1, . . . ,Vk)← B;
While ac is not an answer do

Suppose ac is yes(t1, . . . , tk)← a1 ∧ a2 ∧ . . . ∧ am
Select atom ai in the body of ac;
Choose clause a← b1 ∧ . . . ∧ bp in KB;
Rename all variables in a← b1 ∧ . . . ∧ bp;
Let θ be the most general unifier of ai and a.

Fail if they don’t unify;
Set ac to (yes(t1, . . . , tk)← a1 ∧ . . . ∧ ai−1∧

b1 ∧ . . . ∧ bp ∧ ai+1 ∧ . . . ∧ am)θ
end while.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 69

Example

live(Y)← connected to(Y ,Z) ∧ live(Z).

live(outside).

connected to(w6,w5).

connected to(w5, outside).

?live(A).

yes(A)← live(A).

yes(A)← connected to(A,Z1) ∧ live(Z1).

yes(w6)← live(w5).

yes(w6)← connected to(w5,Z2) ∧ live(Z2).

yes(w6)← live(outside).

yes(w6)← .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 70

Example

live(Y)← connected to(Y ,Z) ∧ live(Z).

live(outside).

connected to(w6,w5).

connected to(w5, outside).

?live(A).

yes(A)← live(A).

yes(A)← connected to(A,Z1) ∧ live(Z1).

yes(w6)← live(w5).

yes(w6)← connected to(w5,Z2) ∧ live(Z2).

yes(w6)← live(outside).

yes(w6)← .

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 71

Function Symbols

Often we want to refer to individuals in terms of components.

Examples: 4:55 p.m. English sentences. A classlist.

We extend the notion of term . So that a term can be

f (t1, . . . , tn) where f is a function symbol and the ti are
terms.

In an interpretation and with a variable assignment, term
f (t1, . . . , tn) denotes an individual in the domain.

One function symbol and one constant can refer to infinitely
many individuals.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 72

Lists

A list is an ordered sequence of elements.

Let’s use the constant nil to denote the empty list, and the

function cons(H,T) to denote the list with first element H

and rest-of-list T . These are not built-in.

The list containing sue, kim and randy is

cons(sue, cons(kim, cons(randy , nil)))

append(X ,Y ,Z) is true if list Z contains the elements of X
followed by the elements of Y

append(nil ,Z ,Z).

append(cons(A,X),Y , cons(A,Z)) ←
append(X ,Y ,Z).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 73

Natural Language Understanding

We want to communicate with computers using natural
language (spoken and written).
I unstructured natural language — allow any statements, but

make mistakes or failure.
I controlled natural language — only allow unambiguous

statements that can be interpreted (e.g., in supermarkets or for
doctors).

There is a vast amount of information in natural language.

Understanding language to extract information or answering
questions is more difficult than getting extracting gestalt
properties such as topic, or choosing a help page.

Many of the problems of AI are explicit in natural language
understanding. “AI complete”.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 74

Syntax, Semantics, Pragmatics

Syntax describes the form of language (using a grammar).

Semantics provides the meaning of language.

Pragmatics explains the purpose or the use of language
(how utterances relate to the world).

Examples:

This lecture is about natural language.

The green frogs sleep soundly.

Colorless green ideas sleep furiously.

Furiously sleep ideas green colorless.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 75

Beyond N-grams

A man with a big hairy cat drank the cold milk.

Who or what drank the milk?

Simple syntax diagram:

s

np vp

pp

np

npa man

with

a big hairy cat

drank

the cold milk

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 76

Beyond N-grams

A man with a big hairy cat drank the cold milk.

Who or what drank the milk?

Simple syntax diagram:

s

np vp

pp

np

npa man

with

a big hairy cat

drank

the cold milk

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 77

Context-free grammar

A terminal symbol is a word (perhaps including punctuation).

A non-terminal symbol can be rewritten as a sequence of
terminal and non-terminal symbols, e.g.,

sentence 7−→ noun phrase, verb phrase

verb phrase 7−→ verb, noun phrase

verb 7−→ [drank]

Can be written as a logic program, where a sentence is a
sequence of words:

sentence(S)← noun phrase(N), verb phrase(V), append(N,V ,S).

To say word “drank” is a verb:

verb([drank]).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 78

Difference Lists

Non-terminal symbol s becomes a predicate with two
arguments, s(T1,T2), meaning:
I T2 is an ending of the list T1

I all of the words in T1 before T2 form a sequence of words of
the category s.

Lists T1 and T2 together form a difference list .

“the student” is a noun phrase:

noun phrase([the, student, passed , the, course],

[passed , the, course])

The word “drank” is a verb:

verb([drank|W],W).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 79

Difference Lists

Non-terminal symbol s becomes a predicate with two
arguments, s(T1,T2), meaning:
I T2 is an ending of the list T1

I all of the words in T1 before T2 form a sequence of words of
the category s.

Lists T1 and T2 together form a difference list .

“the student” is a noun phrase:

noun phrase([the, student, passed , the, course],

[passed , the, course])

The word “drank” is a verb:

verb([drank|W],W).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 80

Definite clause grammar

The grammar rule

sentence 7−→ noun phrase, verb phrase

means that there is a sentence between T0 and T2 if there is a
noun phrase between T0 and T1 and a verb phrase between T1

and T2:

sentence(T0,T2)←
noun phrase(T0,T1) ∧
verb phrase(T1,T2).

sentence︷ ︸︸ ︷
T0︸ ︷︷ ︸

noun phrase

T1︸ ︷︷ ︸
verb phrase

T2

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 81

Definite clause grammar rules

The rewriting rule

h 7−→ b1, b2, . . . , bn

says that h is b1 then b2, . . . , then bn:

h(T0,Tn)←
b1(T0,T1) ∧
b2(T1,T2) ∧
...

bn(Tn−1,Tn).

using the interpretation

h︷ ︸︸ ︷
T0︸ ︷︷ ︸

b1

T1︸ ︷︷ ︸
b2

T2 · · ·Tn−1︸ ︷︷ ︸
bn

Tn

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 82

Terminal Symbols

Non-terminal h gets mapped to the terminal symbols, t1, ..., tn:

h([t1, · · · , tn|T],T)

using the interpretation

h︷ ︸︸ ︷
t1, · · · , tn T

Thus, h(T1,T2) is true if T1 = [t1, ..., tn|T2].

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 83

Complete Context Free Grammar Example

see
http://artint.info/code/Prolog/ch12/cfg_simple.pl

What will the following query return?

noun phrase([the, student, passed , the, course,with, a, computer],R).

How many answers does the following query have?

sentence([the, student, passed , the, course,with, a, computer],R).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 84

http://artint.info/code/Prolog/ch12/cfg_simple.pl

Complete Context Free Grammar Example

see
http://artint.info/code/Prolog/ch12/cfg_simple.pl

What will the following query return?

noun phrase([the, student, passed , the, course,with, a, computer],R).

How many answers does the following query have?

sentence([the, student, passed , the, course,with, a, computer],R).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 85

http://artint.info/code/Prolog/ch12/cfg_simple.pl

Augmenting the Grammar

Two mechanisms can make the grammar more expressive:
extra arguments to the non-terminal symbols
arbitrary conditions on the rules.

We have a Turing-complete programming language at our disposal!

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 86

Building Structures for Non-terminals

Add an extra argument representing a parse tree:

sentence(T0,T2, s(NP,VP))←
noun phrase(T0,T1,NP) ∧
verb phrase(T1,T2,VP).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 87

Enforcing Constraints

Add an argument representing the number (singular or plural), as
well as the parse tree:

sentence(T0,T2,Num, s(NP,VP))←
noun phrase(T0,T1,Num,NP) ∧
verb phrase(T1,T2,Num,VP).

The parse tree can return the determiner (definite or indefinite),
number, modifiers (adjectives) and any prepositional phrase:

noun phrase(T ,T ,Num, no np).

noun phrase(T0,T4,Num, np(Det,Num,Mods,Noun,PP))←
det(T0,T1,Num,Det) ∧
modifiers(T1,T2,Mods) ∧
noun(T2,T3,Num,Noun) ∧
pp(T3,T4,PP).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 88

Complete Example

see
http://artint.info/code/Prolog/ch12/nl_numbera.pl

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 89

http://artint.info/code/Prolog/ch12/nl_numbera.pl

Question-answering

How can we get from natural language to a query or to logical
statements?

Goal: map natural language to a query that can be asked of a
knowledge base.

Add arguments representing the individual and the relations
about that individual. E.g.,

noun phrase(T0,T1,O,C0,C1)

means
I T0 − T1 is a difference list forming a noun phrase.
I The noun phrase refers to the individual O.
I C0 is list of previous relations.
I C1 is C0 together with the relations on individual O given by

the noun phrase.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 90

Example natural language to query

see
http://artint.info/code/Prolog/ch12/nl_interface.pl

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 91

http://artint.info/code/Prolog/ch12/nl_interface.pl

Context and world knowledge

The student took many courses. Two computer science
courses and one mathematics course were particularly dif-
ficult. The mathematics course. . .

Who was the captain of the Titanic?
Was she tall?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 92

Context and world knowledge

The student took many courses. Two computer science
courses and one mathematics course were particularly dif-
ficult. The mathematics course. . .

Who was the captain of the Titanic?
Was she tall?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 13, Page 93

