
Chapter 8:
Reasoning under Uncertainty
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“The mind is a neural computer, fitted by natural se-
lection with combinatorial algorithms for causal and
probabilistic reasoning about plants, animals, objects,
and people.

“In a universe with any regularities at all, deci-
sions informed about the past are better than deci-
sions made at random. That has always been true,
and we would expect organisms, especially informa-
vores such as humans, to have evolved acute intuitions
about probability. The founders of probability, like the
founders of logic, assumed they were just formalizing
common sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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Using Uncertain Knowledge

Agents don’t have complete knowledge about the world.

Agents need to make decisions based on their uncertainty.

It isn’t enough to assume what the world is like.
Example: wearing a seat belt.

An agent needs to reason about its uncertainty.
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Why Probability?

There is lots of uncertainty about the world, but agents
still need to act.

Predictions are needed to decide what to do:
I definitive predictions: you will be run over tomorrow
I point probabilities: probability you will be run over

tomorrow is 0.002
I probability ranges: you will be run over with probability

in range [0.001,0.34]

Acting is gambling: agents who don’t use probabilities
will lose to those who do — Dutch books.

Probabilities can be learned from data.
Bayes’ rule specifies how to combine data and prior
knowledge.
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Probability

Probability is an agent’s measure of belief in some
proposition — subjective probability.

An agent’s belief depends on its prior assumptions and
what the agent observes.
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Numerical Measures of Belief

Belief in proposition, f , can be measured in terms of a
number between 0 and 1 — this is the probability of f .
I The probability f is 0 means that f is believed to be

definitely false.
I The probability f is 1 means that f is believed to be

definitely true.

Using 0 and 1 is purely a convention.

f has a probability between 0 and 1, means the agent is
ignorant of its truth value.

Probability is a measure of an agent’s ignorance.

Probability is not a measure of degree of truth.
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Random Variables

A random variable is a term in a language that can take
one of a number of different values.

The range of a variable X , written range(X ), is the set
of values X can take.

A tuple of random variables 〈X1, . . . ,Xn〉 is a complex
random variable with range range(X1)× · · · × range(Xn).
Often the tuple is written as X1, . . . ,Xn.

Assignment X = x means variable X has value x .

A proposition is a Boolean formula made from
assignments of values to variables.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 7



Possible World Semantics

A possible world specifies an assignment of one value to
each random variable.

A random variable is a function from possible worlds into
the range of the random variable.

ω |= X = x
means variable X is assigned value x in world ω.

Logical connectives have their standard meaning:

ω |= α ∧ β if ω |= α and ω |= β

ω |= α ∨ β if ω |= α or ω |= β

ω |= ¬α if ω 6|= α

Let Ω be the set of all possible worlds.
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Semantics of Probability

For a finite number of possible worlds:

Define a nonnegative measure µ(ω) to each world ω
so that the measures of the possible worlds sum to 1.

The probability of proposition f is defined by:

P(f ) =
∑
ω|=f

µ(ω).
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Axioms of Probability: finite case

Three axioms define what follows from a set of probabilities:

Axiom 1 0 ≤ P(a) for any proposition a.

Axiom 2 P(true) = 1

Axiom 3 P(a ∨ b) = P(a) + P(b) if a and b cannot both
be true.

These axioms are sound and complete with respect to the
semantics.
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Consequences

1. Negation of a proposition: P(¬α) = 1− P(α).

The propositions α ∨ ¬α and ¬(α ∧ ¬α) are tautologies.
Therefore, P(α ∨ ¬α) = P(α) + P(¬α) = 1.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 11



Consequences

2. Logically equivalent propositions have the same
probability: α↔ β  P(α) = P(β).

If α↔ β, then α∨¬β is a tautology and P(α∨¬β) = 1.
α and ¬β are contradictory statements, so with Axiom 3

P(α ∨ ¬β) = P(α) + P(¬β) = 1

Since P(¬β) = 1− P(β) also

P(α) + 1− P(β) = 1,

and therefore P(α) = P(β).
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Consequences

3. Reasoning by cases: P(α) = P(α ∧ β) + P(α ∧ ¬β).

The propositions α↔ ((α ∧ β) ∨ (α ∧ ¬β)) and
¬((α ∧ β) ∧ (α ∧ ¬β)) are tautologies. Thus,

P(α) = P((α∧β)∨(α∧¬β)) = P(α∧β)+P(α∧¬β).

4. Reasoning by cases, generalized:

If V is a random variable with domain D, then, for all
propositions α,

P(α) =
∑
d∈D

P(α ∧ V = d).
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Consequences

5. Disjunction for non-exclusive propositions:

P(α ∨ β) = P(α) + P(β)− P(α ∧ β).

(α ∨ β)↔ ((α ∧ ¬β) ∨ β) is a tautology. Thus,

P(α ∨ β) = P((α ∧ ¬β) ∨ β) = P(α ∧ ¬β) + P(β).

With P(α ∧ ¬β) = P(α)− P(α ∧ β).

P(α ∨ β) = P(α)− P(α ∧ β) + P(β).
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Semantics of Probability: general case

In the general case, probability defines a measure on sets of
possible worlds. We define µ(S) for some sets S ⊆ Ω
satisfying:

µ(S) ≥ 0

µ(Ω) = 1

µ(S1 ∪ S2) = µ(S1) + µ(S2) if S1 ∩ S2 = {}.
Or sometimes σ-additivity:

µ(
⋃

i

Si ) =
∑

i

µ(Si ) if Si ∩ Sj = {} for i 6= j

Then P(α) = µ({ω|ω |= α}).
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Probability Distributions

A probability distribution on a random variable X is a
function range(X )→ [0, 1] such that

x 7→ P(X = x).

This is written as P(X ).

This also includes the case where we have tuples of
variables. E.g., P(X ,Y ,Z ) means P(〈X ,Y ,Z 〉).

When range(X ) is infinite sometimes we need a
probability density function...
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Conditioning

Probabilistic conditioning specifies how to revise beliefs
based on new information.

An agent builds a probabilistic model taking all
background information into account. This gives the
prior probability.

All other information must be conditioned on.

If evidence e is all the information obtained
subsequently, the conditional probability P(h|e) of h

given e is the posterior probability of h.
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.

Evidence e induces a new measure, µe , over possible
worlds

µe(S) =

{
c × µ(S) if ω |= e for all ω ∈ S
0 if ω 6|= e for some ω ∈ S

We can show that c = 1
P(e)

.

The conditional probability of formula h given evidence e
is

P(h|e) = µe({ω : ω |= h})

=

P(h ∧ e)

P(e)
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Conditioning

Possible Worlds:

Observe Color = orange:
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Conditioning

Possible Worlds:

Observe Color = orange:
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Exercise

Flu Sneeze Snore µ
true true true 0.064
true true false 0.096
true false true 0.016
true false false 0.024
false true true 0.096
false true false 0.144
false false true 0.224
false false false 0.336

What is:

(a) P(flu ∧ sneeze)

(b) P(flu ∧ ¬sneeze)

(c) P(flu)

(d) P(sneeze | flu)

(e) P(¬flu ∧ sneeze)

(f) P(flu | sneeze)

(g) P(sneeze | flu∧snore)

(h) P(flu | sneeze∧snore)
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Generalized conditional probability

Computation of a conditional probability from given joint
probabilities

P(fn|f1 ∧ . . . ∧ fn−1) =
P(f1 ∧ · · · ∧ fn−1 ∧ fn)

P(f1 ∧ · · · ∧ fn−1)
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Chain Rule

Inverse of the generalized conditional probability:
computation of a joint probability distribution from given
conditional probabilities

P(f1 ∧ f2 ∧ . . . ∧ fn)

=

P(fn|f1 ∧ · · · ∧ fn−1)× P(f1 ∧ · · · ∧ fn−1)

= P(fn|f1 ∧ · · · ∧ fn−1)×
P(fn−1|f1 ∧ · · · ∧ fn−2)× P(f1 ∧ · · · ∧ fn−2)

= P(fn|f1 ∧ · · · ∧ fn−1)×
P(fn−1|f1 ∧ · · · ∧ fn−2)

× · · · × P(f3|f1 ∧ f2)× P(f2|f1)× P(f1)

=
n∏

i=1

P(fi |f1 ∧ · · · ∧ fi−1)
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Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is
equivalent to e ∧ h) gives us:

P(h ∧ e) =

P(h|e)× P(e)

= P(e|h)× P(h).

If P(e) 6= 0, divide the right hand sides by P(e):

P(h|e) =
P(e|h)× P(h)

P(e)
.

This is Bayes’ theorem.
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Why is Bayes’ theorem interesting?

Often you have causal knowledge:
P(symptom | disease)
P(light is off | status of switches and switch positions)
P(alarm | fire)

P(image looks like | a tree is in front of a car)

and want to do evidential reasoning:
P(disease | symptom)
P(status of switches | light is off and switch positions)
P(fire | alarm).

P(a tree is in front of a car | image looks like )
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Conditional independence

Random variable X is independent of random variable Y

given random variable Z if, for all xi ∈ dom(X ),
yj ∈ dom(Y ), yk ∈ dom(Y ) and zm ∈ dom(Z ),

P(X = xi |Y = yj ∧ Z = zm)

= P(X = xi |Y = yk ∧ Z = zm)

= P(X = xi |Z = zm).

That is, knowledge of Y ’s value doesn’t affect your belief in
the value of X , given a value of Z .
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Example domain (diagnostic assistant)

light

two-way
switch

switch

off

on

power
outlet

circuit�
breaker

outside power

�

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1
s1

s2
s3
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Examples of conditional independence

The identity of the queen of Canada is independent of
whether light l1 is lit given whether there is outside
power.

Whether there is someone in a room is independent of
whether a light l2 is lit given the position of switch s3.

Whether light l1 is lit is independent of the position of
light switch s2 given whether there is power in wire w0.

Every other variable may be independent of whether light
l1 is lit given whether there is power in wire w0 and the
status of light l1 (if it’s ok , or if not, how it’s broken).
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Idea of belief networks

Whether l1 is lit (L1 lit) de-
pends only on the status of the
light (L1 st) and whether there
is power in wire w0. Thus,
L1 lit is independent of the
other variables given L1 st and
W 0. In a belief network, W 0
and L1 st are parents of L1 lit.

w1 w2

s2_pos

s2_st

w0

l1_lit

l1_st

... ... ......

Similarly, W 0 depends only on whether there is power in w1,
whether there is power in w2, the position of switch s2
(S2 pos), and the status of switch s2 (S2 st).
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Belief networks

A belief network is a graph: the nodes are random variables;
there is an arc from the parents of each node into that node.

Suppose {x1, . . . , xn} are the variables of interest.

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi |X1, . . . ,Xi−1)

The parents parents(Xi ) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is, parents(Xi ) ⊆ X1, . . . ,Xi−1 and
P(Xi |parents(Xi )) = P(Xi |X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi |parents(Xi ))
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Components of a belief network

A belief network consists of:

a directed acyclic graph with nodes labeled with random
variables

a domain for each random variable

a set of conditional probability tables for each variable
given its parents (including prior probabilities for nodes
with no parents).
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Example belief network

Outside_power

W3

Cb1_st Cb2_st

W6

W2

W0

W1

W4

S1_st

S2_st

P1
P2

S1_pos

S2_pos

S3_pos

S3_st

L2_st

L2_lit

L1_st

L1_lit
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Example belief network (continued)

The belief network also specifies:

The domain of the variables:
W0, . . . ,W6 have domain {live, dead}
S1 pos, S2 pos, and S3 pos have domain {up, down}
S1 st has {ok , upside down, short, intermittent, broken}.
Conditional probabilities, including:
P(W1 = live|s1 pos = up ∧ S1 st = ok ∧W3 = live)
P(W1 = live|s1 pos = up ∧ S1 st = ok ∧W3 = dead)
P(S1 pos = up)
P(S1 st = upside down)
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Belief network summary

A belief network is automatically acyclic by construction.

A belief network is a directed acyclic graph (DAG) where
nodes are random variables.

The parents of a node n are those variables on which n
directly depends.

A belief network is a graphical representation of
dependence and independence:
I A variable is independent of its non-descendants given

its parents.
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Constructing belief networks

To represent a domain in a belief network, you need to
consider:

What are the relevant variables?
I What will you observe?
I What would you like to find out (query)?
I What other features make the model simpler?

What values should these variables take?

What is the relationship between them? This should be
expressed in terms of local influence.

How does the value of each variable depend on its
parents? This is expressed in terms of the conditional
probabilities.
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Using belief networks

The power network can be used in a number of ways:

Conditioning on the status of the switches and circuit
breakers, whether there is outside power and the position
of the switches, you can simulate the lighting.

Given values for the switches, the outside power, and
whether the lights are lit, you can determine the posterior
probability that each switch or circuit breaker is ok or not.

Given some switch positions and some outputs and some
intermediate values, you can determine the probability of
any other variable in the network.
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What variables are affected by observing?

If you observe variable Y , the variables whose posterior
probability is different from their prior are:
I The ancestors of Y and
I their descendants.

Intuitively (if you have a causal belief network):
I You do abduction to possible causes and
I prediction from the causes.
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Common descendants

tampering

alarm

fire tampering and fire are
independent

tampering and fire are
dependent given alarm

Intuitively, tampering
can explain away fire
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Common ancestors

smokealarm

fire

alarm and smoke are
dependent

alarm and smoke are
independent given fire

Intuitively, fire can
explain alarm and

smoke; learning one
can affect the other by
changing your belief in
fire.
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Chain

report

alarm

leaving

alarm and report are
dependent

alarm and report are
independent given
leaving

Intuitively, the only
way that the alarm
affects report is by
affecting leaving .
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Pruning Irrelevant Variables

Suppose you want to compute P(X |e1 . . . ek):

Prune any variables that have no observed or queried
descendents.

Connect the parents of any observed variable.

Remove arc directions.

Remove observed variables.

Remove any variables not connected to X in the resulting
(undirected) graph.
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Belief network inference

Four main approaches to determine posterior distributions in
belief networks:

Variable Elimination: exploit the structure of the network
to eliminate (sum out) the non-observed, non-query
variables one at a time.

Search-based approaches: enumerate some of the possible
worlds, and estimate posterior probabilities from the
worlds generated.

Stochastic simulation: random cases are generated
according to the probability distributions.

Variational methods: find the closest tractable
distribution to the (posterior) distribution we are
interested in.
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Factors

A factor is a representation of a function from a tuple of
random variables into a number.
We will write factor f on variables X1, . . . ,Xj as f (X1, . . . ,Xj ).
We can assign some or all of the variables of a factor:

f (X1 = v1,X2, . . . ,Xj ), where v1 ∈ dom(X1), is a factor
on X2, . . . ,Xj .

f (X1 = v1,X2 = v2, . . . ,Xj = vj ) is a number that is the
value of f when each Xi has value vi .

The former is also written as f (X1,X2, . . . ,Xj )X1 = v1 , etc.
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Example factors

r(X ,Y ,Z ):

X Y Z val
t t t 0.1
t t f 0.9
t f t 0.2
t f f 0.8
f t t 0.4
f t f 0.6
f f t 0.3
f f f 0.7

r(X =t,Y ,Z ):

Y Z val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

r(X =t,Y ,Z =f ):
Y val
t 0.9
f 0.8

r(X =t,Y =f ,Z =f ) = 0.8
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Multiplying factors

The product of factor f1(X ,Y ) and f2(Y ,Z ), where Y are

the variables in common, is the factor (f1 × f2)(X ,Y ,Z )
defined by:

(f1 × f2)(X ,Y ,Z ) = f1(X ,Y )f2(Y ,Z ).
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Multiplying factors example

f1:

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 × f2:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32
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Summing out variables

We can sum out a variable, say X1 with domain {v1, . . . , vk},
from factor f (X1, . . . ,Xj ), resulting in a factor on X2, . . . ,Xj

defined by:

(
∑
X1

f )(X2, . . . ,Xj )

= f (X1 = v1, . . . ,Xj ) + · · ·+ f (X1 = vk , . . . ,Xj )
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Summing out a variable example

f3:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

∑
B f3:

A C val
t t 0.57
t f 0.43
f t 0.54
f f 0.46
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Evidence

If we want to compute the posterior probability of Z given
evidence Y1 = v1 ∧ . . . ∧ Yj = vj :

P(Z |Y1 = v1, . . . ,Yj = vj )

=

P(Z ,Y1 = v1, . . . ,Yj = vj )

P(Y1 = v1, . . . ,Yj = vj )

=
P(Z ,Y1 = v1, . . . ,Yj = vj )∑
Z P(Z ,Y1 = v1, . . . ,Yj = vj ).

So the computation reduces to the probability of
P(Z ,Y1 = v1, . . . ,Yj = vj ).
We normalize at the end.
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Probability of a conjunction

Suppose the variables of the belief network are X1, . . . ,Xn.
To compute P(Z ,Y1 = v1, . . . ,Yj = vj ), we sum out the other
variables, Z1, . . . ,Zk = {X1, . . . ,Xn} − {Z} − {Y1, . . . ,Yj}.
We order the Zi into an elimination ordering.

P(Z ,Y1 = v1, . . . ,Yj = vj )

=

∑
Zk

· · ·
∑

Z1

P(X1, . . . ,Xn)Y1 = v1,...,Yj = vj
.

=
∑
Zk

· · ·
∑

Z1

n∏
i=1

P(Xi |parents(Xi ))Y1 = v1,...,Yj = vj
.
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Probability of a conjunction
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

How can we compute ab + ac efficiently?

Distribute out the a giving a(b + c)

How can we compute
∑

Z1

∏n
i=1 P(Xi |parents(Xi ))

efficiently?

Distribute out those factors that don’t involve Z1.
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Variable elimination algorithm

To compute P(Z |Y1 = v1 ∧ . . . ∧ Yj = vj ):

Construct a factor for each conditional probability.

Set the observed variables to their observed values.

Sum out each of the other variables (the {Z1, . . . ,Zk})
according to some elimination ordering.

Multiply the remaining factors. Normalize by dividing the
resulting factor f (Z ) by

∑
Z f (Z ).
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Summing out a variable

To sum out a variable Zj from a product f1, . . . , fk of factors:

Partition the factors into
I those that don’t contain Zj , say f1, . . . , fi ,
I those that contain Zj , say fi+1, . . . , fk

We know:

∑
Zj

f1× · · ·×fk = f1× · · ·×fi×

∑
Zj

fi+1× · · ·×fk

 .

Explicitly construct a representation of the rightmost
factor. Replace the factors fi+1, . . . , fk by the new factor.
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Variable elimination example

tampering

alarm

fire

leaving

report

smoke

P(Tampering ,Fire,Alarm,Smoke, Leaving ,Report) =
P(Tampering)× P(Fire)
× P(Alarm|Fire,Tampering)× P(Smoke|Fire)
× P(Leaving |Alarm)× P(Report|Leaving)
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Variable elimination example

tampering

alarm

fire

leaving

report

smoke

P(tampering) = 0.02
P(fire) = 0.01
P(alarm|fire ∧ tampering) = 0.5
P(alarm|fire ∧ ¬tampering) = 0.99
P(alarm|¬fire ∧ tampering) = 0.85
P(alarm|¬fire ∧ ¬tampering) = 0.0001
P(smoke|fire) = 0.9
P(smoke|¬fire) = 0.01
P(leaving |alarm) = 0.88
P(leaving |¬alarm) = 0.001
P(report|leaving) = 0.75
P(report|¬leaving) = 0.01

Query: P(Tampering |Smoke = true ∧ Report = true).
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Variable elimination example

Conditional probabilities and factors

P(Tampering)→ f0(Tampering) =
true 0.02
false 0.98

P(Fire)→ f1(Fire) =
true 0.01
false 0.99
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Variable elimination example

Conditional probabilities and factors

P(Alarm|Tampering ,Fire)

→ f2(Tampering ,Fire,Alarm) =

true true true 0.5
true true false 0.5
true false true 0.85
true false false 0.15
false true true 0.99
false true false 0.01
false false true 0.0001
false false false 0.9999
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Variable elimination example

Conditional probabilities and factors

P(Smoke|Fire)

→ f3(Fire, Smoke) =

true true 0.9
true false 0.1
false true 0.01
false false 0.99

P(Leaving |Alarm)

→ f4(Alarm, Leaving) =

true true 0.88
true false 0.12
false true 0.001
false false 0.999
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Variable elimination example

Conditional probabilities and factors

P(Report|Leaving)

→ f5(Leaving ,Report) =

true true 0.75
true false 0.25
false true 0.01
false false 0.99
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Variable elimination example

variables: Tampering ,Fire,Alarm, Smoke, Leaving ,Report

query: P(Tampering |Smoke = true ∧ Report = true)

to eliminate:

Fire,Alarm, Smoke, Leaving ,Report

distributions: P(Alarm|Tampering ,Fire)

P(Smoke|Fire)

P(Leaving |Alarm)

P(Report|Leaving)

P(Tampering)

P(Fire)
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Variable elimination example

Eliminate the observed variable Smoke

f3(Fire, Smoke) =

true true 0.9
true false 0.1
false true 0.01
false false 0.99

P(Smoke = true|Fire)

→ f ′3(Fire) =
true 0.9
false 0.01
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Variable elimination example

Eliminate the observed variable Report

f5(Leaving ,Report) =

true true 0.75
true false 0.25
false true 0.01
false false 0.99

P(Report = yes|Leaving)

→ f ′5(Leaving) =
true 0.75
false 0.01

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 80



Variable elimination example

Select e.g. Fire to be eliminated next

Collect all the factors containing Fire:

f1(Fire) =
true 0.01
false 0.99

f ′3(Fire) =
true 0.9
false 0.01

f2(Tampering ,Fire,Alarm) =

true true true 0.5
true true false 0.5
true false true 0.85
true false false 0.15
false true true 0.99
false true false 0.01
false false true 0.0001
false false false 0.9999
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Variable elimination example

Compute a new factor for them, eliminating Fire

f6(Tampering ,Alarm)

=
∑
Fire

(f1(Fire)× f2(Tampering ,Fire,Alarm)× f3(Fire)

=

true true 0.01292
true false 0.00599
false true 0.00891
false false 0.00999

remaining factors:
f0(Tampering), f4(Alarm, Leaving), f ′5(Leaving),
f6(Tampering ,Alarm)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 82



Variable elimination example

Select e.g. Alarm to be eliminated next.

Collect the factors containing Alarm

f4(Alarm, Leaving) =

true true 0.88
true false 0.12
false true 0.001
false false 0.999

f6(Tampering ,Alarm) =

true true 0.0129
true false 0.006
false true 0.0089
false false 0.01

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 83



Variable elimination example

Compute a new factor for them, eliminating Alarm

f7(Tampering , Leaving)

=
∑
Alarm

f6(Tampering ,Alarm)× f4(Leaving ,Alarm)

=

true true 0.01137
true false 0.00753
false true 0.00785
false false 0.01105

remaining factors:

f0(Tampering), f ′5(Leaving), f7(Tampering , Leaving)
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Variable elimination example

Select Leaving to be eliminated next

Collect the factors containing Leaving

f ′5(Leaving) =
true 0.75
false 0.01

f7(Tampering , Leaving , ) =

true true 0.01137
true false 0.00753
false true 0.00785
false false 0.01105
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Variable elimination example

Compute a new factor for them, eliminating Leaving
f8(Tampering)

=
∑

Leaving

f ′5(Leaving)× f7(Tampering , Leaving)

=
true 0.0086
false 0.006
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Variable elimination example

Multiply the remaining factors for Tampering

f0(Tampering) =
true 0.02
false 0.98

f8(Tampering) =
true 0.0086
false 0.006

f9(Tampering)

= f0(Tampering)× f8(Tampering) =
true 0.00017
false 0.00588
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Variable elimination example

posterior distribution for Tampering

P(Tampering |Report, Smoke) =

f9(Tampering)∑
Tampering f9(Tampering)

=
true 0.02844
false 0.97156
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Variable elimination example

Smoke = true f 3(Fire,Smoke)
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)

f 5(Leaving ,Report) Report = true
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)

f 5(Leaving ,Report) Report = true

f ′5(Leaving)
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)

f 5(Leaving ,Report) Report = true

f ′5(Leaving)

f 1(Fire) f 2(Tampering ,Fire,Alarm)
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)

f 5(Leaving ,Report) Report = true

f ′5(Leaving)

f 1(Fire) f 2(Tampering ,Fire,Alarm)

f 6(Tampering ,Alarm)
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Variable elimination example
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Variable elimination example
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Variable elimination example
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)

f 5(Leaving ,Report) Report = true

f ′5(Leaving)

f 1(Fire) f 2(Tampering ,Fire,Alarm)
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)

f 5(Leaving ,Report) Report = true

f ′5(Leaving)

f 1(Fire) f 2(Tampering ,Fire,Alarm)

f 6(Tampering ,Alarm) f 4(Alarm, Leaving)
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Variable elimination example

Smoke = true f 3(Fire,Smoke)

f ′3(Fire)

f 5(Leaving ,Report) Report = true

f ′5(Leaving)

f 1(Fire) f 2(Tampering ,Fire,Alarm)

f 6(Tampering ,Alarm) f 4(Alarm, Leaving)

f 7(Tampering , Leaving)

f 8(Tampering)f 0(Tampering)

f 9(Tampering)

Normalization
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Variable Elimination example

A B C D E F

G H

Query: P(G |f ); elimination ordering: A,H ,E ,D,B ,C

P(G |f ) ∝

∑
C

∑
B

∑
D

∑
E

∑
H

∑
A

P(A)P(B |A)P(C |B)

P(D|C )P(E |D)P(f |E )P(G |C )P(H |E )

=
∑

C

(∑
B

(∑
A

P(A)P(B |A)

)
P(C |B)

)
P(G |C )(∑

D

P(D|C )

(∑
E

P(E |D)P(f |E )
∑

H

P(H |E )

))
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Variable Elimination example
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∑
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∑
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Stochastic Simulation

Idea: probabilities ↔ samples

Get probabilities from samples:

X count

x1 n1
...

...
xk nk

total m

↔

X probability

x1 n1/m
...

...
xk nk/m

If we could sample from a variable’s (posterior)
probability, we could estimate its (posterior) probability.
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Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional)
real domain:

Totally order the values of the domain of X .

Generate the cumulative probability distribution:
f (x) = P(X ≤ x).

Select a value y uniformly in the range [0, 1].

Select the x such that f (x) = y .
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Cumulative Distribution

0

1

v1 v2 v3 v4 v1 v2 v3 v4

P(X)

f(X)

0

1
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Forward sampling in a belief network

Sample the variables one at a time; sample parents of X
before sampling X .

Given values for the parents of X , sample from the
probability of X given its parents.
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Rejection Sampling

To estimate a posterior probability given evidence
Y1 = v1 ∧ . . . ∧ Yj = vj :

Reject any sample that assigns Yi to a value other than
vi .

The non-rejected samples are distributed according to the
posterior probability:

P(α|evidence) ≈
∑

sample|=α 1∑
sample 1

where we consider only samples consistent with evidence.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 108



Rejection Sampling Example: P(ta|sm, re)

Ta Fi

SmAl

Le

Re

Observe Sm = true,Re = true

Ta Fi Al Sm Le Re
s1 false true false true false false

8

s2 false true true true true true 4

s3 true false true false — — 8

s4 true true true true true true 4

. . .
s1000 false false false false — — 8

P(sm) = 0.02
P(re|sm) = 0.32
How many samples are rejected?
How many samples are used?
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Importance Sampling

Samples have weights: a real number associated with
each sample that takes the evidence into account.

Probability of a proposition is weighted average of
samples:

P(α|evidence) ≈
∑

sample|=α weight(sample)∑
sample weight(sample)

don’t sample all of the variables, but weight each sample
according to a proposal distribution P(evidence|sample).

summing out the variables which are neither observed nor
sampled (exact inference)

the proposal distribution should be as close as possible to
the posterior distribution (unknown at sampling time)
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Applications of Bayesian Networks

modelling human multimodal perception
I human sensor data fusion
I top down influences in human perception

multimodal human-computer interaction
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Human Sensor Data Fusion

two general strategies (Ernst and Bülthoff, 2004)
I sensory combination: maximize information delivered

from the different sensory modalities
I sensory integration: reduce the variance in the sensory

estimate to increase its reliability
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Sensor Data Fusion

sensory integration has to produce a coherent percept

Which modality is the dominating one?
I visual capture: e.g. vision dominates haptic perception
I auditory capture: e.g. number of auditory beeps vs.

number of visual flashes

modality precision, modality appropriateness, estimate
precision: the most precise modality wins
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Sensor Data Fusion

two possible explanations:
I maximum likelihood estimation: weighted sum of the

individual estimates
I all cues contribute to the percept

I cue switching:
I the most precise cue takes over
I the less precise cues have no influence
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Sensor Data Fusion

maximum likelihood estimate:
I weighted sum of the individual estimates
I weights are proportional to their inverse variance

ŝ =
∑

i

wi ŝi with
∑

i

wi = 1

wi =
1/σ2

i∑
j 1/σ2

j

I most reliable unbiased estimate possible (estimate with
minimal variance)

I optimality not really required; good approximation might
be good enough
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Sensor Data Fusion

overwhelming evidence for the role of estimate precision
...

weighting within modalities
I visual depth perception: motion + disparity, texture +

disparity
I visual perception of slant
I visual perception of distance
I haptic shape perception: force + position

cross modal weighting:
I vision + audition
I vision + haptic
I vision + proprioception
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Sensor Data Fusion

... but no really conclusive evidence for the reliability
hypothesis

problem: estimating the variance of a stimulus
I requires an independence assumption
I difficult to achieve in a unimodal task
I cues within one modality are correlated
I → multi-modal experiments
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Sensor Data Fusion

Ernst and Banks (2002): vision-haptic integration
I modifying the visual reliability by adding noise to the

visual channel
I two extreme cases:

I vision dominates (little noise)
I haptics dominate (high noise)

→ perception requires dynamic adjustment of weights
→ nervous system has online access to sensory reliabilities
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Sensor Data Fusion

open question: Where do the estimates come from?

prior experience vs. on-line estimation during perception

on-line is more likely: observing the fluctuations of
responses to a signal
I over some period of time
I across a population of independent neurons (population

codes)
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Top-Down Influence

perception is modulated by contextual factors, e.g scene
or object properties

How to model top-down influence?
I can be captured by prior probabilities
I prior probabilities can be integrated by means of Bayes

rule
→ Bayesian reasoning
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Top-Down Influence

Kersten and Yuilley (2003)
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Top-Down Influence
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Multimodal Human-Computer Interaction

Socher, Sagerer, Perona (2000), Wachsmuth, Sagerer
(2002)
I multi-modal human machine

interaction using
I speech
I vision
I (pointing gestures)

data fusion from different reference systems
I spatial (vision) vs. temporal (speech)
I language based instruction: fusion on the level of

concepts
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Multimodal Human-Computer Interaction

noisy and partial interpretation of the sensory signals

dealing with referential uncertainty

goal: cross modal synergy

sensory data: properties (color) and (spatial)
relationships: degree-of-membership representation
(fuzzyness)

combination using Bayesian Networks

estimating the probabilities by means of psycholinguistic
experiments
I how do humans categorize objects and verbalize object

descriptions
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Multimodal Human-Computer Interaction

identified object
(23)
3-holed bar
5-holed bar
7-holed bar
cube, red
cube, blue
...

likelihood of the object being the intended one

scene (23)
3-holed bar
5-holed bar
7-holed bar
cube, red
cube, blue
...

probability of being part of the scene

objectn (23)
3-holed bar
5-holed bar
7-holed bar
cube, red
cube, blue
...

probability of the categorization

object1 (23)
3-holed bar
5-holed bar
7-holed bar
cube, red
cube, blue
...

type
3-holed bar
5-holed bar
7-holed bar
cube
...

color
red
blue
green
...

type
3-holed bar
5-holed bar
7-holed bar
cube
...

color
red
blue
green
...

instruction
(23)
3-holed bar
5-holed bar
7-holed bar
cube, red
cube, blue
...

prob of having been mentioned

type
object
bar
cube
3-holed bar
...

color
red
blue
green
...

size
small
big
short
long
...

shape
round
angular
elongated
hexagonal
...
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Multimodal Human-Computer Interaction

more sophisticated fusion model (Wachsmuth, Sagerer
2002)
I solution to the correspondence problem using selection

variables

more adequate modelling of naming habits
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Multimodal Human-Computer Interaction

results for object identification

correct noisy noisy noisy
input speech vision input

recognition error rates – 15% 20% 15%+20%
identification rates 0.85 0.81 0.79 0.76
decrease of identification rates – 5% 7% 11%

synergy between vision and speech

higher robustness due to redundancy between modalities
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Bayesian Models for Sequences

the world is dynamic
I old information becomes obsolete
I new information is available
I the decisions an agent takes need to reflect these

changes

the dynamics of the world can be captured by means of
state-based models
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Bayesian Models for Sequences

changes in the world are modelled as transitions between
subsequent states

state transitions can be
I clocked, e.g.

I speech: every 10 ms
I vision: every 40 ms
I stock market trends: every 24 hours

I triggered by external events
I language: every other word
I travel planning: potential transfer points
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Bayesian Models for Sequences

main purpose:
I predicting the probability of the next event
I computing the probability of a (sub-)sequence

important application areas:
I speech and language processing, genome analysis, time

series predictions (stock market, natural desasters, ...)
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Markov chain

Markov chain : special sort of belief network for
sequential observations

S0 S1 S2 S3 S4

Thus, P(St+1|S0, . . . , St) = P(St+1|St).

Intuitively St conveys all of the information about the
history that can affect the future states.

“The future is independent of the past given the present.”
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Stationary Markov chain

A stationary Markov chain is when for all t > 0, t ′ > 0,
P(St+1|St) = P(St′+1|St′).

We specify P(S0) and P(St+1|St).
I Simple model, easy to specify
I Often the natural model
I The network can extend indefinitely
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Higher-order Markov Models

modelling dependencies of various lengths

bigrams

S0 S1 S2 S3 S4

trigrams

S0 S1 S2 S3 S4

I three different time slices have to be modelled
I for S0: P(S0)
I for S1: P(S1|S0)
I for all others: P(Si |Si−2Si−1)
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Higher-order Markov Models

quadrograms: P(Si |Si−3Si−2Si−1)

S0 S1 S2 S3 S4

four different kinds of time slices required

Markov models can be applied to predict the probability
of the next event

e.g. for speech and language processing, genome analysis,
time series predictions (stock market, natural desasters,
...)
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Markov Models

examples of Markov chains for German letter sequences

unigrams:
aiobnin*tarsfneonlpiitdregedcoa*ds*e*dbieastnreleeucdkeaitb*
dnurlarsls*omn*keu**svdleeoieei* . . .

bigrams:
er*agepteprteiningeit*gerelen*re*unk*ves*mterone*hin*d*an*
nzerurbom* . . .

trigrams:
billunten*zugen*die*hin*se*sch*wel*war*gen*man*
nicheleblant*diertunderstim* . . .

quadrograms:
eist*des*nich*in*den*plassen*kann*tragen*was*wiese*
zufahr* . . .
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Hidden Markov Model

Often the observation does not deterministically depend
on the state of the model

This can be captured by a Hidden Markov Model
(HMM)

... even if the state transitions are not directly observable
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Hidden Markov Model

A HMM is a belief network where states and observations
are separated

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

P(S0) specifies initial conditions

P(St+1|St) specifies the dynamics

P(Ot |St) specifies the sensor model

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 145



Hidden Markov Models

A Hidden Markov Model consists of

S: a finite set of states si

O: a finite set of observations oi

transition probabilities T : S × S 7→ R+

emission probabilities E : S ×O 7→ R+

prior probabilities (for the initial states): π : S 7→ R+

HMMs are a special case of belief networks
→ arbitrary distributions can be computed by means of
variable elimination

HMMs make strong assumptions about the model
topology
→ special algorithms for inference are available
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Inference with Hidden Markov Models

Evaluation:
What’s the probability of an HMM λ having produced an
observation sequence O = (o1, o2, . . . , ot)
problem: hidden state sequence S = (s1, s2, . . . , st) is not
known

P(O|λ) =
∑
∀S

P(O|S , λ) P(S |λ)

with

P(O|S , λ) =
t∏

i=1

P(Oi = oi |Si = si ) = Es1,o1 Es2,o2 . . .Est ,ot

P(S |λ) = P(S1 = s1)
t∏

i=2

P(Si = si |Si−1 = si−1)

= πs1 Ts1,s2 Ts2,s3 . . .Tst−1,st
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Inference with Hidden Markov Models

Forward algorithm

there are exponentially many state sequences
→ naive computation requires exponentially many
multiplications: O(t · |S|t)

efficient calculation using a recursive reformulation based
on the Markov property

forward coefficients: αk(s) = P(O1:k , Sk = s|λ)
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Inference with Hidden Markov Models

Forward algorithm

initialize α1(s) = πs Es,o1 ∀s ∈ S
repeat, for k = 1 to k = t − 1 and for all s ∈ S

αk+1(s) = Es,ok+1

∑
q∈S

αk(q) Tq,s

aggregate:

P(O|λ) =
∑
s∈S

αt(s)

complexity reduced to O(t · |S|2)
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Inference with Hidden Markov Models

Backward algorithm

initialize βk(s) = 1 ∀s ∈ S
repeat, for k = t − 1 to k = 1 and for all s ∈ S

βk(s) =
∑
q∈S

βk+1(q)Ts,q Eq,ok+1

aggregate:

P(O|λ) =
∑
s∈S

π(s) β1(s) Es,o1

complexity reduced to O(t · |S|2)
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Inference with Hidden Markov Models

Explanation

Filtering: P(Sk |O1:k)
given an observation sequence O1:k = (o1, o2, . . . , ok)
compute the distribution of Sk

Smoothing: P(Sj |O1:k), j < k
given an observation sequence O1:k = (o1, o2, . . . , ok)
compute the distribution of Sj , j < k

Prediction: P(Sj |O1:k), j > k
given an observation sequence O1:k = (o1, o2, . . . , ok)
compute the distribution of Sj , j > k

Decoding: Ŝ1k
= arg max

S
P(S1:k |O1:k)

given an observation sequence O1:k = (o1, o2, . . . , ok)
compute the most likely state sequence S1:k

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 152



Filtering

Filtering:

P(Si |o1, . . . , oi )

What is the current belief state based on the observation
history?

P(Si |o1, . . . , oi ) ∝ P(Si , o1, . . . , oi )

= P(oi |Si )P(Si , o1, . . . , oi−1)

= P(oi |Si )
∑
Si−1

P(Si , Si−1, o1, . . . , oi−1)

= P(oi |Si )
∑
Si−1

P(Si |Si−1)P(Si−1, o1, . . . , oi−1)

∝ P(oi |Si )
∑
Si−1

P(Si |Si−1)P(Si−1|o1, . . . , oi−1)
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Example (1): robot localization

Suppose a robot wants to determine its location based on
its actions and its sensor readings: Localization

This can be represented by the augmented HMM:

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3
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Example localization domain

Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Doors at positions: 2, 4, 7, 11.

Noisy Sensors

Stochastic Dynamics

Robot starts at an unknown location and must determine
where it is.
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Example Sensor Model

P(Observe Door | At Door) = 0.8

P(Observe Door | Not At Door) = 0.1
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Example Dynamics Model

P(loct+1 = L|actiont = goRight ∧ loct = L) = 0.1

P(loct+1 = L + 1|actiont = goRight ∧ loct = L) = 0.8

P(loct+1 = L + 2|actiont = goRight ∧ loct = L) = 0.074

P(loct+1 = L′|actiont = goRight ∧ loct = L) = 0.002 for
any other location L′.
I All location arithmetic is modulo 16.
I The action goLeft works the same but to the left.
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Combining sensor information

the robot can have many (noisy) sensors for signals from
the environment

e.g. a light sensor in addition to the door sensor

Sensor Fusion : combining information from different
sources

Loc0 Loc1 Loc2 Loc3 Loc4

Act0 Act1 Act2 Act3

D0 D1 D2 D3 D4
L0 L1 L2 L3 L4

Dt door sensor value at time t
Lt light sensor value at time t
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Example (2) Medical diagnosis

milk infection test (Jensen and Nielsen 2007)
I having test data for a certain period of time available,

what’s the probability that a cow is currently infected

the probability of the test outcome depends on the cow
being infected or not

Infected?

Test

the probability of the cow being infected also depends on
the cow being infected on the previous day
I first order Markov model

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5
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Example dynamics

the probability of the cow being infected depends on the
cow being infected on the two previous days
I incubation and infection periods of more than one day
I second order Markov model

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5

I assumes only random test errors

weaker independence assumptions
I more powerful model
I more data required for training
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Refined models of the dynamics

the probability of the test outcome also depends on the
cow’s health and the test outcome on the previous day
I can also capture systematic test errors
I second order Markov model for the infection
I first order Markov model for the test results

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5
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Decoding

What’s the state sequence which most likely produced the
observation?

filtering and smoothing produce probability distributions
for the values of a state variable

choosing the value with the highest probability gives only
a pointwise best estimation
I a sequence of pointwise best estimation need not be the

best state value sequence
I the model need not even be able to produce the

pointwise best sequence
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Decoding

Viterbi coefficients:

δk(s) = max
S1:k−1

P(S1:k = (S1:k−1, s),O1:k |λ)

I δk (s) is the probability of the most likely path ending in
state s and generating the observation sequence O1:k

because of the Markov property the computation
simplifies to

δk+1(s) = max
q

(δk(q) Tq,s) Es,ok+1

this corresponds to the principle of dynamic programming

first computing the deltas in a forward pass

afterwards reconstructing the best path by means of
pointers pred from each state qk to its most likely
predecessor qk−1
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Decoding
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Decoding

Viterbi algorithm

intitialize for all s ∈ S
I δ1(s) = πs Es,o1

I pred1(s) = null

repeat recursively
I δk+1(s) = max

q
(δk (q) Tq,s) Es,ok+1

I predk+1(s) = arg max
q

(δk (q) Tq,s)

select the most likely terminal state ŝt = arg max
s
δt(s)

with p̂ = δ(ŝt) being the probability of the most likely
path

reconstruct the most likely path backwards:
q̂k = predk+1(q̂k+1)
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Decoding

Viterbi algorithm

is similar to the forward algorithm

uses maximization instead of summation

has many applications in signal processing, pattern
recognition, biocomputing, natural language processing,
etc.
I message reconstruction for noisy wireless communication
I speech recognition / speech synthesis
I machine translation
I swype keyboards
I intron/exon detection
I ...
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Decoding

Viterbi algorithm

is similar to the forward algorithm

uses maximization instead of summation

has many applications in signal processing, pattern
recognition, biocomputing, natural language processing,
etc.
I message reconstruction for noisy wireless communication
I speech recognition / speech synthesis
I machine translation
I swype keyboards
I intron/exon detection
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Example (3) Part-of-Speech tagging

elementary procedure for Natural Language Processing

annotating the word forms in a sentence with

part-of-speech information
YesterdayRB theDT schoolNNS wasVBD closedVBN

topic areas: He did some field work.
fieldmilitary , fieldagriculture , fieldphysics , fieldsocial sci ., fieldoptics , ...

semantic roles
The winnerBeneficiary received the trophyTheme at the
town hallLocation
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Example (3): Part-of-Speech tagging

sequence labelling problem
I the label depends on the current state and the most

recent history

one-to-one correspondence between states, tags, and
word forms
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Example dynamics

causal (generative) model of the sentence generation
process
I tags are assigned to states
I the underlying state (tag) sequence produces the

observations (word forms)

typical independence assumptions
I trigram probabilities for the state transitions
I word form probabilities depend only on the current state

Tag1

Word1

Tag2

Word2

Tag3

Word3

Tag4

Word4

Tag5

Word5
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Example dynamics

weaker independence assumption (stronger model):
I the probability of a word form also depends on the

previous and subsequent state

Tag1

Word1

Tag2

Word2

Tag3

Word3

Tag4

Word4

Tag5

Word5
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Two alternative graphical representations

influence diagrams, belief networks, Bayesian networks,
causal networks, graphical models, ...
state transition diagrams (probabilistic finite state
machines)

Bayesian networks State transition diagrams

state nodes variables with states
states as values

edges into causal influence possible state transitions
state nodes and their probabilities

# state nodes length of the observa-
tion sequence

# model states

observation variables with observation values
nodes observations as values

edges into conditional probability conditional probabilities
observ. nodes tables
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Two alternative graphical representations

Bigram-tagging as a Bayesian network

Tag1

Word1

Tag2

Word2

Tag3

Word3

Tag4

Word4

Tag5

Word5

possible state transitions are not directly visible
I indirectly encoded in the conditional probability tables

sometimes state transition diagrams are better suited to
illustrate the model topology
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Two alternative graphical representations

Bigram-Tagging as a state transition diagram (can only
be depicted for bigram models)

t1

t2

t3

t4

w1 . . . wn

w1 . . . wn

w1 . . . wn

w1 . . . wn

ergodic model: full connectivity between all states
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Example (4): Speech Recognition

similar problem: Swype gesture recognition

observation subsequences of unknown length are mapped
to one label
→ alignment problem

full connectivity is not needed

a phone/syllable/word realization cannot be reversed
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Example dynamics

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
P(2|0) P(2|1) P(2|2) 0 0

0 P(3|1) P(3|2) P(3|3) 0
0 0 P(4|2) P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 P(3|1) P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 0 P(3|2) P(3|3) 0
0 0 0 P(4|3) 0
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Example dynamics

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
P(2|0) P(2|1) P(2|2) 0 0

0 P(3|1) P(3|2) P(3|3) 0
0 0 P(4|2) P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 P(3|1) P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 0 P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 179



Example dynamics

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
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0 P(3|1) P(3|2) P(3|3) 0
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0 P(2|1) P(2|2) 0 0
0 0 P(3|2) P(3|3) 0
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Example dynamics

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
P(2|0) P(2|1) P(2|2) 0 0

0 P(3|1) P(3|2) P(3|3) 0
0 0 P(4|2) P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 P(3|1) P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 0 P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

the more data available the more sophisticated (and
powerful) models can be trained
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Model composition

composition of submodels on multiple levels
I phone models have to be concatenated into word models
I word models are concatenated into utterance models

[ f ] [ a ] [ n ]

[ f a n ]
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Dynamic Bayesian Networks

using complex state descriptions, encoded by means of
features
I model can be in ”different states” at the same time

more efficient implementation of state transitions

modelling of transitions between sub-models

factoring out different influences on the outcome
I interplay of several actuators (muscles, motors, ...)

modelling partly asynchronized processes
I coordinated movement of different body parts (e.g. sign

language)
I synchronization between speech sounds and lip

movements
I synchronization between speech and gesture
I ...
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Dynamic Bayesian Networks

problem: state-transition probability tables are sparse
I contain a large number of zero probabilities

alternative model structure: separation of state and
transition variables

deterministic state
variables
stochastic transition
variables

observation variables

causal links can be stochastic or deterministic
I stochastic: conditional probabilities to be estimated
I deterministic: to be specified manually (decision trees)
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Dynamic Bayesian Networks

state variables
I distinct values for each state of the corresponding HMM
I value at slice t + 1 is a deterministic function of the

state and the transition of slice t

transition variables
I probability distribution
I which arc to take to leave a state of the corresponding

HMM
I number of values is the outdegree of the corresponding

state in an HMM

use of transition variables is more efficient than using
stochastic state variables with zero probabilities for the
impossible state transitions
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Dynamic Bayesian Networks

composite models: some applications require a model to
be composed out of sub-models
I speech: phones → syllables → words → utterances
I vision: sub-parts → parts → composites
I genomics: nucleotides → amino acids → proteins
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Dynamic Bayesian Networks

composite models:
I length of the sub-segments is not kown in advance
I naive concatenation would require to generate all

possible segmentations of the input sequence

︸ ︷︷ ︸
sub-model for /n/

︸ ︷︷ ︸
sub-model for /ow/

evolution of articulationacoustic emission

which sub-model to choose next?
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Dynamic Bayesian Networks

additional sub-model variables select the next sub-model
to choose

sub-model index
variables

stochastic transition
variables
sub-model state
variables

observation variables

sub-model index variables: which submodel to use at each
point in time

sub-model index and transition variables model legal
sequences of sub-models (control layer)

several control layers can be combined
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Dynamic Bayesian Networks

factored models (1): factoring out different influences on
the observation

e.g. articulation:
I asynchroneous movement of articulators

(lips, tongue, jaw, ...)

state

articulators

observation

if the data is drawn from a factored source, full DBNs are
superior to the special case of HMMs
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Dynamic Bayesian Networks

factored models (2): coupling of different input channels
I e.g. acoustic and visual information in speech processing

näıve approach (1): data level fusion

state

mixtures

observation

too strong synchronisation constraints
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Dynamic Bayesian Networks

näıve approach(2): independent input streams

acoustic channel

visual channel

no synchronisation at all
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Dynamic Bayesian Networks

product model

state

mixtures

visual channel

acoustic channel

state values are taken from the cross product of acoustic
and visual states

large probability distributions have to be trained
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Dynamic Bayesian Networks

factorial model (Nefian et al. 2002)

factor 1 state

factor 2 state

mixtures

visual channel

acoustic channel

independent (hidden) states

indirect influence by means of the ”explaining away”
effect

loose coupling of input channels
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Dynamic Bayesian Networks

inference is extremely expensive
I nodes are connected across slices
I domains are not locally restricted
I cliques become intractably large

but: joint distribution usually need not be computed
I only maximum detection required
I finding the optimal path through a lattice
I dynamic programming can be applied (Viterbi algorithm)
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Learning of Bayesian Networks

estimating the probabilities for a given structure
I for complete data:

I maximum likelihood estimation
I Bayesian estimation

I for incomplete data
I expectation maximization
I gradient descent methods

learning the network structure
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Maximum Likelihood Estimation

likelihood of the model M given the (training) data D

L(M |D) =
∏
d∈D

P(d |M)

log-likelihood

LL(M |D) =
∑
d∈D

log2P(d |M)

choose among several possible models for describing the
data according to the principle of maximum likelihood

Θ̂ = arg max
Θ

L(MΘ|D) = arg max
Θ

LL(MΘ|D)

the models only differ in the set of parameters Θ
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Maximum Likelihood Estimation

complete data: estimating the parameters by counting

P(A = a) =
N(A = a)∑

v∈dom(A) N(A = v)

P(A = a|B = b,C = c) =
N(A = a,B = b,C = c)

N(B = b,C = c)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 197



Rare events

sparse data results in pessimistic estimations for unseen
events
I if the count for an event in the data base is 0, the event

is considered impossible by the model
I in many applications most events will never be observed,

irrespective of the sample size
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Rare events

Bayesian estimation: using an estimate of the prior
probability as starting point for counting
I estimation of maximum a posteriori parameters
I no zero counts can occur
I if nothing else available use an even distribution as prior
I Bayesian estimate in the binary case with an even

distribution

P(yes) =
n + 1

n + m + 2

n: counts for yes, m: counts for no
I effectively adding virtual counts to the estimate
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Rare events

alternative: smoothing as a post processing step

remove probability mass from the frequent observations ...

... and distribute it to the not observed ones
I floor method
I discounting
I ...
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Rare events

Backoff

interpolate with the estimates of a less sophisticated
model, e.g. combine trigram probabilities with bigram or
unigram probabilities

P̂(on|on−2, on−1) =

c3 P(on|on−2, on−1) + c2 P(on|on−1) + c1 P(on)

good/acceptable coefficients ci can be estimated on held
out data

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 201



Incomplete Data

missing at random:
I probability that a value is missing depends only on the

observed value
I e.g. confirmation measurement: values are available only

if the preceding measurement was positive/negative

missing completely at random
I probability that a value is missing is also independent of

the value
I e.g. stochastic failures of the measurement equipment
I e.g. hidden/latent variables (mixture coefficients of a

Gaussian mixture distribution)

nonignorable:
I neither MAR or MCAR
I probability depends on the unseen values, e.g. exit polls

for extremist parties
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Expectation Maximization

estimating the underlying distribution of not directly
observable variables

expectation:
I ”complete” the data set using the current estimation

h = Θ to calculate expectations for the missing values
I applies the model to be learned (Bayesian inference)

maximization:
I use the ”completed” data set to find a new maximum

likelihood estimation h′ = Θ′
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Expectation Maximization

full data consists of tuples 〈xi1, ..., xik , zi1, ..., zil〉
only xi can be observed

training data: X = {~x1, ..., ~xm}
hidden information: Z = {~z1, ...,~zm}
parameters of the distribution to be estimated: Θ

Z can be treated as random variable with p(Z ) = f (Θ,X )

full data: Y = {~y | ~y = ~xi ||~zi}
hypothesis: h of Θ, needs to be revised into h′
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Expectation Maximization

goal of EM: h′ = arg max E (log2 p(Y |h′))

define a function Q(h′|h) = E (log2 p(Y |h′)|h,X )

Estimation (E) step:
Calculate Q(h′|h) using the current hypothesis h and the
observed data X to estimate the probability distribution
over Y

Q(h′|h)← E (log2 p(Y |h′)|h,X )

Maximization (M) step
Replace hypothesis h by h′ that maximizes the function Q

h← arg max
h′

Q(h′|h)
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Expectation Maximization

expectation step requires applying the model to be
learned
I Bayesian inference

gradient ascent / hill climbing search
I converges to the next local optimum
I global optimum is not guaranteed
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Expectation Maximization

Q(h′|h) Q(h′|h)

Q(h′|h)← E (ln p(Y |h′)|h,X )

h← arg max
h′

Q(h′|h)

If Q is continuous, EM converges to the local maximum
of the likelihood function P(Y |h′)
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Learning the Network Structure

learning the network structure

space of possible networks is extremely large (> O(2n))

a Bayesian network over a complete graph is always a
possible answer, but not an interesting one (no modelling
of independencies)

problem of overfitting

two approaches
I constraint-based learning
I (score-based learning)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 8, Page 208



Constraint-based Structure Learning

estimate the pairwise degree of independence using
conditional mutual information

determine the direction of the arcs between
non-independent nodes
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Estimating Independence

conditional mutual information

CMI (A,B |X ) =
∑
X

P̂(X )
∑
A,B

P̂(A,B |X )log2
P̂(A,B |X )

P̂(A|X )P̂(B |X )

two nodes are independent if CMI (A,B |X ) = 0

choose all pairs of nodes as non-independent, where the
significance of a χ2-test on the hypothesis
CMI (A,B |X ) = 0 is above a certain user-defined
threshold

high minimal significance level: more links are established

result is a skeleton of possible candidates for causal
influence
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Determining Causal Influence

Rule 1 (introduction of v-structures): A− C and B − C
but not A− B introduce a v-structure A→ C ← B if
there exists a set of nodes X so that A is d-separated
from B given X

A B

C

A B

C
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Determining Causal Influence

Rule 2 (avoid new v-structures): When Rule 1 has been
exhausted and there is a structure A→ C − B but not
A− B then direct C → B

Rule 3 (avoid cycles): If A→ B introduces a cycle in the
graph do A← B

Rule 4 (choose randomly): If no other rule can be applied
to the graph, choose an undirected link and give it an
arbitrary direction
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Determining Causal Influence

A B

C D E

F G

Rule 1

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 4

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 4
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Determining Causal Influence

independence/non-independence candidates might
contradict each other

¬I (A,B),¬I (A,C ),¬I (B ,C ), but I (A,B |C ), I (A,C |B)
and I (B ,C |A)
I remove a link and build a chain out of the remaining

ones

A B

C

A B

C

I uncertain region: different heuristics might lead to
different structures
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Determining Causal Influence

I (A,C ), I (A,D), I (B ,D)

A D

B C

A D

B C

E

I problem might be caused by a hidden variable E → B
E → C A→ B D → C
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Constraint-based Structure Learning

useful results can only be expected, if
I the data is complete
I no (unrecognized) hidden variables obscure the induced

influence links
I the observations are a faithful sample of an underlying

Bayesian network
I the distribution of cases in D reflects the distribution

determined by the underlying network
I the estimated probability distribution is very close to the

underlying one

I the underlying distribution is recoverable from the
observations
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Constraint-based Structure Learning

example of an unrecoverable distribution:
I two switches: P(A = up) = P(B = up) = 0.5
I P(C = on) = 1 if val(A) = val(B)
I → I (A,C ), I (B,C )

A B C

problem: independence decisions are taken on individual
links (CMI), not on complete link configurations

P(C |A,B) =

(
1 0
0 1

)
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