Example: Whack-the-mole *)

A mole has burrowed a network of underground tunnels, with
N openings at ground level. We are interested in modeling the
sequence of openings at which the mole will poke its head out
of the ground. The probability distribution of the " next”
opening only depends on the present location of the mole.

Three holes:
X ={x1,x,x3}

modeling the movements of the mole probabilistically as a
Markov chain
*) Thanks for the example to Emilio Frazolli

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 1

Whack-the-mole as Markov chain

Transition probabilities:

[P(xalx) Plelxi) P(xs|x)
T = P(X1|X2) P(X2|X2) P(X3|X2)
| P(xalxs) Plxlxs) P(xs|xs)

[Tii Tip Tis 0.1 0.4 05
= To1 Top To3 | =104 0 06
| T31 T3 T3 0 06 04

Initial probabilities:

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 2

Whack-the-mole as Markov chain

Let us assume that we know, e.g., with certainty, that the
mole was at hole x; at time step 1 (i.e.,, P(X;1 =x) =1. It
takes d time units to go get the mallet. Where should | wait
for the mole if | want to maximize the probability of whacking
it the next time it surfaces?

@©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 3

Whack-the-mole as Markov chain

Let us assume that we know, e.g., with certainty, that the
mole was at hole x; at time step 1 (i.e.,, P(X;1 =x) =1. It
takes d time units to go get the mallet. Where should | wait
for the mole if | want to maximize the probability of whacking
it the next time it surfaces?

7 =(1,0,0)

@©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 4

Whack-the-mole as Markov chain

to calculate:

pa = (Pd(x1), Pa(x2), Pa(x3))

in general holds:

Pd(S) = Z Pdfl(Sl) * Ts,s/

Vs’ ,s=succ(s’)

in particular we can compute the individual probabilities:

p0a) = Y puls) Ten

se{x1,x2,x3}

p1(x1) - T+ pi(x2) - Tr1+ pi(x3) - Ts1
= 1-014+0-04+0-0
= 0.1

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 5

Example: Whack-the-mole

for the other cases:

Pz(Xz) = Z P1(5)'Ts,xz

s€{x1,x2,x3}

1-04+0-0+0-0.6
0.4

p(s) = > puls) Tes

s€{x1,x2,x3}

1-05+0-06+0-0.4
= 05

which results in the probability distribution at timestep 2

p> = (0.1,0.4,0.5)

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 6

Whack-the-mole as Markov chain

the computation on a more abstract level

pp = p1-T
ps = p2- T
ps = p3- T

the distribution at the next timesteps
ps = p2-T = (0.17,0.34,0.49)
pa = p3-T = (0.153,0.362,0.485)

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 7

Whack-the-mole as Markov chain

Alternative query with little relevance for mole hunting, but
high impact for practical applications (speech recognition,
signal processing, machine translation, ...):

Assuming the mole surfaces every time it reaches a hole, so we
can see it. What's the probability of a particular sequence of
appearances O = (x1X2...X,), i.e. p(x1x2...x,| M) ?

p(xix0..x, M) = m(x1) - p(xa|x1) - ... p(xa_1|p(xn))
= 7(xa)-] pGailxa-1)

which follows from the chain rule together with the Markov
(independence) assumption

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 8

Whack-the-mole as Markov chain

How likely it is that we are able to observe the mole doing a
(anticyclic) round trip O = (3,2,1,3)?

p(x3, x2, x1, 3| M) = 7(x3) - p(x2|x3) - p(x1|x2) - P(x3]x1)
= 0.485-0.6-0.4-05
= 0.05496

using the approximation of the long term probability
distribution p; = (0.153,0.362,0.485) from above as initial
probabilities

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 9

Whack-the-mole as a Hidden-Markov-Model

Let us assume that every time the mole surfaces, we can hear
it, but not see it (its dark outside). Our hearing is not very
precise.

uncertainty of sensing — separation of state and observation

Markov chain — Hidden Markov model

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 10

Whack-the-mole as a Hidden-Markov-Model

modeling the uncertainty of sensing probabilistically using
additional emission/observation probabilities:

[P(oilx1) P(02lx1) P(os|x)
E = | Ploa|x) P(olx) P(os|x2)
| P(o1lx3) P(o2|x1) P(o3|xs)

[E171 E1,2 E173 0.6 0.2 0.2
= E271 E2,2 E2’3 = 0.2 06 0.2
| E371 E372 E373 0.2 0.2 0.6

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 11

Whack-the-mole as a Hidden-Markov-Model

Let us assume that over three times the mole surfaces, we
make the following sequence of observations: O = (1,3,3)

Compute the distribution of the states of the mole at the end
of the observation, as well as its most likely state trajectory.

state distribution:

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 12

Whack-the-mole as a Hidden-Markov-Model

Let us assume that over three times the mole surfaces, we
make the following sequence of observations: O = (1,3,3)

Compute the distribution of the states of the mole at the end
of the observation, as well as its most likely state trajectory.

state distribution: forward algorithm

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 13

Whack-the-mole as a Hidden-Markov-Model

Let us assume that over three times the mole surfaces, we
make the following sequence of observations: O = (1,3,3)

Compute the distribution of the states of the mole at the end
of the observation, as well as its most likely state trajectory.

state distribution: forward algorithm

most likely state sequence:

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 14

Whack-the-mole as a Hidden-Markov-Model

Let us assume that over three times the mole surfaces, we
make the following sequence of observations: O = (1,3,3)

Compute the distribution of the states of the mole at the end
of the observation, as well as its most likely state trajectory.

state distribution: forward algorithm

most likely state sequence: VITERBI algorithm

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 15

Whack-the-mole: Forward Algorithm

Forward algorithm:

pd(S) = Oéd(S) - Es,od Z pdfl(sl) * Ts’,s

Vs’ ,s=succ(s’)

Initially:

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 16

Whack-the-mole: Forward Algorithm

assuming an initial probability distribution, e.g. the long-term
approximation of the Markov-chain (rounded values)

7 = (0.16,0.36,0.48)

we can compute the individual probabilities:
for timestep one: o; =1

pi(x1) = 7(s)- Eso

= 7T(X1) . E171
= 0.16-0.6
= 0.096

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 17

Whack-the-mole: Forward Algorithm

for the other states at timestep one: 0, =1

Pl(X2) = 77(5) “Es o

= 7(x)- E
= 0.36-0.2
= 0.072
pi(x3) = 7(s) Eso
= 7(x3)- E31
= 0.48-0.2
0.096

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 18

Whack-the-mole: Forward Algorithm

for timestep two: 0, = 3

p2(X1) - EX1,O2 Z pl(s)'TS,Xl

se{x1,x2,x3}
= Ei3- (p1(x1) - Ti1+ pi(x2) - Tax+ pi(x3) - T31
= 0.2-(0.096 - 0.1 +0.072-0.4 + 0.096 - 0)
= 0.00768

P2(X2) = Ex2,02 Z pl(s)'Ts,x2

se{x1,x2,x3}
= B3 (pi(x1) - T2+ pi(x2) - Top + p1(x3) - T3z
= 0.2-(0.096 - 0.4 +0.072 -0+ 0.096 - 0.6)
= 0.0192

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 19

Whack-the-mole: Forward Algorithm

for timestep two (cont.): 0, =3
p2(x3) = Ex; 0, Z pi(s) - Ts

SE{Xl,XQ,Xg,}
= E3-(pi(x1) Tig+ pi(x) - Toz+ pi(xs) - Ta3
= 06- (0.096 -05+0.072-0.6 +0.096 - 0.4)
= 0.07776

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 20

Whack-the-mole: Forward Algorithm

for timestep three: o3 =3

p(x1) = Eqo Z pa(s) - Tsp

se{x1,x2,x3}
= E3-(p(x1) - Tia+ pa(x) - Tox + pa(x3) - T3
= 0.2-(0.00768 - 0.1 4+ 0.00192 - 0.4 + 0.07776 - 0)
= 0.0003072

p3(X2) = Ex2,03 Z p2(5)'Ts,x2

se{x1,x2,x3}
= B3 (pAx1) - Ti2+ p2(x2) - Top + p2(x3) - T3
= 0.2-(0.00768 - 0.4 4+ 0.00192 - 0 4 0.007776 - 0.6)
— 0.00154752

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 21

Whack-the-mole: Forward Algorithm

for timestep three (cont.): o3 =3

p3(xs) = Egos Z p2(s) - Tsps

SE{Xl,XQ,Xg,}
= E3-(pa(x1) - Tz + pa(x) - Toz+ pa(x3) - T3
= 06- (0.00768 -0.5+0.0192-0.6 +0.07776 - 0.4)
= 0.0278784

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 22

Whack-the-mole: Forward Algorithm

Evolution of the probability distribution
given the observation sequence O = (1, 3, 3)

7(s) = (0.16,0.36, 0.48)
p1(s) = (0.096,0.072,0.096)
pa(s) = (0.00768,0.0192,0.07776)

ps(s) = (0.0003072, 0.00154752, 0.0278784)

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 23

Whack-the-mole: Forward Algorithm

computation on a more abstract level representing
observations as sequences of one hot vectors

0 0 1 0
O=(01,00,..,0,)=(1 O |, T |,{01],{0])
1 0 0 1

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 24

Whack-the-mole: Forward Algorithm

P11 = (E'O]_)T o mw- T
pp = (E-0)" o p- T
ps = (E-0)" o pp- T
— (E-o,)" 1 T
Pn (O) o Pn-1

orobability distribution HADAMARD probability distribution

p i roduct for the current state
of a state having p Po_1(x;) - p(Xj|X,'))
produced the

observation p(o;|x;)

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 25

Whack-the-mole: Forward Algorithm

HADAMARD or entrywise product (here for vectors)

a1 by ai - by
Ao B = a2 o b = 3 by
an b, a,- b,

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 26

Whack-the-mole: VITERBI Algorithm

Determining the most likely state sequence

VITERBI coefficients: maximum probability to reach a state
from the start point given the observation sequence up to that
point in time

coefficients have to be computed for each state at each time
point

observation: O = (1,2,3,1)

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 27

Whack-the-mole: VITERBI Algorithm

intialization:
51(5) = Tg Es,01
pred;(s) = null

wl\.)i—l‘

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 28

Whack-the-mole: VITERBI Algorithm

intialization:
(51(5) = Ty Es701
predy(s) = null

1 0.0912

N

601(1) = m - Ex

0.152-0.6
= 0.0912

predi(1) = null

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 29

Whack-the-mole: VITERBI Algorithm

intialization:
(51(5) = Ty Es701
predy(s) = null

1 0.0912
2 10.0724
3

01(2) = m - B

0.362-0.2
= 0.0724

predi(2) = null

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 30

Whack-the-mole: VITERBI Algorithm

intialization:
51(5) = Ty Es,ol
predy(s) = null

1 0.0912
2 10.0724
3| 0.097

01(3) = ms - E3a
= 0.485-0.2

= 0.097

predi(3) = null

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 31

Whack-the-mole: VITERBI Algorithm

recursive computation:
k+1(8) = Es oy - mj‘x((Sk(q) + Tas)
predii1(s) = arg m:?x(dk(q) Tq.s)

1 0.0912
21 0.0724
31 0.097

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 32

Whack-the-mole: VITERBI Algorithm

recursive computation:

5k+1(5) = Es,ok+1 ’ m?X((Sk(C]) ’ Tq,s)
predii1(s) = arg m:?x(ék(q) Tq.s)

10.0912 [0.005712 / 2

2 10.0724

3| 0.097

52(1) = E172 . man(&l(q) . Tq,l)
= 0.2-max{0.0912-0.1,0.0724 - 0.4,0.097 - 0}
= 0.2 max{0.00912, 0.02896, 0}
= 0.005712
predy(1) = 2

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 33

Whack-the-mole: VITERBI Algorithm

recursive computation:

5k+1(5) = Es,ok+1 ’ mc?x(dk(q) ’ Tq,s)
predii1(s) = arg m:?x(ék(q) Tq.s)

110.0912 [0.005712 / 2

2| 0.0724 | 0.003492 / 3

3| 0.097

02(2) = Faz-max(di(q) - Tq2)
= 0.6-max{0.0912-0.4,0.0724 - 0,0.097 - 0.6}
— 0.6 - max{0.03648, 0, 0.0582}
= 0.03492
predx(2) = 3

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 34

Whack-the-mole: VITERBI Algorithm

recursive computation:

Srs1(s) = Esonr m$X(5k(q) : Tq,S)
predii1(s) = arg mjx(ék(q) Tqs)

1]0.0912 | 0.005712 / 2
21 0.0724 | 0.003492 / 3
3] 0.097 | 0.00912 /1

52(3) = E372 . man(&l(q) . Tq73)
= 0.2-max{0.0912-0.5,0.0724 - 0.6,0.097 - 0.4}
= 0.2-max{0.0456,0.04344,0.0388}
= 0.00912
predx(3) = 1

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 35

Whack-the-mole: VITERBI Algorithm

recursive computation (2):
5k+1(s) - E5,0k+1 : man((Sk(q) : Tq,s)
predi(s) = arg max(dk(q) To.)

1| 0.0912 | 0.005712 / 2
21 0.0714 | 0.003492 / 3
3] 0.097 | 0.00912 /1

Artificial Intelligence, Chapter 6, Page 36

©D. Poole, A. Mackworth 2010, W. Menzel 2015

Whack-the-mole: VITERBI Algorithm

recursive computation (2):

Sks1(s) = Es o mjx(ék(q) : Tq,S)
predii1(s) = arg mc?x((ik(q) Tys)

110.0912] 0.005712 / 2 | 0.0027936 / 2
2 [0.0714 | 0.003492 / 3
31 0.097 | 0.00912 / 1

03(1) = Evs-max(01(q) - Tqa)

= 0.2-max{0.005712-0.1,0.03492 - 0.4,0.0912 - 0}
= 0.2-max{0.0005712,0.013968, 0}
= 0.0027936

preds(1) = 2

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 37

Whack-the-mole: VITERBI Algorithm

recursive computation (2):

Sks1(s) = Es o mjx(ék(q) : Tq,S)
predii1(s) = arg mc?x((ik(q) Tys)

110.0912] 0.005712 / 2 | 0.0027936 / 2
2 [0.0714 | 0.003492 / 3 | 0.010944 / 3
31 0.097 | 0.00912 / 1

03(2) = Ezz-max(01(q) - Tq2)

= 0.2-max{0.005712-0.4,0.03492-0,0.0912 - 0.6}
= 0.2-max{0.0022848,0,0.05472}
= 0.010944

pred;(2) = 3

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 38

Whack-the-mole: VITERBI Algorithm

recursive computation (2):

Or11(5) = Es oy - mjx(5k(CI) - Tas)
predi1(s) = arg m(?x(Csk(CI) Tqs)

1 |0.0912 | 0.005712 / 2 | 0.0027936 / 2
2| 0.0714 | 0.003492 / 3 | 0.010944 / 3
3] 0.097 | 0.00912 /1 | 0.0218838 / 3

53(3) = E3- m(?x(él(q) : Tq,3)
= 0.6 - max{0.005712-0.5,0.03492 - 0.6,0.0912 - 0.4
= 0.6 - max{0.002856, 0.020952, 0.03648}
= 0.021888
preds(3) = 3

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 39

Whack-the-mole: VITERBI Algorithm

recursive computation (3):
5k+1(s) - E5,0k+1 : man((Sk(q) : Tq,s)
predi1(s) = arg mc?x(ék(q) Tqs)

110.0912] 0.005712 / 2 | 0.0027936 / 2
2 [0.0714 | 0.003492 / 3 | 0.010944 / 3
3710097 | 0.00912 /1 | 0.021888 / 3

Artificial Intelligence, Chapter 6, Page 40

©D. Poole, A. Mackworth 2010, W. Menzel 2015

Whack-the-mole: VITERBI Algorithm

recursive computation (3):
Tq7s)

Ok+1(8) = Es 0., - max(d,(q) -
predii1(s) = arg mj‘k(ék(q) Tqs)

110.0912 | 0.005712 / 2 | 0.0027936 / 2 | 0.00262656 / 2
0.0714 | 0.003492 / 3 | 0.010944 / 3
3| 0.097 | 0.00912 /1 | 0.021888 / 3

0a(1) = Ei1- m(?x(él(q) - Tq1)
= 0.6 - max{0.0027936 - 0.1,0.010944 - 0.4,
0.021888 - 0}
= 0.6 - max{0.0002793,0.0043776,0}
= 0.00262656
pred,(1) = 2

N

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 41

Whack-the-mole: VITERBI Algorithm

recursive computation (3):
Tq7s)

Ok+1(8) = Es 0., - max(d,(q) -
predii1(s) = arg mj‘k(ék(q) Tqs)

110.0912 | 0.005712 / 2 | 0.0027936 / 2 | 0.00262656 / 2
0.0714 | 0.003492 / 3 | 0.010944 / 3 | 0.00262656 / 3
3| 0.097 | 0.00912 /1 | 0.021888 / 3

04(2) = Exi- m(?x(él(q) - Ty2)
= 0.2-max{0.0027936 - 0.4,0.010944 - 0,
0.021888 - 0.6}
= 0.2 max{0.00111744, 0,0.0131328}
= 0.00262656
preds(2) = 3

N

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 42

Whack-the-mole: VITERBI Algorithm

recursive computation (3):

Ok+1(8) = Es oy - m?x(ék(q) - Tqs)
predi1(s) = arg mgX(ék(q) Tys)

110.0912 [0.005712 / 2 | 0.0027936 / 2 | 0.00262656 / 2
0.0714 | 0.003492 / 3 | 0.010944 /3 | 0.00262656 / 3
31 0.097 | 0.00912 /1 | 0.021888 /3 | 0.00175104 / {2,3}

N

04(3) = E31- mgX(&(q) “Tq3)
= 0.2-max{0.0027936 - 0.5,0.010944 - 0.6,
0.021888 - 0.4}
= 0.2-max{0.0013968, 0.0087552,0.0087552}
= 0.00175104
preds(3) = {2,3}

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 43

Whack-the-mole: VITERBI Algorithm

Skr1(s) = mslx (0k(q) Tas) Es.on
repeat recursively
® bri1(s) = ij(CSk(CI) Tas) Es o
o predii1(s) = arg m§X(5k(q) Tqs)
select the most likely terminal state 5, = arg max 3¢(s)

with p = §(5;) being the probability of the most likely path
reconstruct the most likely path backwards:
Gk = predii1(Grr1)

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 44

Whack-the-mole: VITERBI Algorithm

@ observation:
(X1,X2,X3,X1)
@ two optimal final states:
{s1, %}
@ two optimal state sequences:

{(517 53, 52, 51)7 (517 53, 53, 52)}

©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 6, Page 45

