Chapter 5: Propositions and Inference

Propositions

Any CSP can be transformed into a propositional satisfiability problem

Propositions

Any CSP can be transformed into a propositional satisfiability problem

- every CSP variable X corresponds to a set of Boolean variables $\left\{X_{1}, \ldots, X_{k}\right\}$, one for every value in the domain of $X, \operatorname{dom}(X)=\left\{v_{1}, \ldots, v_{k}\right\}$
- the Boolean variables are indicator variables with

$$
X_{i}= \begin{cases}\text { true } & \text { if } X=v_{i} \\ \text { false } & \text { else }\end{cases}
$$

- shorthand notation: X_{i} for $X_{i}=$ true and $\neg X_{i}$ for $X_{i}=$ false

Propositions

Which constraints the indicator variables have to satisfy?

Propositions

Which constraints the indicator variables have to satisfy?

- exactly one value has to be true:

$$
x_{1} \vee \ldots \vee x_{k} \text { and } \neg x_{i} \vee \neg x_{j} \text { for } i<j
$$

Propositions

Which constraints the indicator variables have to satisfy?

- exactly one value has to be true:
$x_{1} \vee \ldots \vee x_{k}$ and $\neg x_{i} \vee \neg x_{j}$ for $i<j$
\rightarrow "one hot vector"

Propositions

Which constraints the indicator variables have to satisfy?

- exactly one value has to be true:
$x_{1} \vee \ldots \vee x_{k}$ and $\neg x_{i} \vee \neg x_{j}$ for $i<j$
\rightarrow "one hot vector"
- a logical formula for each allowed/disallowed value assignment

Propositions

- An interpretation is an assignment of values to all variables.
- A model is an interpretation that satisfies all constraints.
- Often we don't want to just find a model, but want to know what is true in all models.
- A proposition is a statement that is true or false in different interpretations.

Why propositions?

- Specifying logical formulae is often more natural than filling in tables
- It is easier to check correctness and debug formulae than tables
- We can exploit the Boolean nature for efficient reasoning
- We need a language for asking queries (of what follows in all models) that may be more complicated than asking for the value of a variable
- It is easy to incrementally add formulae
- Propositions can be extended to infinitely many variables with infinite domains (using logical quantification)

Representation and Reasoning System

A Representation and Reasoning System is made up of:

- formal language: specifies the legal sentences
- semantics: specifies the meaning of the symbols
- reasoning theory or proof procedure: nondeterministic specification of how an answer can be produced.

Human's view of semantics

Step 1 Begin with a task domain.
Step 2 Choose atoms in the computer to denote propositions. These atoms have meaning to the KB designer.
Step 3 Tell the system knowledge about the domain.
Step 4 Ask the system questions.

- the system can tell you whether the question is a logical consequence.
- You can interpret the answer with the meaning associated with the atoms.

Role of semantics

In computer:

light1_broken \leftarrow sw_up
\wedge power \wedge unlit_light1.
sw_up.
power \leftarrow lit_light2.
unlit_light1.
lit_light2.

In user's mind:

- light1_broken: light \#1 is broken
- sw_up: switch is up
- power: there is power in the building
- unlit_light1: light \#1 isn't lit
- lit_light2: light \#2 is lit

Conclusion: light1_broken

- The computer doesn't know the meaning of the symbols
- The user can interpret the symbol using their meaning

Simple language: propositional definite clauses

- An atom is a symbol starting with a lower case letter
- A body is an atom or is of the form $b_{1} \wedge b_{2}$ where b_{1} and b_{2} are bodies.
- A definite clause is an atom or is a rule of the form $h \leftarrow b$ where h is an atom and b is a body.
- A knowledge base is a set of definite clauses

Semantics

- An interpretation I assigns a truth value to each atom.
- A body $b_{1} \wedge b_{2}$ is true in I if b_{1} is true in I and b_{2} is true in l.
- A rule $h \leftarrow b$ is false in I if b is true in I and h is false in I. The rule is true otherwise.
- A knowledge base $K B$ is true in I if and only if every clause in $K B$ is true in I.

Models and Logical Consequence

- A model of a set of clauses is an interpretation in which all the clauses are true.
- If $K B$ is a set of clauses and g is a conjunction of atoms, g is a logical consequence of $K B$, written $K B \vDash g$, if g is true in every model of $K B$.
- That is, $K B \models g$ if there is no interpretation in which $K B$ is true and g is false.

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s	model?
I_{1}	true	true	true	true	
I_{2}	false	false	false	false	
I_{3}	true	true	false	false	
I_{4}	true	true	true	false	
I_{5}	true	true	false	true	

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s
I_{1}	true	true	true	true
I_{2}	false	false	false	false
I_{3}	true	true	false	false
I_{4}	true	true	true	false
I_{5}	true	true	false	true

model?
is a model of $K B$

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s
I_{1}	true	true	true	true
I_{2}	false	false	false	false
I_{3}	true	true	false	false
I_{4}	true	true	true	false
I_{5}	true	true	false	true

model?
is a model of $K B$
not a model of $K B$

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s	model?
	I_{1}	true	true	true	true

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s	
	model?				
I_{1}	true	true	true	true	is a model of $K B$
I_{2}	false	false	false	false	
not a model of $K B$					
I_{3}	true	true	false	false	is a model of $K B$
I_{4}	true	true	true	false	is a model of $K B$
I_{5}	true	true	false	true	

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s	
	model?				
I_{1}	true	true	true	true	
is a model of $K B$					
I_{2}	false	false	false	false	
not a model of $K B$					
I_{3}	true	true	false	false	is a model of $K B$
I_{4}	true	true	true	false	is a model of $K B$
I_{5}	true	true	false	true	not a model of $K B$

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s	
	model?				
I_{1}	true	true	true	true	
is a model of $K B$					
I_{2}	false	false	false	false	
not a model of $K B$					
I_{3}	true	true	false	false	is a model of $K B$
I_{4}	true	true	true	false	is a model of $K B$
I_{5}	true	true	false	true	not a model of $K B$

Which of p, q, r, s logically follow from KB ?

Simple Example

$$
K B=\left\{\begin{array}{l}
p \leftarrow q \\
q . \\
r \leftarrow s
\end{array}\right.
$$

	p	q	r	s	
	model?				
I_{1}	true	true	true	true	
is a model of $K B$					
I_{2}	false	false	false	false	
not a model of $K B$					
I_{3}	true	true	false	false	is a model of $K B$
I_{4}	true	true	true	false	is a model of $K B$
I_{5}	true	true	false	true	not a model of $K B$

Which of p, q, r, s logically follow from KB ?
$K B \models p, K B \models q, K B \not \vDash r, K B \not \vDash s$

User's view of Semantics

1. Choose a task domain: intended interpretation.
2. Associate an atom with each proposition you want to represent.
3. Tell the system clauses that are true in the intended interpretation: axiomatizing the domain.
4. Ask questions about the intended interpretation.
5. If $K B \neq g$, then g must be true in the intended interpretation.
6. Users can interpret the answer using their intended interpretation of the symbols.

Computer's view of semantics

- The computer doesn't have access to the intended interpretation.
- All it knows is the knowledge base.
- The computer can determine if a formula is a logical consequence of KB .
- If $K B \models g$ then g must be true in the intended interpretation.
- If $K B \not \vDash g$ then there is a model of $K B$ in which g is false. This could be the intended interpretation.

Electrical Environment

Representing the Electrical Environment

lit_ $l_{1} \leftarrow$ light_ $_{1} \wedge$ live_ $w_{0} \wedge$ ok_ l_{1}
live_ $w_{0} \leftarrow$ live_ $w_{1} \wedge u p_{-} s_{2}$.
live_ $w_{0} \leftarrow$ live_ $_{2} w_{2} \wedge$ down_s . $^{\text {. }}$
live_ $w_{1} \leftarrow$ live_ $_{3} w_{3} \wedge u p_{-} s_{1}$.
live_ $_{2} \leftarrow$ live_ $_{3} \wedge$ down_s s_{1}.
lit_ $_{2} \leftarrow$ light_ $_{2} \wedge$ live_ $_{4} \wedge$ ok_l $_{2}$.
live_ $^{\prime} w_{4} \leftarrow$ live_ $_{-} w_{3} \wedge$ up_s s_{3}.
live_ $p_{1} \leftarrow$ live_ w_{3}.
live_ $_{-} W_{3} \leftarrow$ live_ $_{5} \wedge$ ok_cb $_{1}$.
live_ $p_{2} \leftarrow$ live_ w_{6}.
live_ $_{6} \leftarrow$ live_ $_{5} \wedge$ ok_cb $_{2}$.
live_W5 \leftarrow live_outside.

Proofs

- A proof is a mechanically derivable demonstration that a formula logically follows from a knowledge base.
- Given a proof procedure, $K B \vdash g$ means g can be derived from knowledge base $K B$.
- Recall $K B \models g$ means g is true in all models of $K B$.
- A proof procedure is sound if $K B \vdash g$ implies $K B \models g$.
- A proof procedure is complete if $K B \models g$ implies $K B \vdash g$.

Bottom-up Ground Proof Procedure

One rule of derivation, a generalized form of modus ponens: If " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " is a clause in the knowledge base, and each b_{i} has been derived, then h can be derived.

This is forward chaining on this clause.
(This rule also covers the case when $m=0$.)

Bottom-up proof procedure

$K B \vdash g$ if $g \in C$ at the end of this procedure:
$C:=\{ \} ;$
repeat
select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in $K B$ such that $b_{i} \in C$ for all i, and $h \notin C$;
$C:=C \cup\{h\}$
until no more clauses can be selected.

Example

$$
\begin{aligned}
& a \leftarrow b \wedge c . \\
& a \leftarrow e \wedge f . \\
& b \leftarrow f \wedge k . \\
& c \leftarrow e . \\
& d \leftarrow k . \\
& e . \\
& f \leftarrow j \wedge e . \\
& f \leftarrow c . \\
& j \leftarrow c .
\end{aligned}
$$

Soundness of bottom-up proof procedure

If $K B \vdash g$ then $K B \models g$.

- Suppose there is a g such that $K B \vdash g$ and $K B \not \vDash g$.
- Then there must be a first atom added to C that isn't true in every model of $K B$. Call it h. Suppose h isn't true in model I of $K B$.
- There must be a clause in $K B$ of form

$$
h \leftarrow b_{1} \wedge \ldots \wedge b_{m}
$$

Each b_{i} is true in $I . h$ is false in I. So this clause is false in I. Therefore I isn't a model of $K B$.

- Contradiction.

Fixed Point

- The C generated at the end of the bottom-up algorithm is called a fixed point.
- Let I be the interpretation in which every element of the fixed point is true and every other atom is false.
- I is a model of $K B$.

Proof: Suppose l is not a model of $K B$.

- Then there must be at least one $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ in $K B$ that is false in I.
- It can only be false if h is false and each b_{i} is true in I.
- If this is the case h can be added to C, which is a contradiction to C being the fixed point.
- I is called a Minimal Model.

Completeness

If $K B \models g$ then $K B \vdash g$.

- Suppose $K B \models g$. Then g is true in all models of $K B$.
- Thus g is true in the minimal model.
- Thus g is in the fixed point.
- Thus g is generated by the bottom up algorithm.
- Thus $K B \vdash g$.

Top-down Definite Clause Proof Procedure

Idea: search backward from a query to determine if it is a logical consequence of $K B$.
An answer clause is of the form:

$$
y e s \leftarrow a_{1} \wedge a_{2} \wedge \ldots \wedge a_{m}
$$

The SLD Resolution of this answer clause on atom a_{i} with the clause:

$$
a_{i} \leftarrow b_{1} \wedge \ldots \wedge b_{p}
$$

is the answer clause

$$
\text { yes } \leftarrow a_{1} \wedge \cdots \wedge a_{i-1} \wedge b_{1} \wedge \cdots \wedge b_{p} \wedge a_{i+1} \wedge \cdots \wedge a_{m} .
$$

Derivations

- An answer is an answer clause with $m=0$. That is, it is the answer clause yes \leftarrow.
- A derivation of query "? $q_{1} \wedge \ldots \wedge q_{k}$ " from $K B$ is a sequence of answer clauses $\gamma_{0}, \gamma_{1}, \ldots, \gamma_{n}$ such that
- γ_{0} is the answer clause yes $\leftarrow q_{1} \wedge \ldots \wedge q_{k}$,
- γ_{i} is obtained by resolving γ_{i-1} with a clause in $K B$, and
- γ_{n} is an answer.

Top-down definite clause interpreter

To solve the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select atom a_{i} from the body of $a c$; choose clause C from $K B$ with a_{i} as head; replace a_{i} in the body of ac by the body of C until $a c$ is an answer.

Nondeterministic Choice

- select: don't-care nondeterminism If one selection doesn't lead to a solution, there is no point trying other alternatives.
- choose: don't-know nondeterminism

If one choice doesn't lead to a solution, other choices may.

Example: successful derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k . \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a

$\gamma_{0}:$	yes $\leftarrow a$	$\gamma_{4}:$ yes $\leftarrow e$
$\gamma_{1}:$	yes $\leftarrow e \wedge f$	$\gamma_{5}:$
$\gamma_{2}:$	yes \leftarrow	
$\gamma_{3}:$	yes $\leftarrow f$	yes $\leftarrow c$

Example: failing derivation

$$
\begin{array}{lll}
a \leftarrow b \wedge c . & a \leftarrow e \wedge f . & b \leftarrow f \wedge k . \\
c \leftarrow e . & d \leftarrow k . & e . \\
f \leftarrow j \wedge e . & f \leftarrow c . & j \leftarrow c .
\end{array}
$$

Query: ?a

```
\gamma0: yes }\leftarrow
\gamma1: yes \leftarrowb^c
\gamma2: yes }\leftarrowf\wedgek\wedge
\gamma3: yes }\leftarrowc\wedgek\wedge
```


Search Graph for SLD Resolution

$$
\begin{array}{ll}
a \leftarrow b \wedge c . & a \leftarrow g . \\
a \leftarrow h . & \\
b \leftarrow j . & b \leftarrow k . \\
d \leftarrow m . & d \leftarrow p . \\
f \leftarrow m . & f \leftarrow p . \\
g \leftarrow m . & g \leftarrow f . \\
k \leftarrow m . & \\
h \leftarrow m . & \\
p . & \\
? a \wedge d &
\end{array}
$$

Electrical Domain

[^0]
Representing the Electrical Environment

lit_ $l_{1} \leftarrow$ light_ $_{1} \wedge$ live_ $w_{0} \wedge$ ok_ l_{1}
live_ $w_{0} \leftarrow$ live_ $w_{1} \wedge u p_{-} s_{2}$.
live $_{-} w_{0} \leftarrow$ live_ $_{2} w_{2} \wedge$ down_s s_{2}.
live_ $w_{1} \leftarrow$ live_ $_{3} w_{3} \wedge u p_{-} s_{1}$.
live_ $_{2} \leftarrow$ live_ $_{3} \wedge$ down_s s_{1}.
lit_ $_{2} \leftarrow$ light_ $_{2} \wedge$ live_ $_{4} \wedge$ ok_l $_{2}$.
live_ $^{\prime} w_{4} \leftarrow$ live_ $_{-} w_{3} \wedge$ up_s s_{3}.
live_ $p_{1} \leftarrow$ live_ w_{3}.
live_ $_{-} W_{3} \leftarrow$ live_ $_{5} \wedge$ ok_cb $_{1}$.
live_ $p_{2} \leftarrow$ live_ w_{6}.
live_ $_{6} \leftarrow$ live_ $_{5} \wedge$ ok_cb $_{2}$.
live_W5 \leftarrow live_outside.

Users

- In the electrical domain, what should the house builder know?
- What should an occupant know?

Users

- In the electrical domain, what should the house builder know?
- What should an occupant know?
- Users can't be expected to volunteer knowledge:
- They don't know what information is needed.
- They don't know what vocabulary to use.
- But users can provide observations to the system. They can answer specific queries.

Ask-the-user

- Askable atoms are those that a user should be able to observe.
- instead of trying to prove them, the system asks the user
- There are 3 sorts of goals in the top-down proof procedure:
- Goals for which the user isn't expected to know the answer.
- Askable atoms that may be useful in the proof.
- Askable atoms that the user has already provided information about.

Ask-the-user

- Askable atoms are those that a user should be able to observe.
- instead of trying to prove them, the system asks the user
- There are 3 sorts of goals in the top-down proof procedure:
- Goals for which the user isn't expected to know the answer.
- Askable atoms that may be useful in the proof.
- Askable atoms that the user has already provided information about.
- The top-down proof procedure can be modified to ask users about askable atoms they have not already provided answers for.
- With the bottom-up proof procedure care has to be taken to only ask relevant questions.

Ask-the-user

- The system can use Yes/No questions to elicit observations from the user.

User: ask lit_ l_{1}.
System: Is up_s true? [yes, no,unknown,why,help] User: no.
System Is down_s s_{1} true? [yes,no,unknown,why,help] User: yes.
System Is down_s2 true? [yes, no, unknown, why, help] User: yes.
System: lit_1 1_{1} is true.

Knowledge-Level Explanation

The user can ask ...

- ... HOW questions to learn how an atom was proved.
- ... WHY questions to learn why a question has been asked.

HOW questions

- The systems responds with the rule it used to prove the atom.
- The user can then ask HOW an element of the body of that rule was proved.
- This lets the user explore the proof.

User: ask lit_l2.
System: lit_/2 is true.
User: how
System: \quad lit_ $l_{2} \leftarrow$ light_ $l_{2} \wedge$ live_ $l_{2} \wedge$ ok_ l_{2}.
User: how 2.
System: live_l2 \leftarrow live_w $_{4}$.
User: how 1.
System: live_ $w_{4} \leftarrow$ live_ $w_{3} \wedge u p_{-} s_{3}$.

WHY questions

- The system provides the rule with the asked atom in its body.
- The user can continue to ask WHY the atom in the head of the answer rule is needed in the proof.

User: ask lit_1.
System: Is up_s s_{1} true?
User: why.
System : up_s is used in the rule live_w $_{1} \leftarrow$ live_w $_{3} \wedge u p_{-} s_{1}$.
User: why.
System: live_ w_{1} is used in the rule live_ $w_{0} \leftarrow$ live_ $w_{1} \wedge u p_{-} s_{2}$.
User: why.
System: live_w w_{0} is used in the rule live_ $_{1} \leftarrow$ live_w $_{0}$.

Knowledge-Level Debugging

There are four types of non-syntactic errors that can arise in rule-based systems:

- An incorrect answer is produced: an atom was derived that is false in the intended interpretation (false positive).
- Some answer wasn't produced: the proof failed when it should have succeeded. Some particular true atom wasn't derived (false negative).
- The program gets into an infinite loop.
- The system asks irrelevant questions.

Debugging incorrect answers

- Suppose atom g was proved but is false in the intended interpretation.
- There must be a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ in the knowledge base that was used to prove g.
- Possible reasons for the error:

Debugging incorrect answers

- Suppose atom g was proved but is false in the intended interpretation.
- There must be a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ in the knowledge base that was used to prove g.
- Possible reasons for the error:
- one (or more) of the a_{i} are false in the intended interpretation

Debugging incorrect answers

- Suppose atom g was proved but is false in the intended interpretation.
- There must be a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ in the knowledge base that was used to prove g.
- Possible reasons for the error:
- one (or more) of the a_{i} are false in the intended interpretation \rightarrow identify them and find out why they have been proven

Debugging incorrect answers

- Suppose atom g was proved but is false in the intended interpretation.
- There must be a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ in the knowledge base that was used to prove g.
- Possible reasons for the error:
- one (or more) of the a_{i} are false in the intended interpretation \rightarrow identify them and find out why they have been proven
- all of the a_{i} are true in the intended interpretation

Debugging incorrect answers

- Suppose atom g was proved but is false in the intended interpretation.
- There must be a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ in the knowledge base that was used to prove g.
- Possible reasons for the error:
- one (or more) of the a_{i} are false in the intended interpretation
\rightarrow identify them and find out why they have been proven
- all of the a_{i} are true in the intended interpretation
\rightarrow revise the rule

Debugging incorrect answers

- Suppose atom g was proved but is false in the intended interpretation.
- There must be a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ in the knowledge base that was used to prove g.
- Possible reasons for the error:
\checkmark one (or more) of the a_{i} are false in the intended interpretation \rightarrow identify them and find out why they have been proven
- all of the a_{i} are true in the intended interpretation
\rightarrow revise the rule
- Incorrect answers can be debugged by only answering yes/no questions.

Missing Answers

If atom g is true in the intended interpretation, but could not be proved, either:

- There is no appropriate rule for g

Missing Answers

If atom g is true in the intended interpretation, but could not be proved, either:

- There is no appropriate rule for $g \rightarrow$ add one.

Missing Answers

If atom g is true in the intended interpretation, but could not be proved, either:

- There is no appropriate rule for $g \rightarrow$ add one.
- There is a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ that should have succeeded, but didn't.

Missing Answers

If atom g is true in the intended interpretation, but could not be proved, either:

- There is no appropriate rule for $g \rightarrow$ add one.
- There is a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ that should have succeeded, but didn't.
- One of the a_{i} is true in the interpretation but could not be proved

Missing Answers

If atom g is true in the intended interpretation, but could not be proved, either:

- There is no appropriate rule for $g \rightarrow$ add one.
- There is a rule $g \leftarrow a_{1} \wedge \ldots \wedge a_{k}$ that should have succeeded, but didn't.
- One of the a_{i} is true in the interpretation but could not be proved
\rightarrow find out why not

Reasoning about inconsistent situations

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't? What can we conclude?

Reasoning about inconsistent situations

- In the electrical domain, what if we predict that a light should be on, but observe that it isn't?
What can we conclude?
- We will expand the definite clause language to include integrity constraints which are rules that imply false, where false is an atom that is false in all interpretations.
- This will allow us to make conclusions from a contradiction.
- A definite clause knowledge base is always consistent. This will no longer be true with rules that imply false.

Horn clauses

- An integrity constraint is a clause of the form

$$
\text { false } \leftarrow a_{1} \wedge \ldots \wedge a_{k}
$$

where the a_{i} are atoms and false is a special atom that is false in all interpretations.

- A Horn clause is either a definite clause or an integrity constraint.

Negative Conclusions

- Negations can follow from a Horn clause KB.
- The negation of α, written $\neg \alpha$ is a formula that
- is true in interpretation $/$ if α is false in I, and
- is false in interpretation I if α is true in I.
- Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow c .
\end{array}\right\} \quad K B \models \neg c
$$

Disjunctive Conclusions

- Disjunctions can follow from a Horn clause KB.
- The disjunction of α and β, written $\alpha \vee \beta$, is
- true in interpretation I if α is true in I or β is true in I (or both are true in I).
- false in interpretation I if α and β are both false in I.
- Example:

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b . \\
a \leftarrow c . \\
b \leftarrow d .
\end{array}\right\} \quad K B \models \neg c \vee \neg d
$$

Questions and Answers in Horn KBs

- An assumable is an atom whose negation you are prepared to accept as part of a (disjunctive) answer.
- A conflict of $K B$ is a set of assumables that, given $K B$ imply false.
- A minimal conflict is a conflict such that no strict subset is also a conflict.

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$ is a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e\}$

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e\}$ is a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e\}$ is a conflict
- $\{d, e, f\}$

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e\}$ is a conflict
- $\{d, e, f\}$ is not a conflict

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e\}$ is a conflict
- $\{d, e, f\}$ is not a conflict
- $\{c, d, e, h\}$

Conflict Example

Example: If $\{c, d, e, f, g, h\}$ are the assumables

$$
K B=\left\{\begin{array}{l}
\text { false } \leftarrow a \wedge b \\
a \leftarrow c \\
b \leftarrow d \\
b \leftarrow e
\end{array}\right\}
$$

- $\{c, d\}$ is a conflict
- $\{c, f\}$ is not a conflict
- $\{c, e\}$ is a conflict
- $\{c, d, e\}$ is a conflict
- $\{d, e, f\}$ is not a conflict
- $\{c, d, e, h\}$ is a conflict

Using Conflicts for Diagnosis

- Assume that the user is able to observe whether a light is lit or dark and whether a power outlet is dead or live.
- A light can't be both lit and dark. An outlet can't be both live and dead:
false \leftarrow dark_ $I_{1} \&$ lit $_{-} I_{1}$.
false \leftarrow dark_ $_{2} \&$ lit_ $_{2}$.
false \leftarrow dead_ p_{1} \& live_ p_{2}.
- Assume the individual components are working correctly:
assumable ok_l l_{1}.
assumable ok_s2.
...
- Suppose switches s_{1}, s_{2}, and s_{3} are all up:
up_s1. up_s2. up_s3.

Electrical Environment

Representing the Electrical Environment

light_1.
light_l2.
up_s.
up_s2.
up_S3.
live_outside.

$$
\begin{aligned}
& \text { lit_ }_{1} \leftarrow \text { light }_{1} I_{1} \wedge \text { live_ } w_{0} \wedge \text { ok_ } I_{1} . \\
& \text { live_ } w_{0} \leftarrow \text { live_ } w_{1} \wedge u p_{-} s_{2} \wedge o k_{-} s_{2} . \\
& \text { live }_{-} w_{0} \leftarrow \text { live }_{-} w_{2} \wedge \text { down_s } s_{2} \wedge \text { ok_s } s_{2} . \\
& \text { live_ }_{1} \leftarrow \text { live_ }_{1} w_{3} \wedge u p_{-} s_{1} \wedge \text { ok_s } s_{1} \text {. } \\
& \text { live_ }_{2} \leftarrow \text { live_ }_{3} \wedge \text { down_s }_{1} \wedge \text { ok_s. } \\
& \text { lit_I }_{2} \leftarrow \text { light_l }_{2} \wedge \text { live_ } w_{4} \wedge \text { ok_l }_{2} \text {. } \\
& \text { live_ } w_{4} \leftarrow \text { live_ } w_{3} \wedge u p_{-} s_{3} \wedge \text { ok_s } s_{3} . \\
& \text { live_ } p_{1} \leftarrow \text { live_ }_{3} \text {. } \\
& \text { live_ }_{3} \leftarrow \text { live_ }_{5} \wedge \text { ok_cb }_{1} \text {. } \\
& \text { live_ } p_{2} \leftarrow \text { live_w } \text {. }_{6} \\
& \text { live_ }_{6} \leftarrow \text { live_ }_{5} \wedge \text { ok_cb } 2_{2} . \\
& \text { live_W5 } \leftarrow \text { live_outside. }
\end{aligned}
$$

Representing the Electrical Environment

$$
\begin{aligned}
& \text { assumable ok_s }{ }_{1} \text {. } \\
& \text { assumable ok_s2. } \\
& \text { assumable ok_s3. } \\
& \text { assumable ok_lı. } \\
& \text { assumable ok_l2. } \\
& \text { assumable ok_cb } l_{1} . \\
& \text { assumable ok_cb }
\end{aligned}
$$

Diagnoses

- If the user has observed I_{1} and I_{2} are both dark: dark_/ 1_{1} dark_ l_{2}.
- There are two minimal conflicts: $\left\{o k_{-} c b_{1}, o k_{-} s_{1}, o k_{-} s_{2}, o k_{-} I_{1}\right\}$ and
$\left\{o k_{-} c b_{1}, o k_{-} s_{3}, o k_{-} I_{2}\right\}$.
- You can derive:

$$
\begin{aligned}
& \neg o k_{_} c b_{1} \vee \neg o k_{-} s_{1} \vee \neg o k_{-} s_{2} \vee \neg o k_{-} I_{1} \\
& \neg o k_{_} c b_{1} \vee \neg o k_{-} s_{3} \vee \neg o k_{-} l_{2} .
\end{aligned}
$$

Diagnoses

- Either $c b_{1}$ is broken or there is one of six double faults.

$$
\begin{aligned}
& \neg o k_{-} c b_{1} \vee \\
& \neg o k_{-} s_{1} \wedge \neg o k_{-} s_{3} \vee \\
& \neg o k_{-} s_{1} \wedge \neg o k_{-} l_{2} \vee \\
& \neg o k_{-} s_{2} \wedge \neg o k_{-} s_{3} \vee \\
& \neg o k_{-} s_{2} \wedge \neg o k_{-} l_{2} \vee \\
& \neg o k_{-} l_{1} \wedge \neg o k_{-} s_{3} \vee \\
& \neg o k_{-} l_{1} \wedge \neg o k_{-} l_{2} \vee
\end{aligned}
$$

Diagnoses

- A consistency-based diagnosis is a set of assumables that has at least one element in each conflict.
- A minimal diagnosis is a diagnosis such that no subset is also a diagnosis.
- Intuitively, one of the minimal diagnoses must hold. A diagnosis holds if all of its elements are false.
- Example: For the preceeding example there are seven minimal diagnoses: $\left\{o k_{-} c b_{1}\right\},\left\{o k_{-} s_{1}, o k_{-} s_{3}\right\},\left\{o k_{-} s_{1}, o k_{-} l_{2}\right\}$, $\left\{o k_{-} s_{2}, o k_{-} s_{3}\right\}, \ldots$

Recall: top-down consequence finding

To solve the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select atom a_{i} from the body of $a c$; choose clause C from $K B$ with a_{i} as head; replace a_{i} in the body of ac by the body of C until $a c$ is an answer.

Implementing conflict finding: top down

- Query is false.
- Don't select an atom that is assumable.
- Stop when all of the atoms in the body of the generalised query are assumable:
- this is a conflict

Example

$$
\begin{aligned}
& \text { false } \leftarrow a . \\
& a \leftarrow b \& c . \\
& b \leftarrow d . \\
& b \leftarrow e \\
& c \leftarrow f . \\
& c \leftarrow g . \\
& e \leftarrow h \& w . \\
& e \leftarrow g . \\
& w \leftarrow f . \\
& \text { assumable } d, f, g, h .
\end{aligned}
$$

Bottom-up Conflict Finding

- Conclusions are pairs $\langle a, A\rangle$, where a is an atom and A is a set of assumables that imply a.
- Initially, conclusion set $C=\{\langle a,\{a\}\rangle: a$ is assumable $\}$.
- If there is a rule $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ such that for each b_{i} there is some A_{i} such that $\left\langle b_{i}, A_{i}\right\rangle \in C$, then $\left\langle h, A_{1} \cup \ldots \cup A_{m}\right\rangle$ can be added to C.
- If $\left\langle a, A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subset A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.
- If $\left\langle\right.$ false, $\left.A_{1}\right\rangle$ and $\left\langle a, A_{2}\right\rangle$ are in C, where $A_{1} \subseteq A_{2}$, then $\left\langle a, A_{2}\right\rangle$ can be removed from C.

Bottom-up Conflict Finding Code

$C:=\{\langle a,\{a\}\rangle: a$ is assumable $\} ;$ repeat
select clause " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " in T such that $\left\langle b_{i}, A_{i}\right\rangle \in C$ for all i and there is no $\left\langle h, A^{\prime}\right\rangle \in C$ or $\left\langle\right.$ false, $\left.A^{\prime}\right\rangle \in C$ such that $A^{\prime} \subseteq A$ where $A=A_{1} \cup \ldots \cup A_{m}$;
$C:=C \cup\{\langle h, A\rangle\}$
Remove any elements of C that can now be pruned;
until no more selections are possible

Deriving negative conclusions

- To derive negative conclusions you needs to assume that your knowledge is complete.
- Example: you can state what switches are up and the agent can assume that the other switches are down.
- Example: assume that a database of what students are enrolled in a course is complete.
- The definite clause language is monotonic: adding clauses can't invalidate a previous conclusion.
- Under the complete knowledge assumption, the system is non-monotonic: adding clauses can invalidate a previous conclusion.

Completion of a knowledge base

- Suppose the rules for atom a are

$$
a \leftarrow b_{1} .
$$

$$
a \leftarrow b_{n} .
$$

equivalently $a \leftarrow b_{1} \vee \ldots \vee b_{n}$.

- Under the Complete Knowledge Assumption, if a is true, one of the b_{i} must be true:

$$
a \rightarrow b_{1} \vee \ldots \vee b_{n} .
$$

- Clark's completion: Under the CKA, the clauses for a are strengthened to

$$
a \leftrightarrow b_{1} \vee \ldots \vee b_{n}
$$

Clark's Completion of a KB

- Clark's completion of a knowledge base consists of the completion of every atom.
- If you have an atom a with no clauses, the completion is $a \leftrightarrow$ false, i.e. a is false.
- You can interpret negations in the body of clauses. $\sim a$ means that a is false under the complete knowledge assumption
This is negation as failure.

Bottom-up negation as failure interpreter

$C:=\{ \} ;$
repeat
either
select $r \in K B$ such that

$$
\begin{aligned}
& r \text { is " } h \leftarrow b_{1} \wedge \ldots \wedge b_{m} " \\
& b_{i} \in C \text { for all } i, \text { and } \\
& h \notin C ; \\
C:= & C \cup\{h\}
\end{aligned}
$$

or
select h such that for every rule " $h \leftarrow b_{1} \wedge \ldots \wedge b_{m}$ " $\in K B$ either for some $b_{i}, \sim b_{i} \in C$ or some $b_{i}=\sim g$ and $g \in C$

$$
C:=C \cup\{\sim h\}
$$

until no more selections are possible

Negation as failure example

$$
\begin{aligned}
& p \leftarrow q \wedge \sim r \\
& p \leftarrow s \\
& q \leftarrow \sim s \\
& r \leftarrow \sim t \\
& t \\
& s \leftarrow w
\end{aligned}
$$

Top-Down negation as failure proof procedure

- If the proof for a fails, you can conclude $\sim a$.
- Failure can be defined recursively:

Suppose you have rules for atom a :

$$
a \leftarrow b_{1}
$$

$$
a \leftarrow b_{n}
$$

If each body b_{i} fails, a fails.
A body fails if one of the conjuncts in the body fails.
Note that you need finite failure.
For example, the completion of $p \leftarrow p$. does not allow to infer $\sim p$.

Example: Top-Down negation as failure

$$
\begin{aligned}
& p \leftarrow q \wedge \sim r \\
& p \leftarrow s \\
& q \leftarrow \sim s \\
& r \leftarrow \sim t \\
& t \\
& s \leftarrow w
\end{aligned}
$$

Assumption-based Reasoning

Often we want our agents to make assumptions rather than doing deduction from their knowledge. For example:

- In abduction an agent makes assumptions to explain observations. For example, it hypothesizes what could be wrong with a system to produce the observed symptoms.
- In default reasoning an agent makes assumptions of normality to make predictions. For example, the delivery robot may want to assume Mary is in her office, even if it isn't always true.

Design and Recognition

Two different tasks use assumption-based reasoning:

- Design The aim is to design an artifact or plan. The designer can select whichever design they like that satisfies the design criteria.
- Recognition The aim is to find out what is true based on observations. If there are a number of possibilities, the recognizer can't select the one they like best. The underlying reality is fixed; the aim is to find out what it is.
Compare: Recognizing a disease with designing a treatment. Designing a meeting time with determining when it is.

The Assumption-based Framework

The assumption-based framework is defined in terms of two sets of formulae:

- F is a set of closed formula called the facts. These are formulae that are given as true in the world. We assume F are Horn clauses.
- H is a set of formulae called the possible hypotheses or assumables.

Making Assumptions

- A scenario of $\langle F, H\rangle$ is a set D of ground instances of elements of H such that $F \cup D$ is satisfiable.
- An explanation of g from $\langle F, H\rangle$ is a scenario that, together with F, implies g.
D is an explanation of g if $F \cup D \models g$ and $F \cup D \not \models$ false.
A minimal explanation is an explanation such that no strict subset is also an explanation.
- An extension of $\langle F, H\rangle$ is the set of logical consequences of F and a maximal scenario of $\langle F, H\rangle$.

Example

$$
\begin{aligned}
& a \leftarrow b \wedge c . \\
& b \leftarrow e . \\
& b \leftarrow h . \\
& c \leftarrow g . \\
& c \leftarrow f . \\
& d \leftarrow g . \\
& \text { false } \\
& f \leftarrow h \wedge \in d . \\
& \text { assumable } e, h, g, m, n . \\
& \text {. }
\end{aligned}
$$

Default Reasoning and Abduction

Using the assumption-based framework for

- Default reasoning: The truth of a goal g is unknown and is to be determined.
An explanation for g corresponds to an argument for g.
- Abduction: A goal g is given, and we are interested in explaining it. g could be an observation in a recognition task or a design goal in a design task.
Given observations, we typically do abduction, then default reasoning to find consequences.

Computing Explanations

To find assumables to imply the query $? q_{1} \wedge \ldots \wedge q_{k}$:

$$
a c:=" y e s \leftarrow q_{1} \wedge \ldots \wedge q_{k} "
$$

repeat
select non-assumable atom a_{i} from the body of $a c$;
choose clause C from $K B$ with a_{i} as head; replace a_{i} in the body of $a c$ by the body of C until all atoms in the body of $a c$ are assumable.

To find an explanation of query $? q_{1} \wedge \ldots \wedge q_{k}$:

- find assumables to imply ? $q_{1} \wedge \ldots \wedge q_{k}$
- ensure that no subset of the assumables found implies false

Default Reasoning

- When giving information, we don't want to enumerate all of the exceptions, even if we could think of them all.
- In default reasoning, we specify general knowledge and modularly add exceptions. The general knowledge is used for cases we don't know are exceptional.
- Classical logic is monotonic: If g logically follows from A, it also follows from any superset of A.
- Default reasoning is nonmonotonic: When we add that something is exceptional, we can't conclude what we could before.

Defaults as Assumptions

Default reasoning can be modeled using

- H is normality assumptions
- F states what follows from the assumptions

An explanation of g gives an argument for g.

Default Example

A reader of newsgroups may have a default: "Articles about AI are generally interesting".

$$
H=\left\{i n t _a i\right\},
$$

where int_ai means X is interesting if it is about AI.
With facts:

$$
\begin{aligned}
& \text { interesting } \leftarrow \text { about_ai } \wedge \text { int_ai. } \\
& \text { about_ai. }
\end{aligned}
$$

\{int_ai\} is an explanation for interesting.

Default Example, Continued

We can have exceptions to defaults:
false \leftarrow interesting \wedge uninteresting.
Suppose an article is about AI but is uninteresting:
interesting \leftarrow about_ai \wedge int_ai.
about_ai.
uninteresting.
We cannot explain interesting even though everything we know about the previous example we also know about this case.

Exceptions to defaults

Exceptions to Defaults

"Articles about formal logic are about AI."
"Articles about formal logic are uninteresting."
"Articles about machine learning are about AI."

$$
\begin{aligned}
& \text { about_ai } \leftarrow \text { about_fl. } \\
& \text { uninteresting } \leftarrow \text { about_fl. } \\
& \text { about_ai } \leftarrow \text { about_ml. } \\
& \text { interesting } \leftarrow \text { about_ai } \wedge \text { int_ai. } \\
& \text { false } \leftarrow \text { interesting } \wedge \text { uninteresting. } \\
& \text { false } \leftarrow \text { intro_question } \wedge \text { interesting. }
\end{aligned}
$$

Given about_fl, is there explanation for interesting?
Given about_ml, is there explanation for interesting?

Exceptions to Defaults

Formal logic is uninteresting by default

Contradictory Explanations

Suppose formal logic articles aren't interesting by default:

$$
H=\left\{u n i n t_{-} f l, \text { int_ai }\right\}
$$

The corresponding facts are:

$$
\begin{aligned}
& \text { interesting } \leftarrow \text { about_ai } \wedge \text { int_ai. } \\
& \text { about_ai } \leftarrow \text { about_fl. } \\
& \text { uninteresting } \leftarrow \text { about_fl } \wedge \text { unint_fl. } \\
& \text { false } \leftarrow \text { interesting } \wedge \text { uninteresting. } \\
& \text { about_fl. }
\end{aligned}
$$

Does uninteresting have an explanation?
Does interesting have an explanation?

Overriding Assumptions

- For an article about formal logic, the argument "it is interesting because it is about Al" shouldn't be applicable.
- This is an instance of preference for more specific defaults.
- Arguments that articles about formal logic are interesting because they are about AI can be defeated by adding:

$$
\text { false } \leftarrow \text { about_fl } \wedge \text { int_ai. }
$$

This is known as a cancellation rule.

- We can no longer explain interesting.

Diagram of the Default Example

Multiple Extension Problem

- What if incompatible goals can be explained and there are no cancellation rules applicable? What should we predict?
- For example: what if introductory questions are uninteresting, by default?
- This is the multiple extension problem.
- Recall: an extension of $\langle F, H\rangle$ is the set of logical consequences of F and a maximal scenario of $\langle F, H\rangle$.

Competing Arguments

Skeptical Default Prediction

- We predict g if g is in all extensions of $\langle F, H\rangle$.
- Suppose g isn't in extension E. As far as we are concerned E could be the correct view of the world.
So we shouldn't predict g.
- If g is in all extensions, then no matter which extension turns out to be true, we still have g true.
- Thus g is predicted even if an adversary gets to select assumptions, as long as the adversary is forced to select something. You do not predict g if the adversary can pick assumptions from which g can't be explained.

Evidential and Causal Reasoning

Much reasoning in AI can be seen as evidential reasoning , (observations to a theory) followed by causal reasoning (theory to predictions).

- Diagnosis Given symptoms, evidential reasoning leads to hypotheses about diseases or faults, these lead via causal reasoning to predictions that can be tested.
- Robotics Given perception, evidential reasoning can lead us to hypothesize what is in the world, that leads via causal reasoning to actions that can be executed.

Combining Evidential \& Causal Reasoning

To combine evidential and causal reasoning, you can either

- Axiomatize from causes to their effects and
- use abduction for evidential reasoning
- use default reasoning for causal reasoning
- Axiomatize both
- effects \rightarrow possible causes (for evidential reasoning)
- causes \rightarrow effects (for causal reasoning)
use a single reasoning mechanism, such as default reasoning.

Combining abduction and default reasoning

- Representation:
- Axiomatize causally using rules.
- Have normality assumptions (defaults) for prediction
- other assumptions to explain observations
- Reasoning:
- given an observation, use all assumptions to explain observation (find base causes)
- use normality assumptions to predict consequences from base causes (hypotheses to be tested).

Causal Network

Why is the infobot trying another information source?
(Arrows are implications or defaults. Sources are assumable.)

Code for causal network

```
error_message \leftarrow data_absent ^ da_em.
another_source_tried }\leftarrowd\mathrm{ data_absent ^ da_ast
another_source_tried }\leftarrowd\mathrm{ data_inadequate }\wedge\mathrm{ di_ast.
data_absent \leftarrow file_removed ^ fr_da.
data_absent \leftarrow link_down ^ ld_da.
default da_em, da_ast, di_ast,fr_da, ld_da.
assumable file_removed.
assumable link_down.
assumable data_inadequate.
```


Example: fire alarm

Fire Alarm Code

assumable tampering.
assumable fire.
alarm \leftarrow tampering \wedge tampering_caused_alarm.
alarm \leftarrow fire \wedge fire_caused_alarm.
default tampering_caused_alarm.
default fire_caused_alarm.
smoke \leftarrow fire \wedge fire_caused_smoke
default fire_caused_smoke.
leaving \leftarrow alarm \wedge alarm_caused_leaving.
default alarm_caused_leaving.
report \leftarrow leaving \wedge leaving_caused_report.
default leaving_caused_report.

Explaining Away

- If we observe report there are two minimal explanations:
- one with tampering
- one with fire
- If we observed just smoke there is one explanation (containing fire). This explanation makes no predictions about tampering.
- If we had observed report \wedge smoke, there is one minimal explanation, (containing fire).
- The smoke explains away the tampering. There is no need to hypothesise tampering to explain report.

[^0]: (CD. Poole, A. Mackworth 2010, W. Menzel 2015

