
Chapter 4:
Features and Constraints
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States and Features

States can be defined in terms of features: a state
corresponds to an assignment of a value to each feature.

Features can be defined in terms of states: a feature is a
function of the states. The function returns the value of the
feature on that state.

Features are described by variables.

Not all assignments of values to variables are possible.

Example: course timetable.
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Relationship to Search

The path to a goal isn’t important, only the solution is.

Many algorithms exploit the multi-dimensional nature of the
problems.

There are no predefined starting nodes.

Often these problems are huge, with thousands of variables, so
systematically searching the space is infeasible.
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Posing a Constraint Satisfaction Problem

A CSP is characterized by

A set of variables V1,V2, . . . ,Vn.

Each variable Vi has an associated domain DVi
of possible

values.

There are hard constraints on various subsets of the variables
which specify legal combinations of values for these variables.

A solution to the CSP is an assignment of a value to each
variable that satisfies all the constraints.
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Example: scheduling activities

Variables: A, B, C , D, E that represent the starting times of
various activities.

Domains: DA = {1, 2, 3, 4}, DB = {1, 2, 3, 4},
DC = {1, 2, 3, 4}, DD = {1, 2, 3, 4}, DE = {1, 2, 3, 4}
Constraints:

(B 6= 3) ∧ (C 6= 2) ∧ (A 6= B) ∧ (B 6= C ) ∧
(C < D) ∧ (A = D) ∧ (E < A) ∧ (E < B) ∧
(E < C ) ∧ (E < D) ∧ (B 6= D).

Other problems that can be recasted as features and their
admissible value assignments?
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How to formulate a problem as a CSP?

1 2

3

4

Words:

ant, big, bus, car, has
book, buys, hold,
lane, year
beast, ginger, search,
symbol, syntax
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Optimization problems

Constraint satisfaction can be extended to solve optimization
problems

Solutions differ in their quality.

A solution is needed that satisfies the constraints best or is
good enough.

The quality of a solution is determined by means of a cost
function for the assignment of a value to each variable.

A solution is an assignment of values to the variables that
minimizes the cost function.

Note: for optimization problems there are no well-defined goal
states
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Solution procedures

Solution procedures for problems with hard constraints

Generate-and test

Graph search

Domain and arc consistency

Variable elimination

Domain splitting
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Generate-and-Test Algorithm

Generate the assignment space D = DV1 ×DV2 × . . .×DVn .
Test each assignment with the constraints.

Example:

D = DA ×DB ×DC ×DD ×DE

= {1, 2, 3, 4} × {1, 2, 3, 4} × {1, 2, 3, 4}
×{1, 2, 3, 4} × {1, 2, 3, 4}

= {〈1, 1, 1, 1, 1〉 , 〈1, 1, 1, 1, 2〉 , ..., 〈4, 4, 4, 4, 4〉}.

How many assignments need to be tested for n variables each
with domain size d?
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Backtracking Algorithms

Systematically explore D by instantiating the variables one at
a time

evaluate each constraint predicate as soon as all its variables
are bound

any partial assignment that doesn’t satisfy the constraint can
be pruned.

Example Assignment A = 1 ∧ B = 1 is inconsistent with
constraint A 6= B regardless of the value of the other variables.
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CSP as Graph Searching

A CSP can be solved by graph-searching:

A node is an assignment of values to some of the variables.

Suppose node N is the assignment X1 = v1, . . . ,Xk = vk .
Select a variable Y that isn’t assigned in N.
For each value yi ∈ dom(Y )
X1 = v1, . . . ,Xk = vk ,Y = yi is a neighbour if it is consistent
with the constraints.

The start node is the empty assignment.

A goal node is a total assignment that satisfies the constraints.
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Consistency Algorithms

Idea: prune the domains as much as possible before selecting
values from them.

A variable is domain consistent if no value of the domain of
the node is ruled impossible by any of the constraints.

Example: Is the scheduling example domain consistent?

DB = {1, 2, 3, 4} isn’t domain consistent as B = 3 violates
the constraint B 6= 3.

What should we do, if a variable is not domain consistent?

Remove all the values from the domain that violate some
constraint.
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Constraint Network

There is a oval-shaped node for each variable.

There is a rectangular node for each constraint.

There is a domain of values associated with each variable
node.

There is an arc from variable X to each constraint that
involves X .
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Example Constraint Network

{1,2,3,4} {1,2,4}

{1,2,3,4} {1,3,4}

{1,2,3,4}

A B

D C

E

A ≠ B

B ≠ D

C < D

A = D

E < A

B ≠ C

E < B

E < D E < C
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Arc Consistency

An arc
〈
X , r(X ,Y )

〉
is arc consistent if, for each value

x ∈ dom(X ), there is some value y ∈ dom(Y ) such that
r(x , y) is satisfied.

A network is arc consistent if all its arcs are arc consistent.

What should we do, if arc
〈
X , r(X ,Y )

〉
is not arc consistent?

All values of X in dom(X ) for which there is no corresponding
value in dom(Y ) can be deleted from dom(X ) to make the
arc

〈
X , r(X ,Y )

〉
consistent.
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Arc Consistency Algorithm

The arcs can be considered in turn making each arc consistent.

When an arc has been made arc consistent, does it ever need
to be checked again?

An arc
〈
X , r(X ,Y )

〉
needs to be revisited if the domain of

one of the Y ’s is reduced.

Three possible outcomes when all arcs are made arc
consistent: (Is there a solution?)
I One domain is empty

=⇒ no solution

I Each domain has a single value

=⇒ unique solution

I Some domains have more than one value

=⇒ there may or
may not be a solution
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Finding solutions when AC finishes

If some domains have more than one element =⇒ search

Split a domain, then recursively solve each half.
I It is often best to split a domain in half.

Eliminate the variables one-by-one passing their constraints to
their neighbours
I Solve the simplified problem
I Reintegrate the eliminated variable
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Variable elimination

If there is only one variable, return the intersection of the
(unary) constraints that contain it

select a variable X

compute all binary relations R1 ... Rn of that variable with its
neighbouring variables X1 ... Xn in the constraint graph

join these relations R = R1 BC R2 BC ... BC Rn

project the join to the remaining variables R ′ = πXR

call variable elimination recursively without X

join the result with R
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Variable elimination

Example:

Variables: A,B,C ,D

Domains: DA = DB = DC = DD = {1, 2, 3, 4, 5}
Constraints: (A < B) ∧ (B < C ) ∧ (C < D)
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Variable elimination

Eliminating B

RAB

A B

1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

BC

RBC

B C

1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

=

RABC

A B C

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

πB(RABC ) =

RAC

A C

1 3
1 4
1 5
2 4
2 5
3 5
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Variable elimination

Combining with the remaining constraints (which do not involve B)

RAC

A C

1 3
1 4
1 5
2 4
2 5
3 5

BC

RCD

C D

1 2
1 3
1 4
1 5
2 3
2 4
2 5
3 4
3 5
4 5

=

RACD

A C D

1 3 4
1 3 5
1 4 5
2 4 5
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Variable elimination

Re-integrating the eliminated variable

RACD

A C D

1 3 4
1 3 5
1 4 5
2 4 5

BC

RABC

A B C

1 2 3
1 2 4
1 2 5
1 3 4
1 3 5
1 4 5
2 3 4
2 3 5
2 4 5
3 4 5

=

RABCD

A B C D

1 2 3 4
1 2 3 5
1 2 4 5
1 3 4 5
2 3 4 5

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 4, Page 32



Variable elimination

If any join is empty: no solution exists

If only a single solution is needed, an arbitrary tuple of the
join can be returned

The efficiency of the algorithm depends on the order in which
the variables are selected
I finding the optimal elimination sequence is NP hard

Heuristics: always select the variable
I which results in the smallest relation, or
I which adds the smallest number of arcs to the constraint

network

variable elimination can be combined with arc consistency
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Domain splitting

Chose a variable, and split its domain into two (or more)
smaller ones

Solve the simplified CSPs

Each solution for one of the simplified problems will also be a
solution for the original one

Finding a solution requires search through the space of
possible domain splits
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Hard and Soft Constraints

Given a set of variables, assign a value to each variable that
either
I satisfies some set of constraints: satisfiability problems —

“hard constraints”
I minimizes some cost function, where each assignment of

values to variables has some cost: optimization problems —
“soft constraints”

Many problems are a mix of hard and soft constraints
(called constrained optimization problems).
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Local Search

Local Search (Greedy Descent):

Maintain an assignment of a value to each variable.

Repeat:

I Select a variable to change
I Select a new value for that variable

Until a satisfying assignment is found
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Local Search for CSPs

Aim: find an assignment with zero unsatisfied constraints.

Given an assignment of a value to each variable, a conflict is
an unsatisfied constraint.

The goal is an assignment with zero conflicts.

Heuristic function to be minimized: the number of conflicts.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 4, Page 38



Greedy Descent Variants

How to choose a variable to change and its new value?

Find a variable-value pair that minimizes the number of
conflicts

Select a variable that participates in the most conflicts.
Select a value that minimizes the number of conflicts.

Select a variable that appears in any conflict.
Select a value that minimizes the number of conflicts.

Select a variable at random.
Select a value that minimizes the number of conflicts.

Select a variable and value at random; accept this change if it
doesn’t increase the number of conflicts.
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Complex Domains

When the domains are small or unordered, the neighbors of an
assignment corresponds to choosing another value for any of
the variables.

When the domains are large and ordered, the neighbors of an
assignment are the adjacent values for one of the variables.

If the domains are continuous, Gradient descent changes
each variable proportionally to the gradient of the heuristic
function in that direction.
The value of variable Xi is updated according to

v ′i = vi − η
∂h

∂Xi

η is the step size.
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Use cases for local search

solution space: discrete or continuous

cost functions

I CSPs without a cost function

→ find a solution with the lowest number of constraint violations

I CSPs with a cost function attached to the constraints

→ find the solution with the lowest aggregated costs for the
constraints it violates

I CSPs with an independent cost function that does not refer to
the constraints

→ find a consistent solution with the minimum value of the cost
function

I optimization problems with a cost function, but without
constraints

→ find the solution with the minimum value of the cost function
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Problems with Greedy Descent

a local minimum that is
not a global minimum

a plateau where the
heuristic values are
uninformative

a ridge which leads the
search in the wrong
direction
→ Ignorance of the peak

Ridge

Local Minimum

Plateau
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Randomized Algorithms

Consider two methods to find a minimum value:
I Greedy descent, starting from some position, keep moving

down & report minimum value found
I Pick values at random & report minimum value found

Which do you expect to work better to find a global
minimum?

Can a mix work better?
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Randomized Greedy Descent

As well as downward steps we can allow for:

Random steps: move to a random neighbor.

Random restart: reassign random values to all variables.

Which is more expensive computationally?
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1-Dimensional Ordered Examples

Two 1-dimensional search spaces; step right or left:

(a) (b)

Which method would most easily find the global minimum?

What happens in hundreds or thousands of dimensions?

What if different parts of the search space have different
structure?
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Stochastic Local Search

Stochastic local search is a mix of:

Greedy descent: move to a lowest neighbor

Random walk: taking some random steps

Random restart: reassigning values to all variables
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Random Walk

Variants of random walk:

When choosing the best variable-value pair, randomly
sometimes choose a random variable-value pair.

When selecting a variable then a value:
I Sometimes choose any variable that participates in the most

conflicts.
I Sometimes choose any variable that participates in any conflict

(a red node).
I Sometimes choose any variable.

Sometimes choose the best value and sometimes choose a
random value.
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Comparing Stochastic Algorithms

How can you compare three algorithms when
I one solves the problem 30% of the time very quickly but

doesn’t halt for the other 70% of the cases
I one solves 60% of the cases reasonably quickly but doesn’t

solve the rest
I one solves the problem in 100% of the cases, but slowly?

Summary statistics, such as mean run time, median run time,
and mode run time don’t make much sense.
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Runtime Distribution

Plots runtime (or number of steps) and the proportion (or
number) of the runs that are solved within that runtime.
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Variant: Simulated Annealing

Pick a variable at random and a new value at random.

If it is an improvement, adopt it.

If it isn’t an improvement, adopt it probabilistically depending
on a temperature parameter, T .
I With current assignment n and proposed assignment n′ we

move to n′ with probability e(h(n′)−h(n))/T

Temperature can be reduced.

Probability of accepting a change:

Temperature 1-worse 2-worse 3-worse

10 0.91 0.81 0.74
1 0.37 0.14 0.05
0.25 0.02 0.0003 0.000006
0.1 0.00005 2× 10−9 9× 10−14
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Tabu lists

To prevent cycling we can maintain a tabu list of the k last
assignments.

Don’t allow an assignment that is already on the tabu list.

If k = 1, we only don’t allow the immediate reassignment of
the same value to the variable chosen.

Searching the tabu list can be expensive if k is large.

We can implement it more efficiently than as a list of
complete assignments.
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Parallel Search

A total assignment is called an individual .

Idea: maintain a population of k individuals instead of one.

At every stage, update each individual in the population.

Whenever an individual is a solution, it can be reported.

Like k restarts, but uses k times the minimum number of
steps.
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Beam Search

Like parallel search, with k individuals, but choose the k best
out of all of the neighbors.

When k = 1,

it is greedy descent.

When k =∞, it is breadth-first search.

The value of k lets us limit space and parallelism.
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Stochastic Beam Search

Like beam search, but it probabilistically chooses the k
individuals at the next generation.

The probability that a neighbor is chosen is proportional to its
heuristic value.

This maintains diversity amongst the individuals.

The heuristic value reflects the fitness of the individual.

Like asexual reproduction: each individual mutates and the
fittest ones survive.
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Genetic Algorithms

Like stochastic beam search, but pairs of individuals are
combined to create the offspring:

For each generation:
I Randomly choose pairs of individuals where the fittest

individuals are more likely to be chosen.
I For each pair, perform a cross-over: form two offspring each

taking different parts of their parents:
I Mutate some values.

Stop when a solution is found.
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Crossover

Given two individuals:

X1 = a1,X2 = a2, . . . ,Xm = am

X1 = b1,X2 = b2, . . . ,Xm = bm

Select i at random.

Form two offspring:

X1 = a1, . . . ,Xi = ai ,Xi+1 = bi+1, . . . ,Xm = bm

X1 = b1, . . . ,Xi = bi ,Xi+1 = ai+1, . . . ,Xm = am

The effectiveness depends on the ordering of the variables.

Many variations are possible.
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Constraint satisfaction revisited

A Constraint Satisfaction problem consists of:
I a set of variables
I a set of possible values, a domain for each variable
I a set of constraints amongst subsets of the variables

The aim is to find a set of assignments that satisfies all
constraints, or to find all such assignments.
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Example: crossword puzzle

1 2

3

4 5

6

at, be, he, it, on,
eta, hat, her, him, one,
desk, dove, easy, else,
help, kind, soon, this,
dance, first, fuels, given,
haste, loses, sense, sound,
think, usage

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 4, Page 63



Dual Representations

Two ways to represent the crossword as a CSP

First representation:
I nodes represent word positions: 1-down. . . 6-across
I domains are the words
I constraints specify that the letters on the intersections must

be the same.

Dual representation:
I nodes represent the individual squares
I domains are the letters
I constraints specify that the words must fit
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Representations for image interpretation

First representation:
I nodes represent the chains and regions
I domains are the scene objects
I constraints correspond to the intersections and adjacency

Dual representation:
I nodes represent the intersections
I domains are the intersection labels
I constraints specify that the chains must have same marking
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Natural Language Processing as Constraint Satisfaction

Agreement

Linear Order and Optionality

Structural Interpretation
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Agreement

In many languages word forms have to agree with respect to
different morpho-syntactic features

ein kleiner Baum der kleine Baum die kleinen Bäume
eine kleine Blume die kleine Blume die kleinen Blumen
ein kleines Gras das kleine Gras die kleinen Gräser

Usually the assignment of feature values is highly ambiguous

number gender case
die sing ∨ plur masc ∨ fem ∨ neutr nom ∨ acc

großen sing ∨ plur masc ∨ fem ∨ neutr nom ∨ gen ∨ dat ∨ acc
Teller sing ∨ plur masc nom ∨ gen ∨ dat ∨ acc
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Agreement

Lexical constraints : Only some of the possible feature value
combinations are valid ones

Lexical constraints can be extensionally specified
die 〈sing, fem, nom〉 ∨ 〈sing, fem, acc〉 ∨

〈plur, masc, nom〉 ∨ 〈plur, masc, acc〉 ∨
〈plur, fem, nom〉 ∨ 〈plur, fem, acc〉 ∨
〈plur, neutr, nom〉 ∨ 〈plur, neutr, acc〉

großen 〈sing, masc, gen〉 ∨ 〈sing, masc, dat〉 ∨
〈sing, fem, gen〉 ∨ 〈sing, fem, dat〉 ∨
〈sing, neutr, gen〉 ∨ 〈sing, neutr, dat〉 ∨
〈plur, masc, nom〉 ∨ 〈plur, masc, gen〉 ∨
〈plur, masc, dat〉 ∨ ...

Teller 〈sing, masc, nom〉 ∨ 〈sing, masc, dat〉 ∨
〈sing, masc, acc〉 ∨ 〈plur, masc, nom〉 ∨
〈plur, masc, gen〉 ∨ 〈plur, masc, acc〉
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Agreement

... or as a single logical expression
die fem ∧ sing ∧ (nom ∨ acc)

∨ plur ∧ (masc ∨ fem ∨ neutr) ∧ (nom ∨ acc)
großen sing ∧ (gen ∨ dat) ∧ (masc ∨ fem ∨ neutr)

∨ plur ∧ (masc ∨ fem ∨ neutr)
∧ (nom ∨ gen ∨ dat ∨ acc)

Teller masc ∧ (sing ∧ (nom ∨ dat ∨ acc)
∨ plur ∧ (nom ∨ gen ∨ acc)))
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Agreement

... or as separate constraints
die masc ∨ fem ∨ neutr

sing ∨ plur
nom ∨ acc
sing → fem

großen nom ∨ gen ∨ dat ∨ acc
masc ∨ fem ∨ neutr

sing ∨ plur
sing ∧ masc → gen ∨ dat ∨ acc

sing ∧ (fem ∨ neutr) → gen ∨ dat
Teller masc

sing ∨ plur
sing → nom ∨ dat ∨ acc
plur → nom ∨ gen ∨ acc
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Agreement

Agreement constraints : require two or more word forms to
share the same feature value

Agreement is imposed in certain structural contexts,
e.g. in German

I noun phrases: determiner, adjective, noun

features: number, gender, case

der kluge Hund, des klugen Hunds, dem klugen Hund, den
klugen Hund, die klugen Hunde, ...

I clause-level: subject-verb(-reflexive pronoun):

features: person, number

Ich freue mich. Du freust dich. Er freut sich. ...

Checking for agreement is a (simple) constraint satisfaction
problem
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Agreement

noun

determiner

adjective

preposition

case

gender

number

case

gender

number inflectional type

case

select=local/directional

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 4, Page 72



Linear Order and Optionality

Partial order, e.g. German prepositional phrase
I Examples

auf das Haus
auf das kleine Haus
auf das ziemlich kleine Haus
aufs Haus

I Constraints

Preposition < Determiner
Contracted Preposition < Graduating Particle
Determiner < Graduating Particle
Graduating Particle < Adjective
Adjective < Noun
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Linear Ordering and Optionality

Co-occurence constraints, e.g. German prepositional phrase
I Examples

auf das Haus
auf das kleine Haus
auf das ziemlich kleine Haus
aufs Haus

I Constraints

preposition ↔ determiner *auf Tisch
¬ (contracted preposition ↔ preposition) *in im Bett
graduating particle → adjective *das sehr Auto
adjective ∨ noun *wegen der
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German Prepositional Phrase

noun

determiner

adjective

preposition

prepos. +
determiner

graduating
particle

case

gender

number

∨
lp

case

gender

number inflectional type

lp

case

number

gendercase

exor

↔
lp

lp

lp →

select=local/directional

select=local/directional
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Diagnosis as Constraint Propagation

Constraint Satisfaction fails in case of ill-formed input

By retracting constraints the global consequences of error
hypotheses can be investigated

Searching for minimal error hypotheses ...

... by successively increasing the number of retracted
constraints
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Diagnosis as Constraint Propagation

Highly precise error explanations can be derived

Different views on the error are supported
I rule violations
I missing lexical knowledge

alternative error interpretations can be found

determiner noun adjectivenumber number

das Treffen nächsten

{singular} {singular,plural} {plural}

selecting an appropriate one according to the communicative
context
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Diagnosis as Constraint Propagation

different feedback levels can be supported
I error detection
I error localization
I error explanation
I correction proposal
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Diagnosis as Constraint Propagation

Diagnosis of word formation errors

determiner
noun-

ending
noun

case

gender

number

paradigm

gender

number

lp

die -n Apfel
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Diagnosis as Constraint Propagation

error explanations for non-words become available

die Schachtel der Apfel

die Schachteln *die Apfeln → Apfel is masculine
not feminine

mit den Schachteln *mit den Apfeln → the plural of Apfel
requires umlaut
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Diagnosis as Constraint Propagation

Diagnosis in morphologically rich languages with full forms

adjective noun

animatedness

case

gender

number

∧

horoxa� pogoda

adjective noun

number

gender

only-det-initial

∧

mladata �ena
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Diagnosis as Constraint Propagation

Morph-based diagnosis in Russian

adjective
adjective
ending

noun
ending

noun

part of speech

final sound

stress

↔

lp

animatedness

case

gender

number

part of speech

animatedness

final sound

paradigm

gender

number

∧
lp

horox- -a� -a pogod-
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Diagnosis as Constraint Propagation

Morph-based diagnosis in Bulgarian

adjective
definite

adjective
root

adjective
inflection

noun
inflection

noun
root

noun
definite

gender

→

gender

↔

lp

gender

number

gender

∧
lp

human

gender

number

lp

number

lp

→∼

-ta dobr- -a- -a- �en- -∅
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Structural Interpretation

Parsing a natural language utterance means solving two tasks
I finding structural descriptions
I selecting the most plausible one

Heuristic search in a large search space

two different kinds of structural descriptions

phrase structure trees vs. dependency trees

Diese Scheibe ist ein Hit

D N

D N V NP

NP VP

S

Diese Scheibe ist ein Hit

DE
T

DE
T

SU
BJ DOBJ
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Parsing as Constraint Satisfaction

Labeled word-to-word are dependencies licensed by constraints

Word forms correspond to the variables of a constraint
satisfaction problem:
I find the ”correct” lexical reading
I find the ”correct” attachment point
I find the ”correct” label

Parsing as structural disambiguation:
find a variable assignment which satisfies all constraints
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Hypothesis space

root/nil root/nil root/nil root/nil root/nil
det/2 det/1 det/1 det/1 det/1
det/3 det/3 det/2 det/2 det/2
det/4 det/4 det/4 det/3 det/3
det/5 det/5 det/5 det/5 det/4
subj/2 subj/1 subj/1 subj/1 subj/1
subj/3 subj/3 subj/2 subj/2 subj/2
subj/4 subj/4 subj/4 subj/3 subj/3
subj/5 subj/5 subj/5 subj/5 subj/4
dobj/2 dobj/1 dobj/1 dobj/1 dobj/1
dobj/3 dobj/3 dobj/2 dobj/2 dobj/2
dobj/4 dobj/4 dobj/4 dobj/3 dobj/3
dobj/5 dobj/5 dobj/5 dobj/5 dobj/4

Diese Scheibe ist ein Hit
1 2 3 4 5
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Parsing as Constraint Satisfaction

Constraints license meaningful linguistic structures

Natural language regularities do not depend on word positions
→ Constraints have to hold between arbitrary variables

{X} : DetNom : Det : 0.0 :
X↓cat=det → X↑cat=noun ∧ X.label=det

{X} : SubjObj : Verb : 0.0 :
X↓cat=noun
→ X↑cat=vfin ∧ X.label=subj ∨ X.label=dobj

{X} : Root : Verb : 0.0 :
X↓cat=vfin → X↑cat=nil

{X,Y} : Unique : General : 0.0 :
X↑id=Y↑id → X.label6=Y.label

{X,Y} : SubjAgr : Subj : 0.0 :
X.label=subj ∧ Y.label=det ∧ X↓id=Y↑id
→ Y↑case=Y↓case=nom
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Preferences

Natural language grammar is not fully consistent

Many conflicting requirements
I e.g. minimizing distance: verb bracket vs. reference

Sie hört sich die Scheibe, die ein Hit ist, an.

Sie hört sich die Scheibe an, die ein Hit ist.
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Preferences
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Conflicts

Conflicts occur

between levels of conceptualization
e.g. syntax, information structure and semantics

between different processing components
e.g. tagger, chunker, PP-attacher

between the model and the utterance
e.g. modelling errors, not well-formed input

between the utterance and the background knowledge
e.g. misconceptions, lies

across modalities
e.g. seeing vs. hearing

Goal: achieve robustness and develop diagnostic capabilities
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Conflicts

Why should we care about conflicts?

they are pervasive

they provide valuable information

I for improving the system:
e.g. through manual grammar development or reinforcement
learning

I about the proficiency of the speaker/writer:
e.g. to derive remedial feedback

I about the intentions of the speaker/writer:
e.g. attention focussing by means of topicalization

I for guiding the parser
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Weighted Constraints

conflict resolution requires weighted constraints
I weights describe the importance of the constraint
I how serious it is to violate the constraint

differently strong constraints
I hard constraints, must always be satisfied
I strong constraints: agreement, word order, ...
I weak constraints: preferences, defaults, ...
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Weighted Constraints

weighted constraints are defeasible

preferential reasoning can be applied
I global optimization problem
I based on local scores
I scores are derived from constraint violations (penalties)
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Global Constraints

Most constraints are local ones (unary, binary)

Sometimes global requirements need to be checked
I existence/non-existence requirements (e.g. valencies)
I conditions in a complex verb group

Local search supports the application of global constraints
I always a complete value assignment (i.e. a dependency tree) is

available

Three kinds of global constraints
I has: downwards tree traversal
I is: upwards path traversal
I recursive constraints: can call other constraints to be checked

elsewhere in the tree
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Weighted Constraints

Different solution procedures are available
I pruning
I systematic search
I local search, guided local search (transformation-based)

strong quality requirements
I a single prespecified solution has to be found (gold standard)
I sometimes the gold standard differs from the optimal solution
I modelling errors vs. search errors

The best method found so far:
I local search with value exchange (frobbing)
I gradient descent heuristics
I with a tabu list
I with limits (similar to branch and bound)
I increasingly accepting degrading value selections to escape

from local minima
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Frobbing

Diese Scheibe ist ein Hit
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Frobbing
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Frobbing
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Frobbing
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Non-local Transformations

usually local transformations result in inacceptable structures

sequences of repair steps have to be considered.

e.g. swapping Subj and Dobj

a) syntax . . .

diese1 det/2 . . .
scheibe2 dobj/3 . . .
ist3 root/nil . . .
ein4 den/5 . . .
hit5 subj/3 . . .

=⇒

b) syntax . . .

diese1 det/2 . . .
scheibe2 subj/3 . . .
ist3 root/nil . . .
ein4 det/5 . . .
hit5 dobj/3 . . .
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Hybrid parsing

The bare constraint-based parser itself is weak

But: constraints turned out to provide an ideal interface to
external predictor components

predictors might be inherently unreliable
→ can their information still be useful?

using several predictors → consistency cannot be expected
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Hybrid parsing

sentence

dependency structure

Constraint
Parser

part-of-speech
tagger (POS)

chunk
parser (CP)

supertagger
(ST)

PP-attacher
(PP)

shift-reduce
parser (SR)
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Hybrid parsing

results on a 1000 sentence newspaper testset (Foth 2006)

accuracy
Predictors unlabelled labelled

0: none 72.6% 68.3%
1: POS only 89.7% 87.9%
2: POS+CP 90.2% 88.4%
3: POS+PP 90.9% 89.1%
4: POS+ST 92.1% 90.7%
5: POS+SR 91.4% 90.0%
6: POS+PP+SR 91.6% 90.2%
7: POS+ST+SR 92.3% 90.9%
8: POS+ST+PP 92.1% 90.7%
9: all five 92.5% 91.1%

net gain although the individual components are unreliable
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Hybrid Parsing

What happens if the predictor becomes superior?
(Khmylko 2007)

WCDG
only POS tagger
90.4% / 88.8%

MST-Parser
with real tags

91.9% / 89.3%

WCDG
all predictors

92.5% / 91.1%

93.1% / 91.8% 93.9% / 92.6%

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 4, Page 108



Parsing as Constraint Satisfaction

Current research

Incremental parsing
I Language unfolds over time
I Decisions about the optimal interpretation have to be taken in

a timely manner
I Local search has an ideal anytime behaviour: fully interruptable

Parsing in a multimodal environment
I Mapping visual stimuli onto linguistic constructions
I Using language to guide the visual attention

Using dynamic predictions
I The world changes over time as the utterance unfolds
I How does the behaviour of the parser depends on when an

external information becomes available
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Summary

Constraint satisfaction techniques ...

simplify search problems

provide diagnostic information

can contribute attractive anytime properties

Weighted constraint satisfaction ...

helps to solve hard optimization problems

deals with conflicting regularities

facilitates information fusion in hybrid architectures

maintains the diagnostic abilities

Major challenge:
The search problem has to be recast in terms of a set of variables
and their compatible value assignments.
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