
Chapter 3: Search
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Searching

Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

A typical problem is when the agent is in one state, it has a
set of deterministic actions it can carry out, and wants to get
to a goal state.

Many AI problems can be abstracted into the problem of
finding a path in a directed graph.

Often there is more than one way to represent a problem as a
graph.
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State-space Search

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality
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Directed Graphs

A graph consists of a set N of nodes and a set A of ordered
pairs of nodes, called arcs .

Node n2 is a neighbor of n1 if there is an arc from n1 to n2.
That is, if 〈n1, n2〉 ∈ A.

A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

The length of path 〈n0, n1, . . . , nk〉 is k .

Given a set of start nodes and goal nodes, a solution is a
path from a start node to a goal node.
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Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.
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State-Space Graph for the Delivery Robot
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State-space vs. search-space graphs

common properties
I arcs represent state transitions (actions)
I arcs are directed (as actions are)

state space
I nodes represent state-of-affairs in the world
I the state-space graph may contain cycles; it usually does

search space
I nodes represent the current state of the search procedure
I the search graph does not contain cycles
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Partial Search Space for a Video Game

Grid game: Rob needs to collect coins C1, C2, C3, C4, without
running out of fuel, and end up at location (1, 1):
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Partial Search Space for a Video Game

Grid game: Rob needs to collect coins C1, C2, C3, C4, without
running out of fuel, and end up at location (1, 1):

Fuel
Rob
C3

5

State:
〈X-pos,Y-pos,Fuel,C1,C2,C3,C4 〉

〈5,8,6,f,t,f,f 〉

〈5,9,5,f,t,f,f 〉 〈5,7,5,f,t,t,f 〉

〈4,9,20,f,t,f,f 〉
〈5,8,4,f,t,f,f 〉

〈5,8,4,f,t,t,f 〉

〈6,8,5,f,t,f,f 〉

〈5,9,19,f,t,f,f 〉

4

9
8
7

Goal:
〈1,1,?,t,t,t,t 〉
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Graph Searching

Generic search algorithm: given a graph, start nodes, and goal
nodes, incrementally explore paths from the start nodes.

Maintain a frontier of paths from the start node that have
been explored.

As search proceeds, the frontier expands into the unexplored
nodes until a goal node is encountered.

The way in which the frontier is expanded defines the
search strategy.
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Problem Solving by Graph Searching

ends of 
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Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;
if goal(nk)

return 〈n0, . . . , nk〉;
for every neighbor n of nk

add 〈n0, . . . , nk , n〉 to frontier ;
end while
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Graph Search Algorithm

Which value is selected from the frontier at each stage defines
the search strategy.

The neighbors define the graph.

goal defines what is a solution.

If more than one answer is required, the search can continue
from the return.
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Search Strategies

Uninformed (blind) search
I Depth-first search
I Breadth-first search
I Lowest-cost-first search

Heuristic search
I Heuristic depth-first search
I Best-first search
I A∗ search
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Depth-first Search

Depth-first search treats the frontier as a stack

It always selects one of the last elements added to the frontier.

If the list of paths on the frontier is [p1, p2, . . .]
I p1 is selected. Paths that extend p1 are added to the front of

the stack (in front of p2).
I p2 is only selected when all paths from p1 have been explored.
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Illustrative Graph — Depth-first Search
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Which shaded goal will a depth-first search find first?
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Properties of Depth-first Search

Does depth-first search guarantee to find the path with fewest
arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?
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Illustrative Graph — Cycles

Is the cycle in the state space or in the search space? Why?

s

With blind search cycles result in an infinitely deep search
space.
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Illustrative Graph — Cycles

Is the cycle in the state space or in the search space? Why?

s

With blind search cycles result in an infinitely deep search
space.
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Complexity of Depth-first Search

Depth-first search isn’t guaranteed to halt on infinite graphs
or on graphs with cycles.

The space complexity is linear in the size of the path being
explored.
I Search is performed in ”mental” space, not in the physical

world
I Backtracking is cost-free

Search is unconstrained by the goal until it happens to
stumble on the goal.
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Breadth-first Search

Breadth-first search treats the frontier as a queue.

It always selects one of the earliest elements added to the
frontier.

If the list of paths on the frontier is [p1, p2, . . . , pr ]:
I p1 is selected. Its neighbors are added to the end of the queue,

after pr .
I p2 is selected next.
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Illustrative Graph — Breadth-first Search
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Properties of Breadth-first Search

Does breadth-first search guarantee to find the path with
fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of the length of the
path selected?

What is the space complexity as a function of the length of
the path selected?

How does the goal affect the search?
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Which shaded goal will a breadth-first search find first?
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Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of
a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni 〉|

An optimal solution is one with minimum cost.

At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

The frontier is a priority queue ordered by path cost.

It finds a least-cost path to a goal node.

When arc costs are equal =⇒ breadth-first search.
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Properties of Lowest-cost-first Search

Does lowest-cost-first search guarantee to find the path with
the lowest cost?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of the length of the
path selected?

What is the space complexity as a function of the length of
the path selected?

How does the goal affect the search?
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Summary of Uninformed Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added

No No Linear

Breadth-first First node added

Yes Yes Exp

Lowest-cost-first Minimal cost(p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path
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Summary of Uninformed Search Strategies
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Summary of Uninformed Search Strategies
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Summary of Uninformed Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path
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Heuristic Search

Idea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to guide the
search: heuristics.

h(n) is an estimate of the cost of the shortest path from
node n to a goal node.

h(n) needs to be efficient to compute.

h can be extended to paths: h(〈n0, . . . , nk〉) = h(nk).

h(n) is an underestimate if there is no path from n to a goal
with cost less than h(n).

An admissible heuristic is a nonnegative heuristic function
that is an underestimate of the actual cost of a path to a goal.

An admissible heuristic is not necessarily a useful one.
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Example Heuristic Functions

If the nodes are points on a Euclidean plane and the cost is
the distance, h(n) can be the straight-line distance from n to
the closest goal.

If the nodes are locations and cost is time, we can use the
distance to a goal divided by the maximum speed.

Many search spaces have no Euclidean distance measure.

If the goal is to collect all of the coins and not run out of fuel,
the cost is an estimate of how many steps it will take to
collect the rest of the coins, refuel when necessary, and return
to goal position.

A heuristic function can be found by solving a simpler (less
constrained) version of the problem.

Simplifying the search problem might result in a misleading
heuristic.
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Heuristic Depth-first Search

Idea: order the neighbors of a node (by their h-value) before
adding them to the front of the frontier.

It locally selects which subtree to develop, but still does
depth-first search. It explores all paths from the node at the
head of the frontier before exploring paths from the next node.
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Illustrative Graph — Heuristic Depth-first Search
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Properties of Heuristic Depth-first Search

Does heuristic depth-first search guarantee to find the shortest
path or the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?
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Best-first Search

Idea: select the path whose end is closest to a goal according
to the heuristic function.

Best-first search selects a path on the frontier with minimal
h-value.

It treats the frontier as a priority queue ordered by h.
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Illustrative Graph — Best-first Search

g

s

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 38



Properties of Best-first Search

Does best-first search guarantee to find the shortest path or
the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?
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A∗ Search

A∗ search uses both path cost and heuristic values

cost(p) is the cost of path p.

h(p) estimates the cost from the end of p to a goal.

Let f (p) = cost(p) + h(p).
f (p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f (p)
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A∗ Search Algorithm

A∗ is a combination of lowest-cost-first and best-first search.

It treats the frontier as a priority queue ordered by f (p).

It always selects the node on the frontier with the lowest
estimated distance from the start to a goal node constrained
to go via that node.
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Illustrative Graph — A∗ Search
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Properties of A∗ Search

Does A∗ search guarantee to find the shortest path or the
path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?
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Admissibility of A∗

If there is a solution, A∗ always finds an optimal solution —the
first path to a goal selected— if

the branching factor is finite

arc costs are bounded above zero (there is some ε > 0 such
that all of the arc costs are greater than ε), and

h(n) is nonnegative and an underestimate of the cost of the
shortest path from n to a goal node.
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Why is A∗ admissible?

If a path p to a goal is selected from a frontier, can there be a
shorter path to a goal?

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate:

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′.

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.
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Why is A∗ admissible?
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Why is A∗ admissible?

A∗ can always find a solution if there is one:

The frontier always contains the initial part of a path to a
goal, before that goal is selected.

A∗ halts, as the costs of the paths on the frontier keep
increasing, and will eventually exceed any finite number.
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How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p where

cost(p) + h(p) < c

cost(p) + h(p) = c

cost(p) + h(p) > c

How can a better heuristic function help?
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Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added

No No Linear

Breadth-first First node added

Yes Yes Exp

Lowest-cost-first Minimal cost(p)

Yes Yes Exp

Heuristic depth-first Local min h(p)

No No Linear

Best-first Global min h(p)

No No Exp

A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path
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Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp
Heuristic depth-first Local min h(p)

No No Linear

Best-first Global min h(p)

No No Exp

A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 52



Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp
Heuristic depth-first Local min h(p) No No Linear
Best-first Global min h(p)

No No Exp

A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 53



Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp
Heuristic depth-first Local min h(p) No No Linear
Best-first Global min h(p) No No Exp
A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 54



Summary of Search Strategies
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Summary of Search Strategies

Relevant criteria for comparing/characterizing search problems (1):

Specification of a search state
I by its name / by its features / by a complex logical expression

Topology of the search space
I Is the search space finite or infinite?
I Does the search space contain cycles or not?
I Can paths in the search space be recombined?
I Is there one start state or several ones?
I Is there one goal state or several ones?
I Does the (next) goal state exist or not?
I Is the goal state reachable or not?
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Summary of Search Strategies

Relevant criteria for comparing/characterizing search problems (2):

Availability of preferential information
I Is there a cost function defined on the arcs of the search space?
I Can the remaining costs for reaching a goal state be estimated

well enough and efficiently?

Specification of the search task
I Do we need to find one solution or all of them?
I Do we need to find the optimal (or near optimal) solution or

just any solution?
I Do we need to find the optimal solution first?
I Are the goal states known in advance or not?
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Variants of Search Strategies

search with cycle-checking

multiple path pruning

iterative deepening

branch and bound

bidirectional search

dynamic programming
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Cycle Checking

s

A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

In depth-first methods, checking for cycles can be done in
time in path length.

For other methods, checking for cycles can be done in
time in path length.

Does cycle checking mean the algorithms halt on finite
state-transition graphs?
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Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.
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Multiple-Path Pruning

What needs to be stored?

How does multiple-path pruning compare to cycle checking?

Do search algorithms with multiple-path pruning always halt
on finite graphs?

What is the space & time overhead of multiple-path pruning?

Can multiple-path pruning prevent an optimal solution from
being found?
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Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

remove all paths from the frontier that use the longer path or

change the initial segment of the paths on the frontier to use
the shorter path or

ensure this doesn’t happen. Make sure that the shortest path
to a node is found first.
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Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).
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Monotone Restriction

Heuristic function h satisfies the monotone restriction if
|h(m)− h(n)| ≤ cost(m, n) for every arc 〈m, n〉.
The monotone restriction guarantees that the f-values on the
frontier can never get smaller whe a path is expanded.

If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds the shortest path to a goal.

This is a strengthening of the admissibility criterion.

It holds for
I search spaces with a Euclidean distance metrics
I heuristics derived from solving a simplified search problem
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Iterative Deepening

So far all search strategies that are guaranteed to halt use
exponential space.

Idea: let’s recompute elements of the frontier rather than
saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.

A depth-bounded depth-first searcher can do this in linear
space.

If a path cannot be found at depth B, look for a path at
depth B + 1. Increase the depth-bound when the search fails
unnaturally (depth-bound was reached).
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Iterative-deepening search

Boolean natural failure;
Procedure dbsearch(〈n0, . . . , nk〉 : path, bound : int):

if goal(nk) and bound = 0 report path 〈n0, . . . , nk〉;
if bound > 0

for each neighbor n of nk
dbsearch(〈n0, . . . , nk , n〉 , bound − 1);

else if nk has a neighbor then natural failure := false;
end procedure dbsearch;
Procedure idsearch(S : node):

Integer bound := 0;
repeat
natural failure := true;
dbsearch(〈s〉 , bound);
bound := bound + 1;

until natural failure;
end procedure idsearch
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Complexity of Iterative Deepening

Complexity with solution at depth k and branching factor b:

how many times visited
level # nodes breadth-first iterative deepening

1
2
. . .
k − 1
k

total
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(

b
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)
− 1
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Depth-first Branch-and-Bound

A way to combine depth-first search with heuristic
information.

Finds the optimal solution.

Most useful when there are multiple solutions, and we want
an optimal one.

Uses the space of depth-first search.
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Depth-first Branch-and-Bound

Idea: maintain the cost of the lowest-cost path found to a
goal so far, call this bound .

If the search encounters a path p such that
cost(p) + h(p) ≥ bound , path p can be pruned.

If a non-pruned path to a goal is found, it must be better than
the previous best path. This new solution is remembered and
bound is set to its cost.

The search can be a depth-first search to save space.

How should the bound be initialized?

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 86



Depth-first Branch-and-Bound

Idea: maintain the cost of the lowest-cost path found to a
goal so far, call this bound .

If the search encounters a path p such that
cost(p) + h(p) ≥ bound , path p can be pruned.

If a non-pruned path to a goal is found, it must be better than
the previous best path. This new solution is remembered and
bound is set to its cost.

The search can be a depth-first search to save space.

How should the bound be initialized?

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 87



Depth-first Branch-and-Bound: Initializing Bound

The bound can be initialized to ∞.

The bound can be set to an estimate of the optimal path
cost.
I if the bound is slightly larger than the cost of the optimal

path, branch-and-bound does not expand more nodes than A∗

I if the bound is lower than the optimal path, no solution will be
found

The idea can be used to iteratively approach the optimal
solution (similar to iterative deepening)
I start with an underestimate of the optimal path as initial

bound
I in case of failure: increase the initial bound and search again

until a solution is found
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Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. One should use forward search if the
forward branching factor is less than the backward branching
factor, and vice versa.

Note: when the graph is dynamically constructed, the
backwards graph may not be available.
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Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk . This can result in an exponential
saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with one breadth-first method that builds a
set of locations that can lead to the goal. In the other
direction another method can be used to find a path to these
interesting locations.
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Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than one big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

The subproblems can be solved using islands =⇒
hierarchy of abstractions.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 94



Dynamic Programming

Idea: A partial solution path up to a state will be part of the
globally optimal solution, if the state lies on the globally optimal
solution path. (Bellman 1957)

Solution: for statically stored graphs, build a table of cost(n) to
reach (or leave) a node.

cost(n) is computed recursively:

cost(n) = min
∀m.n=succ(m)

cost(m) + cost(〈m, n〉)

The optimal path can be computed backwards in a separate
reconstruction step
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Dynamic Programming

Dynamic programming can be applied, if

an optimal path has to be found,

(the goal state is known in advance), and

(the graph is small enough to maintain the complete distance
table for a given goal).

Dynamic programming is well suited for (incremental) sequence
processing: alignment problems

e.g. event detection in signal data

→ indefinite stage problems: the length of the sequence to be
found cannot be determined in advance
I words, planning sequences etc. have different lengths

→ infinite stage problems: the processing has to continue
forever
I disaster prediction (tsunamis, earth quakes, system intrusion,

people falling, ...), word spotting
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Dynamic Programming

Examples:

string-to-string mapping (spelling correction)

sequence alignment with probabilistic models (gene sequence
analysis, speech recognition, swype keyboards, graphical
access control, ...)

structural classification with probabilistic models (tagging,
parsing, translation, composite object recognition, ...)

Efficient solutions, if

the branching factor is quite small, or

the branching of paths is balanced by their recombination

node identity can be checked in constant time
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String-to-String Mapping

Stepwise alignment of the two strings considering four different
cases:

identity: the current characters in both strings are the same

substitution: the current character in string A has been
replaced by another one in string B

deletion: the current character in string A does not exist in
string B

insertion: the current character in string B does not exist in
string A
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String-to-String Mapping

How to recast string mapping as a search problem?

states, state descriptions

start / goal state

state transitions

branching factor

size of the graph
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String-to-String Mapping

Simplest cost model (Levenstein-metric):

cost(id) = 0
cost(sub) = cost(del) = cost(ins) = 1

More sophisticated cost functions can capture additional domain
knowledge

neighbourhood on a keyboard

phonetic similarities

user specific confusions

...
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String-to-String Mapping

Alternative alignments with the same distance are possible

c h e a t

c o a s t
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String-to-String Mapping
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String-to-String Mapping

Representation of search states

〈position in A, position in B, costs〉

State transitions

〈i , j , cold〉 ⇒


〈i + 1, j + 1, cnew 〉 cnew =

{
cold if ai = bj
cold + 1 else

〈i + 1, j , cold + 1〉
〈i , j + 1, cold + 1〉
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String-to-String Mapping

〈0, 0, 0〉
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String-to-String Mapping

〈1, 0, 1〉

〈0, 0, 0〉 〈1, 1, 0〉

〈0, 1, 1〉
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String-to-String Mapping

〈2, 0, 2〉
〈1, 0, 1〉 〈2, 1, 2〉

〈1, 1, 2〉
〈2, 1, 1〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉

〈1, 2, 1〉
〈1, 1, 2〉

〈0, 1, 1〉 〈1, 2, 2〉
〈0, 2, 2〉
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String-to-String Mapping

〈2, 0, 2〉
〈1, 0, 1〉 〈2, 1, 2〉

〈1, 1, 2〉
〈2, 1, 1〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉

〈1, 2, 1〉
〈1, 1, 2〉

〈0, 1, 1〉 〈1, 2, 2〉
〈0, 2, 2〉
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String-to-String Mapping

〈3, 0, 3〉
〈2, 0, 2〉 〈3, 1, 3〉

〈1, 0, 1〉 〈2, 1, 2〉 〈2, 1, 3〉
〈1, 1, 2〉 〈3, 1, 2〉
〈2, 1, 1〉 〈3, 2, 2〉

〈2, 2, 3〉
〈3, 2, 2〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉 〈3, 3, 2〉
〈2, 3, 2〉
〈2, 2, 2〉

〈1, 2, 1〉 〈2, 3, 2〉
〈1, 1, 2〉 〈1, 3, 2〉

〈0, 1, 1〉 〈1, 2, 2〉 〈1, 2, 3〉
〈0, 2, 2〉 〈1, 3, 3〉

〈0, 3, 3〉
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String-to-String Mapping

〈3, 0, 3〉
〈2, 0, 2〉 〈3, 1, 3〉

〈1, 0, 1〉 〈2, 1, 2〉 〈2, 1, 3〉
〈1, 1, 2〉 〈3, 1, 2〉
〈2, 1, 1〉 〈3, 2, 2〉

〈2, 2, 3〉
〈3, 2, 2〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉 〈3, 3, 2〉
〈2, 3, 2〉
〈2, 2, 2〉

〈1, 2, 1〉 〈2, 3, 2〉
〈1, 1, 2〉 〈1, 3, 2〉

〈0, 1, 1〉 〈1, 2, 2〉 〈1, 2, 3〉
〈0, 2, 2〉 〈1, 3, 3〉

〈0, 3, 3〉
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String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0
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String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0

c h e a t

0 1 2 3 4 5

c 1

o 2

a 3

s 4

t 5
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String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0

c h e a t

0 1 2 3 4 5

c 1 0 1 2 3 4

o 2 1 1 2 3 4

a 3 2 2 2 2 3

s 4 3 3 3 3 3

t 5 4 4 4 4 3
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String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0

c h e a t

0 1 2 3 4 5

c 1 0 1 2 3 4

o 2 1 1 2 3 4

a 3 2 2 2 2 3

s 4 3 3 3 3 3

t 5 4 4 4 4 3
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Isolated Word Recognition

speech is described as a sequence of feature vectors

recognizer maintains a list of candidate words

task: find the word among the candidates with the highest
similarity to the recognition target.

the (global) similarity between two words can be accumulated
from the (local) similarity of pairs of feature vectors

the similarity of two feature vectors can be computed as the
inverse of the dissimilarity/distance between them, e.g.
Euclidean distance

sim(~x , ~y) =
1√∑n

i=1(xi − yi )2
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Isolated Word Recognition

The similarity of two strings is the sum of the pairwise
point-to-point similarities

Which feature vectors should be in a pair?

the same word spoken by the same person varies considerably
in its temporal characteristics

the degree of temporal variation changes over time

task: find the optimal alignment between a candidate word
and the recognition target which maximizes global similarity

→ dynamic time warping
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Isolated Word Recognition

The degree of temporal variation can be constrained: e.g. only
single feature vectors may be skipped

→ slope constraint

Symmetric slope constraint (Sakoe-Chiba with deletions)

succ(sm,n) =


sm+1,n+1

sm+2,n+1

sm+1,n+2
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Isolated Word Recognition

Telesca (2005)c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 3.1, Page 122



Isolated Word Recognition

The search state graph is built from the transitions as defined by
the slope constraint.

~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x7 ~x8 ~x9 ~x10 ~x11 ~x12 ~x13

~y1

~y2

~y3

~y4

~y5

~y6

~y7

~y8

~y9

Search finds the optimal alignment.
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Isolated Word Recognition

Dynamic time warping was the first success story of speech
recognition

Search can be implemented in a time-synchronous manner

I Table of partial distances is built incrementally during forward
search

I if the optimal path to all nodes in the frontier passes through
one and the same state s, the optimum alignment for the
sequence up to s has been found

I Extension to infinite stage problems is possible
I e.g. dictation, long audio alignment, ...

Highly speaker dependent solutions

Limited vocabulary

No continuous speech recognition

Possible application areas: command recognition, (numerical)
data entry
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Dynamic Programming

Application of Dynamic Programming to goal-directed search:

Build a table of dist(n), the actual distance of the shortest path
from node n to a goal.

The table can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

dist(n) is an optimal policy to reach the goal from state n.

Knowing dist(n), the choice of the optimal path is a deterministic
one.
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Dynamic Programming

Dynamic programming is particularly useful, if

the problem space ist stable,

the goal does not change very often, and

the policy can be reused several times.

Main problems:

Time and space requirements are linear in the size of the
search graph, but graph size is often exponential in the path
length.

Computing the minimum remaining cost can only be done in
a breadth-first manner: Enough space is needed to store the
graph.

The dist function needs to be recomputed for each goal.
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Summary: Search

Search is indispensable for finding optimal solutions to
combinatorial problems

if structured descriptions are required
I sequences (words, genes, plans, ...)
I trees (structured descriptions of complex objects, sentences,

...)
I directed acyclic graphs (meaning representations for complex

visual scenes or natural language texts)
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Summary: Search

Is search sufficient to achieve intelligent behaviour?

often avoiding search should be considered more intelligent

How to avoid search?

(learning) better (feature) representations for the search states

(learning) a better cost function

(learning) better heuristics

switching to an alternative conceptualisation of the problem
to be solved
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Summary: Search
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Summary: Search
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Summary: Search

The mutilated chess board
Max Black (1946) Critical Thinking
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