
Chapter 13:

Ontologies

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 1

Ontologies

Is there a flexible way to represent relations?

How can knowledge bases be made to inter-operate
semantically?

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 2

Choosing Individuals and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”
Can’t ask “what is the color of pen7?”

color(pen7, red). It’s easy to ask “What’s red?”
It’s easy to ask “What is the color of pen7?”
Can’t ask “What property of pen7 has value red?”

prop(pen7, color , red). It’s easy to ask all these questions.

prop(Individual ,Property ,Value) is the only relation needed:
called individual-property-value representation

or triple representation

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 3

Choosing Individuals and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”
Can’t ask “what is the color of pen7?”

color(pen7, red). It’s easy to ask “What’s red?”
It’s easy to ask “What is the color of pen7?”
Can’t ask “What property of pen7 has value red?”

prop(pen7, color , red). It’s easy to ask all these questions.

prop(Individual ,Property ,Value) is the only relation needed:
called individual-property-value representation

or triple representation

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 4

Choosing Individuals and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”
Can’t ask “what is the color of pen7?”

color(pen7, red). It’s easy to ask “What’s red?”
It’s easy to ask “What is the color of pen7?”
Can’t ask “What property of pen7 has value red?”

prop(pen7, color , red). It’s easy to ask all these questions.

prop(Individual ,Property ,Value) is the only relation needed:
called individual-property-value representation

or triple representation

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 5

Choosing Individuals and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”
Can’t ask “what is the color of pen7?”

color(pen7, red). It’s easy to ask “What’s red?”
It’s easy to ask “What is the color of pen7?”
Can’t ask “What property of pen7 has value red?”

prop(pen7, color , red). It’s easy to ask all these questions.

prop(Individual ,Property ,Value) is the only relation needed:
called individual-property-value representation

or triple representation

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 6

Choosing Individuals and Relations

How to represent: “Pen #7 is red.”

red(pen7). It’s easy to ask “What’s red?”
Can’t ask “what is the color of pen7?”

color(pen7, red). It’s easy to ask “What’s red?”
It’s easy to ask “What is the color of pen7?”
Can’t ask “What property of pen7 has value red?”

prop(pen7, color , red). It’s easy to ask all these questions.

prop(Individual ,Property ,Value) is the only relation needed:
called individual-property-value representation

or triple representation

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 7

Universality of prop

To represent “a is a parcel”

prop(a, type, parcel), where type is a special property

prop(a, parcel , true), where parcel is a Boolean property

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 8

Universality of prop

To represent “a is a parcel”

prop(a, type, parcel), where type is a special property

prop(a, parcel , true), where parcel is a Boolean property

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 9

Reification

To represent scheduled(cs422, 2, 1030, cc208). “section 2 of
course cs422 is scheduled at 10:30 in room cc208.”

Let b123 name the booking:

prop(b123, course, cs422).

prop(b123, section, 2).

prop(b123, time, 1030).

prop(b123, room, cc208).

We have reified the booking.

Reify means: to make into an individual.

What if we want to add the year?

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 10

Reification

To represent scheduled(cs422, 2, 1030, cc208). “section 2 of
course cs422 is scheduled at 10:30 in room cc208.”

Let b123 name the booking:

prop(b123, course, cs422).

prop(b123, section, 2).

prop(b123, time, 1030).

prop(b123, room, cc208).

We have reified the booking.

Reify means: to make into an individual.

What if we want to add the year?

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 11

Semantics Networks

When you only have one relation, prop, it can be omitted without
loss of information.
Logic:

prop(Individual ,Property ,Value)

triple:

〈Individual ,Property ,Value〉

simple sentence:

Individual Property Value.

graphically:

Obj Val
Prop

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 12

An Example Semantic Network

comp_2347
owned_by

craig

room

r107

building comp_sci

deliver_to

mingroom

building
r117

model

lemon_laptop_10000

brand

lemon_computer

logo
lemon_disc

color

brown

size

medium

weight

light

packing

cardboard_box

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 13

Equivalent Logic Program

prop(comp 2347, owned by , craig).

prop(comp 2347, deliver to,ming).

prop(comp 2347,model , lemon laptop 10000).

prop(comp 2347, brand , lemon computer).

prop(comp 2347, logo, lemon disc).

prop(comp 2347, color , brown).

prop(craig , room, r107).

prop(r107, building , comp sci).
...

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 14

Turtle: a simple language of triples

A triple is written as

Subject Verb Object.

A comma can group objects with the same subject and verb.

S V O1,O2. is an abbreviation for
S V O1.
S V O2.

A semi-colon can group verb-object pairs for the same subject.

S V1 O1; V2 O2. is an abbreviation for
S V1 O1.
S V2 O2.

Square brackets can be used to define an individual that is not
given an identifier. It can then be used as the object of a triple.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 15

Turtle Example

〈comp 3645〉 〈#owned by〉 〈#fran〉 ;
〈#color〉 〈#green〉 , 〈#yellow〉 ;
〈#managed by〉 [〈#occupation〉 〈#sys admin〉 ;

〈#serves building〉 〈#comp sci〉].

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 16

Primitive versus Derived Properties

Primitive knowledge is that which is defined explicitly by
facts.

Derived knowledge is knowledge defined by rules.

a class is a set of individuals that are grouped together as
they have similar properties.

Example: All lemon computers may have color = brown.
Associate this property with the class, not the individual.

Allow a special property type between an individual and a
class.

Use a special property subClassOf between two classes that

allows for property inheritance .

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 17

A Structured Semantic Network

comp_2347owned_by

craig

room

r107

building

comp_sci

deliver_to

ming
room

building

r117

type

logo
lemon_disccolorbrown

size

medium
weight

light

packing

cardboard_box

subClassOf

subClassOf

computer

lemon_computer

lemon_laptop_10000

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 18

Logic of Property

An arc c
p
−→ v from a class c with a property p to value v

means every individual in the class has value v on property p:

prop(Obj , p, v)←
prop(Obj , type, c).

Example:

prop(X ,weight, light)←
prop(X , type, lemon laptop 10000).

prop(X , packing , cardboard box)←
prop(X , type, computer).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 19

Logic of Property Inheritance

You can do inheritance through the subclass relationship:

prop(X , type,T)←
prop(S , subClassOf ,T) ∧
prop(X , type, S).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 20

Multiple Inheritance

An individual is usually a member of more than one class. For
example, the same person may be a wine expert, a teacher, a
football coach,. . . .

The individual can inherit the properties of all of the classes it
is a member of: multiple inheritance.

With default values,what if an individual inherits conflicting
defaults from the different classes?
multiple inheritance problem.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 21

Choosing Primitive and Derived Properties

Associate a property value with the most general class with
that property value.

Don’t associate contingent properties of a class with the class.
For example, if all of current computers just happen to be
brown.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 22

Relationship to OO-programming

Individuals in a knowledge base are usually things in the real
world. Objects in OOP are computational objects. e.g. data
structures and associated programs.

The representation of an object in a knowledge base is only an
approximation at one (or a few) levels of abstraction. An
OOP system knows everything about an object, but nothing
about individuals in the world.

The class structure of OOP is intended to represent objects
designed by a systems analyst or a programmer. A knowledge
base is used to represent aspects of the world, which is usually
not so well behaved.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 23

Relationship to OO-programming

Individuals in a knowledge base are usually things in the real
world. Objects in OOP are computational objects. e.g. data
structures and associated programs.

The representation of an object in a knowledge base is only an
approximation at one (or a few) levels of abstraction. An
OOP system knows everything about an object, but nothing
about individuals in the world.

The class structure of OOP is intended to represent objects
designed by a systems analyst or a programmer. A knowledge
base is used to represent aspects of the world, which is usually
not so well behaved.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 24

Relationship to OO-programming

Individuals in a knowledge base are usually things in the real
world. Objects in OOP are computational objects. e.g. data
structures and associated programs.

The representation of an object in a knowledge base is only an
approximation at one (or a few) levels of abstraction. An
OOP system knows everything about an object, but nothing
about individuals in the world.

The class structure of OOP is intended to represent objects
designed by a systems analyst or a programmer. A knowledge
base is used to represent aspects of the world, which is usually
not so well behaved.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 25

Relationship to OO-programming

In OOP an object can only be a member of one of the
lowest-level classes. Multiple inheritance is usually not
allowed. In the real world multiple inheritance is quite
common.

A computer program cannot be uncertain about its data
structures. A knowledge representation can be uncertain
about the types of things in the world

OOP objects are intended to carry out some kind of
computation. A knowledge representation does not actually
do anything, it simply refers to objects in the world

OO modeling tools have facilities to help building good
designs. Imposing a good design on the unstructured world
might not be helpful.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 26

Relationship to OO-programming

In OOP an object can only be a member of one of the
lowest-level classes. Multiple inheritance is usually not
allowed. In the real world multiple inheritance is quite
common.

A computer program cannot be uncertain about its data
structures. A knowledge representation can be uncertain
about the types of things in the world

OOP objects are intended to carry out some kind of
computation. A knowledge representation does not actually
do anything, it simply refers to objects in the world

OO modeling tools have facilities to help building good
designs. Imposing a good design on the unstructured world
might not be helpful.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 27

Relationship to OO-programming

In OOP an object can only be a member of one of the
lowest-level classes. Multiple inheritance is usually not
allowed. In the real world multiple inheritance is quite
common.

A computer program cannot be uncertain about its data
structures. A knowledge representation can be uncertain
about the types of things in the world

OOP objects are intended to carry out some kind of
computation. A knowledge representation does not actually
do anything, it simply refers to objects in the world

OO modeling tools have facilities to help building good
designs. Imposing a good design on the unstructured world
might not be helpful.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 28

Relationship to OO-programming

In OOP an object can only be a member of one of the
lowest-level classes. Multiple inheritance is usually not
allowed. In the real world multiple inheritance is quite
common.

A computer program cannot be uncertain about its data
structures. A knowledge representation can be uncertain
about the types of things in the world

OOP objects are intended to carry out some kind of
computation. A knowledge representation does not actually
do anything, it simply refers to objects in the world

OO modeling tools have facilities to help building good
designs. Imposing a good design on the unstructured world
might not be helpful.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 29

Knowledge Sharing

A conceptualization is a mapping from the problem domain
into the representation. A conceptualization specifies:

I What sorts of individuals are being modeled
I The vocabulary for specifying individuals, relations and

properties
I The meaning or intention of the vocabulary

If more than one person is building a knowledge base, they
must be able to share the conceptualization.

An ontology is a specification of a conceptualization.
An ontology specifies the meanings of the symbols in an
information system.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 30

Mapping from a conceptualization to a symbol

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 31

Semantic Web

Ontologies are published on the web in machine readable form.

Builders of knowledge bases or web sites adhere to and refer
to a published ontology:

I a symbol defined by an ontology means the same thing across
web sites that obey the ontology.

I if someone wants to refer to something not defined, they
publish an ontology defining the terminology.
Others adopt the terminology by referring to the new ontology.
In this way, ontologies evolve.

I Separately developed ontologies can have mappings between
them published.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 32

Challenges of building ontologies

Ontologies can be huge: finding the appropriate terminology
for a concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 33

Challenges of building ontologies

Ontologies can be huge: finding the appropriate terminology
for a concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 34

Challenges of building ontologies

Ontologies can be huge: finding the appropriate terminology
for a concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 35

Challenges of building ontologies

Ontologies can be huge: finding the appropriate terminology
for a concept may be difficult.

How one divides the world can depend on the application.
Different ontologies describe the world in different ways.

People can fundamentally disagree about an appropriate
structure.

Different knowledge bases can use different ontologies.

To allow KBs based on different ontologies to inter-operate,
there must be mapping between ontologies.

It has to be in user’s interests to use an ontology.

The computer doesn’t understand the meaning of the symbols.
The formalism can constrain the meaning, but can’t define it.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 36

Semantic Web Technologies

XML the Extensible Markup Language provides generic
syntax.
〈tag . . . /〉 or
〈tag . . . 〉 . . . 〈/tag〉.
URI a Uniform Resource Identifier is a name of an individual

(resource). This name can be shared. Often in the form of a
URL to ensure uniqueness.

RDF the Resource Description Framework is a language of
triples

OWL the Web Ontology Language, defines some primitive
properties that can be used to define terminology. (Doesn’t
define a syntax).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 37

Main Components of an Ontology

Individuals the things / objects in the world (not usually
specified as part of the ontology)

Classes sets of individuals

Properties relationships between individuals and their values

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 38

Individuals

Individuals are things in the world that can be named.
(Concrete, abstract, concepts, reified).

Unique names assumption (UNA): different names refer to
different individuals.

The UNA is not an assumption we can universally make:
“The Queen”, “Elizabeth Windsor”, etc.

Without determining equality, we can’t count!

In OWL we can specify:

i1 SameIndividual i2.

i1 DifferentIndividuals i3.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 39

Classes

A class is a set of individuals. E.g., house, building,
officeBuilding

One class can be a subclass of another

house subClassOf building .

officeBuilding subClassOf building .

The most general class is Thing .

Classes can be declared to be the same or to be disjoint:

house EquivalentClasses singleFamilyDwelling .

house DisjointClasses officeBuilding .

Different classes are not necessarily disjoint.
E.g., a building can be both a commercial building and a
residential building.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 40

Properties

A property is a relationship between an individual and a value.

A property has a domain (for the individual) and a range (for
the value).

livesIn domain person.

livesIn range placeOfResidence.

An ObjectProperty is a property whose range is an individual.

A DatatypeProperty is one whose range isn’t an individual,
e.g., is a number or string.

There can also be property hierarchies:

livesIn subPropertyOf enclosure.

principalResidence subPropertyOf livesIn.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 41

Properties (Cont.)

One property can be inverse of another

livesIn InverseObjectProperties hasResident.

Properties can be declared to be transitive, symmetric,
functional, or inverse-functional.

We can also state the minimum and maximal cardinality of a
property.

principalResidence minCardinality 1.

principalResidence maxCardinality 1.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 42

Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

homeOwner subClassOf person.

homeOwner subClassOf

ObjectSomeValuesFrom(owns, house).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 43

Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

homeOwner subClassOf person.

homeOwner subClassOf

ObjectSomeValuesFrom(owns, house).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 44

Property and Class Restrictions

We can define complex descriptions of classes in terms of
restrictions of other classes and properties.
E.g., A homeowner is a person who owns a house.

homeOwner ⊆ person∩{x : ∃h ∈ house such that x owns h}

homeOwner subClassOf person.

homeOwner subClassOf

ObjectSomeValuesFrom(owns, house).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 45

OWL Class Constructors

owl:Thing ≡ all individuals
owl:Nothing ≡ no individuals
owl:ObjectIntersectionOf(C1, . . . ,Ck) ≡ C1 ∩ · · · ∩ Ck

owl:ObjectUnionOf(C1, . . . ,Ck) ≡ C1 ∪ · · · ∪ Ck

owl:ObjectComplementOf(C) ≡ Thing \ C
owl:ObjectOneOf(I1, . . . , Ik) ≡ {I1, . . . , Ik}
owl:ObjectHasValue(P, I) ≡ {x : x P I}
owl:ObjectAllValuesFrom(P,C) ≡ {x : x P y → y ∈ C}
owl:ObjectSomeValuesFrom(P,C) ≡

{x : ∃y ∈ C such that x P y}
owl:ObjectMinCardinality(n,P,C) ≡

{x : #{y |xPy and y ∈ C} ≥ n}
owl:ObjectMaxCardinality(n,P,C) ≡

{x : #{y |xPy and y ∈ C} ≤ n}

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 46

OWL Predicates

rdf:type(I ,C) ≡ I ∈ C
rdfs:subClassOf(C1,C2) ≡ C1 ⊆ C2

owl:EquivalentClasses(C1,C2) ≡ C1 ≡ C2

owl:DisjointClasses(C1,C2) ≡ C1 ∩ C2 = {}
rdfs:domain(P,C) ≡ if xPy then x ∈ C
rdfs:range(P,C) ≡ if xPy then y ∈ C
rdfs:subPropertyOf(P1,P2) ≡ xP1y implies xP2y
owl:EquivalentObjectProperties(P1,P2) ≡ xP1y if and only if xP2y
owl:DisjointObjectProperties(P1,P2) ≡ xP1y implies not xP2y
owl:InverseObjectProperties(P1,P2) ≡ xP1y if and only if yP2x
owl:SameIndividual(I1, . . . , In) ≡∀j∀k Ij = Ik
owl:DifferentIndividuals(I1, . . . , In) ≡ ∀j∀k j 6= k implies Ij 6= Ik
owl:FunctionalObjectProperty(P) ≡ if xPy1 and xPy2 then y1 = y2
owl:InverseFunctionalObjectProperty(P) ≡

if x1Py and x2Py then x1 = x2
owl:TransitiveObjectProperty(P) ≡ if xPy and yPz then xPz
owl:SymmetricObjectProperty ≡ if xPy then yPx

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 47

Knowledge Sharing

One ontology typically imports and builds on other ontologies.

OWL provides facilities for version control.

Tools for mapping one ontology to another allow
inter-operation of different knowledge bases.

The semantic web promises to allow two pieces of information
to be combined if

I they both adhere to an ontology
I these are the same ontology or there is a mapping between

them.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 48

Example: Apartment Building

numberOfUnits is a property which maps residential buildings
onto some values for the number of living units

:numberOfUnits

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:one :two :moreThanTwo).

ownership is a property which maps residential buildings onto
values describing their legal status

:ownership

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:rental :ownerOccupied :coop).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 49

Example: Apartment Building

numberOfUnits is a property which maps residential buildings
onto some values for the number of living units

:numberOfUnits

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:one :two :moreThanTwo).

ownership is a property which maps residential buildings onto
values describing their legal status

:ownership

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:rental :ownerOccupied :coop).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 50

Example: Apartment Building

numberOfUnits is a property which maps residential buildings
onto some values for the number of living units

:numberOfUnits

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:one :two :moreThanTwo).

ownership is a property which maps residential buildings onto
values describing their legal status

:ownership

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:rental :ownerOccupied :coop).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 51

Example: Apartment Building

numberOfUnits is a property which maps residential buildings
onto some values for the number of living units

:numberOfUnits

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:one :two :moreThanTwo).

ownership is a property which maps residential buildings onto
values describing their legal status

:ownership

rdf:type owl:FunctionalObjectProperty;

rdfs:domain :ResidentialBuilding;

rdfs:range owl:OneOf(:rental :ownerOccupied :coop).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 52

Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

:ApartmentBuilding

owl:EquivalentClasses

owl:ObjectIntersectionOf (

owl:ObjectHasValue(:numberOfUnits

:moreThanTwo)

owl:ObjectHasValue(:onwership

:rental)

:ResidentialBuilding).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 53

Example: Apartment Building

An apartment building is a residential building with more than two
units and they are rented.

:ApartmentBuilding

owl:EquivalentClasses

owl:ObjectIntersectionOf (

owl:ObjectHasValue(:numberOfUnits

:moreThanTwo)

owl:ObjectHasValue(:onwership

:rental)

:ResidentialBuilding).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 54

Aristotelian definitions

Aristotle [350 B.C.] suggested the definition if a class C in terms
of:

Genus: the super-class

Differentia: the attributes that make members of the class C
different from other members of the super-class

“If genera are different and co-ordinate, their differentiae are
themselves different in kind. Take as an instance the genus ’animal’
and the genus ’knowledge’. ’With feet’, ’two-footed’, ’winged’,
’aquatic’, are differentiae of ’animal’; the species of knowledge are
not distinguished by the same differentiae. One species of
knowledge does not differ from another in being ’two-footed’.”

Aristotle, Categories, 350 B.C.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 55

Basic Formal Ontology (BFO)

entity
continuant

independent continuant
site
object aggregate
object
fiat part of object
boundary of object

dependent continuant
realizable entity

function
role
disposition

quality
spatial region

volume / surface / line / point

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 56

BFO (cont.)

occurrent
temporal region

connected temporal region
temporal interval
temporal instant

scattered temporal region
spatio-temporal region

connected spatio-temporal region
spatio-temporal interval / spatio-temporal instant

scattered spatio-temporal region
processual entity

process
process aggregate
processual context
fiat part of process
boundary of process

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 57

Continuants vs Occurrents

A continuant exists in an instance of time and maintains its
identity through time.
a pen, Europe, a goal, an email, ...

An occurrent has temporal parts.
a day, sending of an email, smiling, ...

Continuants participate in occurrents.

a person, a life, a finger, infancy: what is part of what?

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 58

Continuants

independent continuants: exists by itself or as part of another
continuant
a person, a leg, an idea, a plan, ...

dependent continuants: exists only by virtue of other
continuants
an earthquake, a smile, a laugh, the smell of a flower, ...

spatial region

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 59

Continuants

objects: a pen, a person, Newtonian mechanics, the memory
of a past event

object aggregates: a flock of birds, the students in CS422, a
card collection

sites: a city, a room, a mouth, the hole of a doughnut

fiat part of an object: the dangerous part of a city, part of
Grouse Mountain with the best view

boundaries: the surface of an apple, the borderline of a
country, a point in a landscape, ...

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 13.1, Page 60

