
Chapter 3: Search

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 1

Searching

Often we are not given an algorithm to solve a problem, but
only a specification of what is a solution — we have to search
for a solution.

A typical problem is when the agent is in one state, it has a
set of deterministic actions it can carry out, and wants to get
to a goal state.

Many AI problems can be abstracted into the problem of
finding a path in a directed graph.

Often there is more than one way to represent a problem as a
graph.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 2

State-space Search

flat or modular or hierarchical

explicit states or features or individuals and relations

static or finite stage or indefinite stage or infinite stage

fully observable or partially observable

deterministic or stochastic dynamics

goals or complex preferences

single agent or multiple agents

knowledge is given or knowledge is learned

perfect rationality or bounded rationality

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 3

Directed Graphs

A graph consists of a set N of nodes and a set A of ordered
pairs of nodes, called arcs .

Node n2 is a neighbor of n1 if there is an arc from n1 to n2.
That is, if 〈n1, n2〉 ∈ A.

A path is a sequence of nodes 〈n0, n1, . . . , nk〉 such that
〈ni−1, ni 〉 ∈ A.

The length of path 〈n0, n1, . . . , nk〉 is k .

Given a set of start nodes and goal nodes, a solution is a
path from a start node to a goal node.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 4

Example Problem for Delivery Robot

The robot wants to get from outside room 103 to the inside of
room 123.

stairs r101 r103 r105 r107 r109 r111

r113

r115

r117

r119r121r123r125r127r129r131

o101 o103 o105 o107 o109 o111

o113

o115

o117

o119o121o123o125o127o129o131

b1

b3 b4

b2

a2

a1

a3

d3

d1 d2

c2 c3

c1

tsmail

storage

main
office

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 5

State-Space Graph for the Delivery Robot

16

8 12
4

6
4

4
4 9

7

7
4

3
6

8
6

4

3

7

mail ts o103

b3

b1

c2

c1

c3

b2

b4

o109

o119

o111

o123

r123

o125

storage

arcs annotated
with costs
for state transitions

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 6

Partial Search Space for a Video Game

Grid game: Rob needs to collect coins C1, C2, C3, C4, without
running out of fuel, and end up at location (1, 1):

Fuel
Rob
C3

54

9
8
7

.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 7

Partial Search Space for a Video Game

Grid game: Rob needs to collect coins C1, C2, C3, C4, without
running out of fuel, and end up at location (1, 1):

Fuel
Rob
C3

5

State:
〈X-pos,Y-pos,Fuel,C1,C2,C3,C4 〉

〈5,8,6,f,t,f,f 〉

〈5,9,5,f,t,f,f 〉 〈5,7,5,f,t,t,f 〉

〈4,9,20,f,t,f,f 〉
〈5,8,4,f,t,f,f 〉

〈5,8,4,f,t,t,f 〉

〈6,8,5,f,t,f,f 〉

〈5,9,19,f,t,f,f 〉

4

9
8
7

Goal:
〈1,1,?,t,t,t,t 〉

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 8

Graph Searching

Generic search algorithm: given a graph, start nodes, and goal
nodes, incrementally explore paths from the start nodes.

Maintain a frontier of paths from the start node that have
been explored.

As search proceeds, the frontier expands into the unexplored
nodes until a goal node is encountered.

The way in which the frontier is expanded defines the
search strategy.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 9

Problem Solving by Graph Searching

ends of
paths on
frontier

explored nodes

unexplored nodes

start
node

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 10

Graph Search Algorithm

Input: a graph,
a set of start nodes,
Boolean procedure goal(n) that tests if n is a goal node.

frontier := {〈s〉 : s is a start node};
while frontier is not empty:

select and remove path 〈n0, . . . , nk〉 from frontier ;
if goal(nk)

return 〈n0, . . . , nk〉;
for every neighbor n of nk

add 〈n0, . . . , nk , n〉 to frontier ;
end while

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 11

Graph Search Algorithm

Which value is selected from the frontier at each stage defines
the search strategy.

The neighbors define the graph.

goal defines what is a solution.

If more than one answer is required, the search can continue
from the return.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 12

Search Strategies

Uninformed (blind) search
I Depth-first search
I Breadth-first search
I Lowest-cost-first search

Heuristic search
I Heuristic depth-first search
I Best-first search
I A∗ search

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 13

Depth-first Search

Depth-first search treats the frontier as a stack

It always selects one of the last elements added to the frontier.

If the list of paths on the frontier is [p1, p2, . . .]
I p1 is selected. Paths that extend p1 are added to the front of

the stack (in front of p2).
I p2 is only selected when all paths from p1 have been explored.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 14

Illustrative Graph — Depth-first Search

1

2

3

4

5

6

7

8

9

10

11

12

13

14

15 16

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 15

Which shaded goal will a depth-first search find first?

Q W

T

U

Y

R

V

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 16

Properties of Depth-first Search

Does depth-first search guarantee to find the path with fewest
arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 17

Breadth-first Search

Breadth-first search treats the frontier as a queue.

It always selects one of the earliest elements added to the
frontier.

If the list of paths on the frontier is [p1, p2, . . . , pr]:
I p1 is selected. Its neighbors are added to the end of the queue,

after pr .
I p2 is selected next.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 18

Illustrative Graph — Breadth-first Search

1

2 3

4 5 6 7

8 9 10 11 12 13 14

15 16

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 19

Properties of Breadth-first Search

Does breadth-first search guarantee to find the path with
fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of the length of the
path selected?

What is the space complexity as a function of the length of
the path selected?

How does the goal affect the search?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 20

Which shaded goal will a breadth-first search find first?

Q W

T

U

Y

R

V

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 21

Lowest-cost-first Search

Sometimes there are costs associated with arcs. The cost of
a path is the sum of the costs of its arcs.

cost(〈n0, . . . , nk〉) =
k∑

i=1

|〈ni−1, ni 〉|

An optimal solution is one with minimum cost.

At each stage, lowest-cost-first search selects a path on the
frontier with lowest cost.

The frontier is a priority queue ordered by path cost.

It finds a least-cost path to a goal node.

When arc costs are equal =⇒ breadth-first search.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 22

Properties of Lowest-cost-first Search

Does lowest-cost-first search guarantee to find the path with
the lowest cost?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of the length of the
path selected?

What is the space complexity as a function of the length of
the path selected?

How does the goal affect the search?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 23

Summary of Uninformed Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added

No No Linear

Breadth-first First node added

Yes Yes Exp

Lowest-cost-first Minimal cost(p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 24

Summary of Uninformed Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added

Yes Yes Exp

Lowest-cost-first Minimal cost(p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 25

Summary of Uninformed Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 26

Summary of Uninformed Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 27

Heuristic Search

Idea: don’t ignore the goal when selecting paths.

Often there is extra knowledge that can be used to guide the
search: heuristics.

h(n) is an estimate of the cost of the shortest path from
node n to a goal node.

h(n) needs to be efficient to compute.

h can be extended to paths: h(〈n0, . . . , nk〉) = h(nk).

h(n) is an underestimate if there is no path from n to a goal
with cost less than h(n).

An admissible heuristic is a nonnegative heuristic function
that is an underestimate of the actual cost of a path to a goal.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 28

Example Heuristic Functions

If the nodes are points on a Euclidean plane and the cost is
the distance, h(n) can be the straight-line distance from n to
the closest goal.

If the nodes are locations and cost is time, we can use the
distance to a goal divided by the maximum speed.

If the goal is to collect all of the coins and not run out of fuel,
the cost is an estimate of how many steps it will take to
collect the rest of the coins, refuel when necessary, and return
to goal position.

A heuristic function can be found by solving a simpler (less
constrained) version of the problem.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 29

Heuristic Depth-first Search

It’s a way to use heuristic knowledge in depth-first search.

Idea: order the neighbors of a node (by their h-value) before
adding them to the front of the frontier.

It locally selects which subtree to develop, but still does
depth-first search. It explores all paths from the node at the
head of the frontier before exploring paths from the next node.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 30

Illustrative Graph — Heuristic Depth-first Search

g

s

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 31

Properties of Heuristic Depth-first Search

Does heuristic depth-first search guarantee to find the shortest
path or the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 32

Best-first Search

Idea: select the path whose end is closest to a goal according
to the heuristic function.

Best-first search selects a path on the frontier with minimal
h-value.

It treats the frontier as a priority queue ordered by h.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 33

Illustrative Graph — Best-first Search

g

s

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 34

Properties of Best-first Search

Does best-first search guarantee to find the shortest path or
the path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 35

A∗ Search

A∗ search uses both path cost and heuristic values

cost(p) is the cost of path p.

h(p) estimates the cost from the end of p to a goal.

Let f (p) = cost(p) + h(p).
f (p) estimates the total path cost of going from a start node
to a goal via p.

start
path p−→ n︸ ︷︷ ︸

cost(p)

estimate−→ goal︸ ︷︷ ︸
h(p)︸ ︷︷ ︸

f (p)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 36

A∗ Search Algorithm

A∗ is a combination of lowest-cost-first and best-first search.

It treats the frontier as a priority queue ordered by f (p).

It always selects the node on the frontier with the lowest
estimated distance from the start to a goal node constrained
to go via that node.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 37

Illustrative Graph — A∗ Search

g

s

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 38

Properties of A∗ Search

Does A∗ search guarantee to find the shortest path or the
path with fewest arcs?

What happens on infinite graphs or on graphs with cycles if
there is a solution?

What is the time complexity as a function of length of the
path selected?

What is the space complexity as a function of length of the
path selected?

How does the goal affect the search?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 39

Admissibility of A∗

If there is a solution, A∗ always finds an optimal solution —the
first path to a goal selected— if

the branching factor is finite

arc costs are bounded above zero (there is some ε > 0 such
that all of the arc costs are greater than ε), and

h(n) is nonnegative and an underestimate of the cost of the
shortest path from n to a goal node.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 40

Why is A∗ admissible?

If a path p to a goal is selected from a frontier, can there be a
shorter path to a goal?

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate:

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′.

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 41

Why is A∗ admissible?

If a path p to a goal is selected from a frontier, can there be a
shorter path to a goal?

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate:

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′.

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 42

Why is A∗ admissible?

If a path p to a goal is selected from a frontier, can there be a
shorter path to a goal?

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate:

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′.

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 43

Why is A∗ admissible?

If a path p to a goal is selected from a frontier, can there be a
shorter path to a goal?

Suppose path p′ is on the frontier. Because p was chosen
before p′, and h(p) = 0:

cost(p) ≤ cost(p′) + h(p′).

Because h is an underestimate:

cost(p′) + h(p′) ≤ cost(p′′)

for any path p′′ to a goal that extends p′.

So cost(p) ≤ cost(p′′) for any other path p′′ to a goal.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 44

Why is A∗ admissible?

A∗ can always find a solution if there is one:

The frontier always contains the initial part of a path to a
goal, before that goal is selected.

A∗ halts, as the costs of the paths on the frontier keep
increasing, and will eventually exceed any finite number.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 45

How do good heuristics help?

Suppose c is the cost of an optimal solution. What happens to a
path p where

cost(p) + h(p) < c

cost(p) + h(p) = c

cost(p) + h(p) > c

How can a better heuristic function help?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 46

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added

No No Linear

Breadth-first First node added

Yes Yes Exp

Lowest-cost-first Minimal cost(p)

Yes Yes Exp

Heuristic depth-first Local min h(p)

No No Linear

Best-first Global min h(p)

No No Exp

A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 47

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp
Heuristic depth-first Local min h(p)

No No Linear

Best-first Global min h(p)

No No Exp

A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 48

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp
Heuristic depth-first Local min h(p) No No Linear
Best-first Global min h(p)

No No Exp

A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 49

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp
Heuristic depth-first Local min h(p) No No Linear
Best-first Global min h(p) No No Exp
A∗ Minimal f (p)

Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 50

Summary of Search Strategies

Strategy Frontier Selection Complete Halts Space

Depth-first Last node added No No Linear
Breadth-first First node added Yes Yes Exp
Lowest-cost-first Minimal cost(p) Yes Yes Exp
Heuristic depth-first Local min h(p) No No Linear
Best-first Global min h(p) No No Exp
A∗ Minimal f (p) Yes Yes Exp

Complete — if there is a path to a goal, it can find it, even on
infinite graphs.
Halts — guaranteed to halt (at the next goal) on a (possibly)
infinite graph with a finite branching factor and a positive lower
bound for the arc costs if there is a path to a goal.
Space — as a function of the length of current path

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 51

Summary of Search Strategies

Relevant criteria for comparing/characterizing search problems:

Specification of a search state
I by its name / by its features / by a complex logical expression

Topology of the search space
I Is the search space finite or infinite?
I Does the search space contain cycles or not?
I Can paths in the search space be recombined?
I Is there one start state or several ones?
I Is there one goal state or several ones?
I Is there a cost function defined on the arcs of the search space?
I Does a solution exist or not?
I Is the goal state reachable or not?

Specification of the search task
I Do we need to find one solution or all of them?
I Do we need to find the optimal (or near optimal) solution or

just any solution?
I Do we need to find the optimal solution first?
I Are the goal states known in advance or not?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 52

Summary of Search Strategies

Relevant criteria for comparing/characterizing search problems:

Specification of a search state
I by its name / by its features / by a complex logical expression

Topology of the search space
I Is the search space finite or infinite?
I Does the search space contain cycles or not?
I Can paths in the search space be recombined?
I Is there one start state or several ones?
I Is there one goal state or several ones?
I Is there a cost function defined on the arcs of the search space?
I Does a solution exist or not?
I Is the goal state reachable or not?

Specification of the search task
I Do we need to find one solution or all of them?
I Do we need to find the optimal (or near optimal) solution or

just any solution?
I Do we need to find the optimal solution first?
I Are the goal states known in advance or not?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 53

Summary of Search Strategies

Relevant criteria for comparing/characterizing search problems:

Specification of a search state
I by its name / by its features / by a complex logical expression

Topology of the search space
I Is the search space finite or infinite?
I Does the search space contain cycles or not?
I Can paths in the search space be recombined?
I Is there one start state or several ones?
I Is there one goal state or several ones?
I Is there a cost function defined on the arcs of the search space?
I Does a solution exist or not?
I Is the goal state reachable or not?

Specification of the search task
I Do we need to find one solution or all of them?
I Do we need to find the optimal (or near optimal) solution or

just any solution?
I Do we need to find the optimal solution first?
I Are the goal states known in advance or not?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 54

Variants of Search Strategies

search with cycle-checking

multiple path pruning

iterative deepening

branch and bound

bidirectional search

dynamic programming

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 55

Cycle Checking

s

A searcher can prune a path that ends in a node already on
the path, without removing an optimal solution.

In depth-first methods, checking for cycles can be done in
time in path length.

For other methods, checking for cycles can be done in
time in path length.

Does cycle checking mean the algorithms halt on finite
graphs?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 56

Multiple-Path Pruning

s

Multiple path pruning: prune a path to node n that the
searcher has already found a path to.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 57

Multiple-Path Pruning

What needs to be stored?

How does multiple-path pruning compare to cycle checking?

Do search algorithms with multiple-path pruning always halt
on finite graphs?

What is the space & time overhead of multiple-path pruning?

Can multiple-path pruning prevent an optimal solution from
being found?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 58

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

remove all paths from the frontier that use the longer path or

change the initial segment of the paths on the frontier to use
the shorter path or

ensure this doesn’t happen. Make sure that the shortest path
to a node is found first.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 59

Multiple-Path Pruning & Optimal Solutions

Problem: what if a subsequent path to n is shorter than the first
path to n?

remove all paths from the frontier that use the longer path or

change the initial segment of the paths on the frontier to use
the shorter path or

ensure this doesn’t happen. Make sure that the shortest path
to a node is found first.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 60

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 61

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:

cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 62

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 63

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:

cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 64

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 65

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) <

cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 66

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤

h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 67

Multiple-Path Pruning & A∗

Can we make sure that the shortest path to a node is always
found first?

Suppose path p to n was selected, but there is a shorter path
to n. Suppose this shorter path is via path p′ on the frontier.

Suppose path p′ ends at node n′.

p was selected before p′, so:
cost(p) + h(n) ≤ cost(p′) + h(n′).

Suppose cost(n′, n) is the actual cost of a path from n′ to n.
The path to n via p′ is shorter than p so:
cost(p′) + cost(n′, n) < cost(p).

cost(n′, n) < cost(p)− cost(p′) ≤ h(n′)− h(n).

We can ensure this doesn’t occur if
|h(n′)− h(n)| ≤ cost(n′, n).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 68

Monotone Restriction

Heuristic function h satisfies the monotone restriction if
|h(m)− h(n)| ≤ cost(m, n) for every arc 〈m, n〉.
If h satisfies the monotone restriction, A∗ with multiple path
pruning always finds the shortest path to a goal.

This is a strengthening of the admissibility criterion.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 69

Iterative Deepening

So far all search strategies that are guaranteed to halt use
exponential space.

Idea: let’s recompute elements of the frontier rather than
saving them.

Look for paths of depth 0, then 1, then 2, then 3, etc.

A depth-bounded depth-first searcher can do this in linear
space.

If a path cannot be found at depth B, look for a path at
depth B + 1. Increase the depth-bound when the search fails
unnaturally (depth-bound was reached).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 70

Iterative-deepening search

Boolean natural failure;
Procedure dbsearch(〈n0, . . . , nk〉 : path, bound : int):

if goal(nk) and bound = 0 report path 〈n0, . . . , nk〉;
if bound > 0

for each neighbor n of nk
dbsearch(〈n0, . . . , nk , n〉 , bound − 1);

else if nk has a neighbor then natural failure := false;
end procedure dbsearch;
Procedure idsearch(S : node):

Integer bound := 0;
repeat
natural failure := true;
dbsearch(〈s〉 , bound);
bound := bound + 1;

until natural failure;
end procedure idsearch

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 71

Complexity of Iterative Deepening

Complexity with solution at depth k & branching factor b:

level breadth-first iterative deepening # nodes

1 1 k b
2 1 k − 1 b2

.
k − 1 1 2 bk−1

k 1 1 bk

total

≥ bk ≤ bk
(

b
b−1

)2

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 72

Complexity of Iterative Deepening

Complexity with solution at depth k & branching factor b:

level breadth-first iterative deepening # nodes

1 1 k b
2 1 k − 1 b2

.
k − 1 1 2 bk−1

k 1 1 bk

total ≥ bk ≤ bk
(

b
b−1

)2

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 73

Depth-first Branch-and-Bound

Way to combine depth-first search with heuristic information.

Finds optimal solution.

Most useful when there are multiple solutions, and we want
an optimal one.

Uses the space of depth-first search.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 74

Depth-first Branch-and-Bound

Idea: maintain the cost of the lowest-cost path found to a
goal so far, call this bound .

If the search encounters a path p such that
cost(p) + h(p) ≥ bound , path p can be pruned.

If a non-pruned path to a goal is found, it must be better than
the previous best path. This new solution is remembered and
bound is set to its cost.

The search can be a depth-first search to save space.

How should the bound be initialized?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 75

Depth-first Branch-and-Bound

Idea: maintain the cost of the lowest-cost path found to a
goal so far, call this bound .

If the search encounters a path p such that
cost(p) + h(p) ≥ bound , path p can be pruned.

If a non-pruned path to a goal is found, it must be better than
the previous best path. This new solution is remembered and
bound is set to its cost.

The search can be a depth-first search to save space.

How should the bound be initialized?

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 76

Depth-first Branch-and-Bound: Initializing Bound

The bound can be initialized to ∞.

The bound can be set to an estimate of the optimal path
cost.

I if the bound is slightly larger than the cost of the optimal
path, branch-and-bound does not expand more nodes than A∗

idea can be used to iteratively approach the optimal solution
(similar to iterative deepening)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 77

Direction of Search

The definition of searching is symmetric: find path from start
nodes to goal node or from goal node to start nodes.

Forward branching factor: number of arcs out of a node.

Backward branching factor: number of arcs into a node.

Search complexity is bn. Should use forward search if forward
branching factor is less than backward branching factor, and
vice versa.

Note: when graph is dynamically constructed, the backwards
graph may not be available.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 78

Bidirectional Search

Idea: search backward from the goal and forward from the
start simultaneously.

This wins as 2bk/2 � bk . This can result in an exponential
saving in time and space.

The main problem is making sure the frontiers meet.

This is often used with one breadth-first method that builds a
set of locations that can lead to the goal. In the other
direction another method can be used to find a path to these
interesting locations.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 79

Island Driven Search

Idea: find a set of islands between s and g .

s −→ i1 −→ i2 −→ . . . −→ im−1 −→ g

There are m smaller problems rather than 1 big problem.

This can win as mbk/m � bk .

The problem is to identify the islands that the path must pass
through. It is difficult to guarantee optimality.

The subproblems can be solved using islands =⇒
hierarchy of abstractions.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 80

Dynamic Programming

Idea: A partial solution path up to a state will be part of the
globally optimal solution, if the state lies on the globally optimal
solution path. (Bellman 1957)

Solution: for statically stored graphs, build a table of cost(n) to
reach (or leave) a node.

cost(n) is computed recursively:

cost(n) = min
∀m.n=succ(m)

cost(m) + cost(〈m, n〉)

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 81

Dynamic Programming

Dynamic programming can be applied, if

an optimal path has to be found,

(the goal state is known in advance), and

(the graph is small enough to maintain the complete distance
table for a given goal).

Well suited for incremental sequence processing

e.g. event detection in signal data

→ indefinite stage problems

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 82

Dynamic Programming

Examples:

string-to-string mapping (spelling correction)

sequence alignment with probabilistic models (gene sequence
analysis, speech recognition, swype keyboards, graphical
access control, ...)

structural classification with probabilistic models (tagging,
parsing, translation, composite object recognition, ...)

Efficient solutions, if

the branching factor is quite small, or

the branching of paths is balanced by their recombination

node identity can be checked in constant time

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 83

Dynamic Programming

Examples:

string-to-string mapping (spelling correction)

sequence alignment with probabilistic models (gene sequence
analysis, speech recognition, swype keyboards, graphical
access control, ...)

structural classification with probabilistic models (tagging,
parsing, translation, composite object recognition, ...)

Efficient solutions, if

the branching factor is quite small, or

the branching of paths is balanced by their recombination

node identity can be checked in constant time

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 84

String-to-String Mapping

Stepwise alignment of the two strings considering four different
cases:

identity: the current characters in both strings are the same

substitution: the current character in string A has been
replaced by another one in string B

deletion: the current character in string A does not exist in
string B

insertion: the current character in string B does not exist in
string A

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 85

String-to-String Mapping

How to recast string mapping as a search problem?

states, state descriptions

start / goal state

state transitions

branching factor

size of the graph

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 86

String-to-String Mapping

Simplest cost model (Levenstein-metric):

cost(id) = 0
cost(sub) = cost(del) = cost(ins) = 1

More sophisticated cost functions can capture additional domain
knowledge

neighbourhood on a keyboard

phonetic similarities

user specific confusions

...

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 87

String-to-String Mapping

Alternative alignments with the same distance are possible

c h e a t

c o a s t

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 88

String-to-String Mapping

Alternative alignments with the same distance are possible

c h e a t

c o a s t

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 89

String-to-String Mapping

Alternative alignments with the same distance are possible

c h e a t

c o a s t

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 90

String-to-String Mapping

Alternative alignments with the same distance are possible

c h e a t

c o a s t

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 91

String-to-String Mapping

Representation of search states

〈position in A, position in B, costs〉

State transitions

〈i , j , cold〉 ⇒


〈i + 1, j + 1, cnew 〉 cnew =

{
0 if ai = bj
1 else

〈i + 1, j , cold + 1〉
〈i , j + 1, cold + 1〉

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 92

String-to-String Mapping

〈0, 0, 0〉

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 93

String-to-String Mapping

〈1, 0, 1〉

〈0, 0, 0〉 〈1, 1, 0〉

〈0, 1, 1〉

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 94

String-to-String Mapping

〈2, 0, 2〉
〈1, 0, 1〉 〈2, 1, 2〉

〈1, 1, 2〉
〈2, 1, 1〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉

〈1, 2, 1〉
〈1, 1, 2〉

〈0, 1, 1〉 〈1, 2, 2〉
〈0, 2, 2〉

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 95

String-to-String Mapping

〈2, 0, 2〉
〈1, 0, 1〉 〈2, 1, 2〉

〈1, 1, 2〉
〈2, 1, 1〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉

〈1, 2, 1〉
〈1, 1, 2〉

〈0, 1, 1〉 〈1, 2, 2〉
〈0, 2, 2〉

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 96

String-to-String Mapping

〈3, 0, 3〉
〈2, 0, 2〉 〈3, 1, 3〉

〈1, 0, 1〉 〈2, 1, 2〉 〈2, 1, 3〉
〈1, 1, 2〉 〈3, 1, 2〉
〈2, 1, 1〉 〈3, 2, 2〉

〈2, 2, 3〉
〈3, 2, 2〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉 〈3, 3, 2〉
〈2, 3, 2〉
〈2, 2, 2〉

〈1, 2, 1〉 〈2, 3, 2〉
〈1, 1, 2〉 〈1, 3, 2〉

〈0, 1, 1〉 〈1, 2, 2〉 〈1, 2, 3〉
〈0, 2, 2〉 〈1, 3, 3〉

〈0, 3, 3〉
c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 97

String-to-String Mapping

〈3, 0, 3〉
〈2, 0, 2〉 〈3, 1, 3〉

〈1, 0, 1〉 〈2, 1, 2〉 〈2, 1, 3〉
〈1, 1, 2〉 〈3, 1, 2〉
〈2, 1, 1〉 〈3, 2, 2〉

〈2, 2, 3〉
〈3, 2, 2〉

〈0, 0, 0〉 〈1, 1, 0〉 〈2, 2, 1〉 〈3, 3, 2〉
〈2, 3, 2〉
〈2, 2, 2〉

〈1, 2, 1〉 〈2, 3, 2〉
〈1, 1, 2〉 〈1, 3, 2〉

〈0, 1, 1〉 〈1, 2, 2〉 〈1, 2, 3〉
〈0, 2, 2〉 〈1, 3, 3〉

〈0, 3, 3〉
c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 98

String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 99

String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0

c h e a t

0 1 2 3 4 5

c 1

o 2

a 3

s 4

t 5

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 100

String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0

c h e a t

0 1 2 3 4 5

c 1 0 1 2 3 4

o 2 1 1 2 3 4

a 3 2 2 2 2 3

s 4 3 3 3 3 3

t 5 4 4 4 4 3

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 101

String-to-String Mapping

Populating the distance table

local distances global distances

c h e a t

0 1 1 1 1 1

c 1 0 1 1 1 1

o 1 1 1 1 1 1

a 1 1 1 1 0 1

s 1 1 1 1 1 1

t 1 1 1 1 1 0

c h e a t

0 1 2 3 4 5

c 1 0 1 2 3 4

o 2 1 1 2 3 4

a 3 2 2 2 2 3

s 4 3 3 3 3 3

t 5 4 4 4 4 3

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 102

Isolated Word Recognition

speech is described as a sequence of feature vectors

recognizer maintains a list of candidate words

task: find the word among the candidates with the highest
similarity to the recognition target.

the (global) similarity between two words can be accumulated
from the (local) similarity of pairs of feature vectors

the similarity of two feature vectors can be computed as the
inverse of the dissimilarity/distance between them, e.g.
Euclidean distance

sim(~x , ~y) =
1√∑n

i=1(xi − yi)2

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 103

Isolated Word Recognition

The similarity of two strings is the sum of the pairwise
point-to-point similarities

Which feature vectors should be in a pair?

the same word spoken by the same person varies considerably
in its temporal characteristics

the degree of temporal variation changes over time

task: find the optimal alignment between a candidate word
and the recognition target which maximizes global similarity

→ dynamic time warping

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 104

Isolated Word Recognition

The similarity of two strings is the sum of the pairwise
point-to-point similarities

Which feature vectors should be in a pair?

the same word spoken by the same person varies considerably
in its temporal characteristics

the degree of temporal variation changes over time

task: find the optimal alignment between a candidate word
and the recognition target which maximizes global similarity

→ dynamic time warping

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 105

Isolated Word Recognition

The degree of temporal variation can be constrained: e.g. only
single feature vectors may be skipped

→ slope constraint

Symmetric slope constraint (Sakoe-Chiba with deletions)

succ(sm,n) =


sm+1,n+1

sm+2,n+1

sm+1,n+2

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 106

Isolated Word Recognition

The search state graph ist built from the transitions as defined by
the slope constraint.

~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x7 ~x8 ~x9 ~x10 ~x11 ~x12 ~x13

~y1

~y2

~y3

~y4

~y5

~y6

~y7

~y8

~y9

Search finds the optimal alignment.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 107

Isolated Word Recognition

The search state graph ist built from the transitions as defined by
the slope constraint.

~x1 ~x2 ~x3 ~x4 ~x5 ~x6 ~x7 ~x8 ~x9 ~x10 ~x11 ~x12 ~x13

~y1

~y2

~y3

~y4

~y5

~y6

~y7

~y8

~y9

Search finds the optimal alignment.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 108

Isolated Word Recognition

Dynamic time warping was the first success story of speech
recognition

Search can be implemented in a time-synchroneous manner

I Table of partial distances is built incrementally during forward
search

I if the optimal path to all nodes in the frontier pass through
one and the same state s, the optimum alignment for the
sequence up to s have been found

I Extension to infinite stage problems in principle possible
I e.g. dictation, long audio alignment, ...

Highly speaker dependent solutions

Limited vocabulary

No continuous speech recognition

Possible application areas: command recognition, (numerical)
data entry

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 109

Isolated Word Recognition

Dynamic time warping was the first success story of speech
recognition

Search can be implemented in a time-synchroneous manner

I Table of partial distances is built incrementally during forward
search

I if the optimal path to all nodes in the frontier pass through
one and the same state s, the optimum alignment for the
sequence up to s have been found

I Extension to infinite stage problems in principle possible
I e.g. dictation, long audio alignment, ...

Highly speaker dependent solutions

Limited vocabulary

No continuous speech recognition

Possible application areas: command recognition, (numerical)
data entry

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 110

Isolated Word Recognition

Dynamic time warping was the first success story of speech
recognition

Search can be implemented in a time-synchroneous manner

I Table of partial distances is built incrementally during forward
search

I if the optimal path to all nodes in the frontier pass through
one and the same state s, the optimum alignment for the
sequence up to s have been found

I Extension to infinite stage problems in principle possible
I e.g. dictation, long audio alignment, ...

Highly speaker dependent solutions

Limited vocabulary

No continuous speech recognition

Possible application areas: command recognition, (numerical)
data entry

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 111

Dynamic Programming

Application of Dynamic Programming to goal directed search:

Build a table of dist(n) the actual distance of the shortest path
from node n to a goal.

The table can be built backwards from the goal:

dist(n) =

{
0 if is goal(n),
min〈n,m〉∈A(|〈n,m〉|+ dist(m)) otherwise.

dist(n) is an optimal policy to reach the goal from state n.

Knowing dist(n), the choice of the optimal path is a deterministic
one.

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 112

Dynamic Programming

Dynamic programming is particularly useful, if

the problem space ist stable,

the goal does not change very often, and

the policy can be reused several times.

Main problems:

Time and space requirements are linear in the size of the
search graph, but graph size is often exponential in the path
length.

Computing the minimum remaining cost can only be done in
a breadth-first manner: Enough space is needed to store the
graph.

The dist function needs to be recomputed for each goal (not
always a problem).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 113

Dynamic Programming

Dynamic programming is particularly useful, if

the problem space ist stable,

the goal does not change very often, and

the policy can be reused several times.

Main problems:

Time and space requirements are linear in the size of the
search graph, but graph size is often exponential in the path
length.

Computing the minimum remaining cost can only be done in
a breadth-first manner: Enough space is needed to store the
graph.

The dist function needs to be recomputed for each goal (not
always a problem).

c©D. Poole, A. Mackworth 2010, W. Menzel 2015 Artificial Intelligence, Chapter 3, Page 114

