
Chapter 9:
Decisions under Uncertainty
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Making Decisions Under Uncertainty

What an agent should do depends on:

The agent’s ability — what options are available to it.

The agent’s beliefs — the ways the world could be,
given the agent’s knowledge.
Sensing updates the agent’s beliefs.

The agent’s preferences — what the agent wants and
tradeoffs when there are risks.

Decision theory specifies how to trade off the desirability and
probabilities of the possible outcomes for competing actions.
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Making Decisions Under Uncertainty

An agent acts to

affect the outside world
I i.e. open a door

change the relationship between the agent and the
outside world

I i.e. move to the kitchen

aquire more information about the outside world (active
sensing, communication)

I i.e. looking behind the curtain, asking for help

control its internal reasoning
I i.e. selecting the next search state
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Goals and Preferences

Alice . . . went on “Would you please tell me, please, which
way I ought to go from here?”
“That depends a good deal on where you want to get to,”
said the Cat.
“I don’t much care where —” said Alice.
“Then it doesn’t matter which way you go,” said the Cat.

Lewis Carroll, 1832–1898
Alice’s Adventures in Wonderland, 1865

Chapter 6
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Preferences

Actions result in outcomes

Agents have preferences over outcomes

A rational agent will do the action that has the best
outcome for them

Sometimes agents don’t know the outcomes of the
actions, but they still need to compare actions

Agents have to act.
(Doing nothing is (often) an action).
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Decision Variables

Decision variables are like random variables that an
agent gets to choose a value for.

A possible world specifies a value for each decision
variable and each random variable.

For each assignment of values to all decision variables,
the measure of the set of worlds satisfying that
assignment sum to 1.

The probability of a proposition is undefined unless the
agent condition on the values of all decision variables.
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Decision Tree for Delivery Robot

The robot can choose to wear pads to protect itself or not.
The robot can choose to go the short way past the stairs or a
long way that reduces the chance of an accident.
There is one random variable of whether there is an accident.

wear pads

don’t 
wear 
pads

short way

long way

short way

long way

accident

no accident

accident

no accident

accident

no accident
accident

no accident

w0 - moderate damage

w2 - moderate damage

w4 - severe damage

w6 - severe damage

w1 - quick, extra weight

w3 - slow, extra weight

w5 - quick, no weight

w7 - slow, no weight
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Expected Values

The expected value of a function of possible worlds is its
average value, weighting possible worlds by their
probability.

Suppose f (ω) is the value of function f on world ω.
I The expected value of f is

E(f ) =
∑
ω∈Ω

P(ω)× f (ω).

I The conditional expected value of f given e is

E(f |e) =
∑
ω|=e

P(ω|e)× f (ω).

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 9.2, Page 8



Utility

Utility is a measure of desirability of worlds to an agent.

Let u(ω) be the utility of world ω to the agent.

Simple goals can be specified by: worlds that satisfy the
goal have utility 1; other worlds have utility 0.

Often utilities are more complicated: for example some
function of the amount of damage to a robot, how much
energy is left, what goals are achieved, and how much
time it has taken.
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Decision Networks

A decision network is a graphical representation of a
finite (sequential) decision problem.

Decision networks extend belief networks to include
decision variables and utility.

A decision network specifies what information is available
when the agent has to act.

A decision network specifies which variables the utility
depends on.
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Decisions Networks

A random variable is drawn as an
ellipse. Arcs into the node represent
probabilistic dependence.

A decision variable is drawn as an
rectangle. Arcs into the node
represent information available
when the decision is make.

A utility node is drawn as a
diamond. Arcs into the node
represent variables that the utility
depends on.
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Umbrella Decision Network

Umbrella

Weather

UtilityForecast

You don’t get to observe the weather when you have to decide
whether to take your umbrella. You do get to observe the
forecast.
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Single decisions

In a single decision variable, the agent can choose D = di
for any di ∈ dom(D).

The expected utility of decision D = di is E(u|D = di).

An optimal single decision is the decision D = dmax

whose expected utility is maximal:

E(u|D = dmax) = max
di∈dom(D)

E(u|D = di).
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Single-stage decision networks

Extend belief networks with:

Decision nodes, that the agent chooses the value for.
Domain is the set of possible actions. Drawn as rectangle.

Utility node, the parents are the variables on which the
utility depends. Drawn as a diamond.

Which Way
Accident

Utility

Wear Pads

This shows explicitly which nodes affect whether there is an
accident.
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Finding the optimal decision

Suppose the random variables are X1, . . . ,Xn, and
utility depends on Xi1 , . . . ,Xik

E(u|D) =
∑

X1,...,Xn

P(X1, . . . ,Xn|D)× u(Xi1 , . . . ,Xik )

=
∑

X1,...,Xn

n∏
i=1

P(Xi |parents(Xi))× u(Xi1 , . . . ,Xik )

To find the optimal decision:
I Create a factor for each conditional probability and for

the utility
I Sum out all of the random variables
I This creates a factor on D that gives the expected utility

for each D
I Choose the D with the maximum value in the factor.
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Example Initial Factors

Which Way Accident Value
long true 0.01
long false 0.99
short true 0.2
short false 0.8

Which Way Accident Wear Pads Value
long true true 30
long true false 0
long false true 75
long false false 80
short true true 35
short true false 3
short false true 95
short false false 100
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After summing out Accident

Which Way Wear Pads Value
long true 74.55
long false 79.2
short true 83.0
short false 80.6
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Sequential Decisions

An intelligent agent doesn’t carry out a multi-step plan
ignoring information it receives in between steps.

A more typical scenario is where the agent:
observes, acts, observes, acts, . . .

Subsequent actions can depend on what is observed.
What is observed depends on previous actions.

Often the sole reason for carrying out an action is to
provide information for future actions.
For example: diagnostic tests, spying.
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Sequential decision problems

A sequential decision problem consists of a sequence of
decision variables D1, . . . ,Dn.

Each Di has an information set of variables parents(Di),
whose value will be known at the time decision Di is
made.
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Decision Network for the Alarm Problem

Tampering Fire

Alarm

Leaving

Report

Smoke

SeeSmokeCheck
Smoke

Call

Utility
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No-forgetting

A No-forgetting decision network is a decision network where:

The decision nodes are totally ordered. This is the order
the actions will be taken.

All decision nodes that come before Di are parents of
decision node Di . Thus the agent remembers its previous
actions.

Any parent of a decision node is a parent of subsequent
decision nodes. Thus the agent remembers its previous
observations.
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What should an agent do?

What an agent should do at any time depends on what it
will do in the future.

What an agent does in the future depends on what it did
before.
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Policies

A policy specifies what an agent should do under each
circumstance.

A policy is a sequence δ1, . . . , δn of decision functions

δi : dom(parents(Di))→ dom(Di).

This policy means that when the agent has observed
O ∈ dom(parents(Di)), it will do δi(O).
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Expected Utility of a Policy

Possible world ω satisfies policy δ, written ω |= δ if the
world assigns the value to each decision node that the
policy specifies.

The expected utility of policy δ is

E(u|δ) =
∑
ω|=δ

u(ω)× P(ω),

An optimal policy is one with the highest expected
utility.
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Finding the optimal policy

Remove all variables that are not ancestors of the utility
node

Create a factor for each conditional probability table and
a factor for the utility.

Sum out variables that are not parents of a decision node.

Select a variable D that is only in a factor f with (some
of) its parents.

Eliminate D by maximizing. This returns:
I the optimal decision function for D, arg maxD f
I a new factor to use in VE, maxD f

Repeat till there are no more decision nodes.

Eliminate the remaining random variables. Multiply the
factors: this is the expected utility of the optimal policy.
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Umbrella Decision Network

Umbrella

Weather

UtilityForecast

You don’t get to observe the weather when you have to decide
whether to take your umbrella. You do get to observe the
forecast.
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Initial factors for the Umbrella Decision

Weather Value
norain 0.7
rain 0.3

Weather Fcast Value
norain sunny 0.7
norain cloudy 0.2
norain rainy 0.1
rain sunny 0.15
rain cloudy 0.25
rain rainy 0.6

Weather Umb Value
norain take 20
norain leave 100
rain take 70
rain leave 0
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Eliminating By Maximizing

f :

Fcast Umb Val
sunny take 12.95
sunny leave 49.0
cloudy take 8.05
cloudy leave 14.0
rainy take 14.0
rainy leave 7.0

maxUmb f :

Fcast Val
sunny 49.0
cloudy 14.0
rainy 14.0

arg maxUmb f :

Fcast Umb
sunny leave
cloudy leave
rainy take
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Complexity of finding the optimal policy

If there are k binary parents, to a decision D, there are

2k assignments of values to the parents.

If there are b possible actions, there are b2k different
decision functions.

The number of policies is the product of the number
decision functions.

The number of optimizations in the dynamic
programming is the sum of the number of assignments of
values to parents.

The dynamic programming algorithm is much more
efficient than searching through policy space.
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Value of Information

The value of information X for decision D is the utility of
the network with an arc from X to D (+ no-forgetting
arcs) minus the utility of the network without the arc.

The value of information is always non-negative.

It is positive only if the agent changes its action
depending on X .

The value of information provides a bound on how much
an agent should be prepared to pay for a sensor. How
much is a better weather forecast worth?

We need to be careful when adding an arc would create a
cycle. E.g., how much would it be worth knowing whether
the fire truck will arrive quickly when deciding whether to
call them?
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Value of Control

The value of control of a variable X is the value of the
network when you make X a decision variable (and add
no-forgetting arcs) minus the value of the network when
X is a random variable.

You need to be explicit about what information is
available when you control X .

If you control X without observing, controlling X can be
worse than observing X . E.g., controlling a thermometer.

If you keep the parents the same, the value of control is
always non-negative.
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Modelling Preferences

If o1 and o2 are outcomes of an action

o1 � o2 means o1 is at least as desirable as o2.

o1 ∼ o2 means o1 � o2 and o2 � o1.

o1 � o2 means o1 � o2 and o2 6� o1

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 9.2, Page 32



Lotteries

An agent may not know the outcomes of their actions,
but only have a probability distribution of the outcomes.

A lottery is a probability distribution over outcomes. It
is written

[p1 : o1, p2 : o2, . . . , pk : ok ]

where the oi are outcomes and pi ≥ 0 such that∑
i

pi = 1

The lottery specifies that outcome oi occurs with
probability pi .

When we talk about outcomes, we will include lotteries.
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Properties of Preferences

Completeness: Agents have to act, so they must have
preferences:

∀o1∀o2 o1 � o2 or o2 � o1

Transitivity: Preferences must be transitive:

if o1 � o2 and o2 � o3 then o1 � o3

(Similarly for other mixtures of � and �.)

Rationale: otherwise o1 � o2 and o2 � o3 and o3 � o1.
If they are prepared to pay to get o2 instead of o3,
and are happy to have o1 instead of o2,
and are happy to have o3 instead of o1

−→ money pump.
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Properties of Preferences (cont.)

Monotonicity: An agent prefers a larger chance of getting a
better outcome than a smaller chance:

If o1 � o2 and p > q then

[p : o1, 1− p : o2] � [q : o1, 1− q : o2]
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Consequence of axioms

Suppose o1 � o2 and o2 � o3. Consider whether the
agent would prefer

I o2

I the lottery [p : o1, 1− p : o3]

for different values of p ∈ [0, 1].

Plot which one is preferred as a function of p:

o2 -

lottery -
0 1
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Properties of Preferences (cont.)

Continuity: Suppose o1 � o2 and o2 � o3, then there exists a
p ∈ [0, 1] such that

o2 ∼ [p : o1, 1− p : o3]
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Properties of Preferences (cont.)

Decomposability: (no fun in gambling). An agent is
indifferent between lotteries that have same probabilities and
outcomes. This includes lotteries over lotteries. For example:

[p : o1, 1− p : [q : o2, 1− q : o3]]

∼ [p : o1, (1− p)q : o2, (1− p)(1− q) : o3]
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Properties of Preferences (cont.)

Substitutability: if o1 ∼ o2 then the agent is indifferent
between lotteries that only differ by o1 and o2:

[p : o1, 1− p : o3] ∼ [p : o2, 1− p : o3]
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Alternative Axiom for Substitutability

Substitutability: if o1 � o2 then the agent weakly prefers
lotteries that contain o1 instead of o2, everything else being
equal.
That is, for any number p and outcome o3:

[p : o1, (1− p) : o3] � [p : o2, (1− p) : o3]
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What we would like

We would like a measure of preference that can be
combined with probabilities. So that

value([p : o1, 1− p : o2])

= p × value(o1) + (1− p)× value(o2)

Money does not act like this.
What would you prefer

$1, 000, 000 or [0.5 : $0, 0.5 : $2, 000, 000]?

It may seem that preferences are too complex and
muti-faceted to be represented by single numbers.
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Theorem

If preferences follow the preceding properties, then preferences
can be measured by a function

utility : outcomes → [0, 1]

such that

o1 � o2 if and only if utility(o1) ≥ utility(o2).

Utilities are linear with probabilities:

utility([p1 : o1, p2 : o2, . . . , pk : ok ])

=
k∑

i=1

pi × utility(oi)
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Proof

If all outcomes are equally preferred, set utility(oi) = 0
for all outcomes oi .

Otherwise, suppose the best outcome is best and the
worst outcome is worst.

For any outcome oi , define utility(oi) to be the number
ui such that

oi ∼ [ui : best, 1− ui : worst]

This exists by the Continuity property.
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Proof (cont.)

Suppose o1 � o2 and utility(oi) = ui , then by
Substitutability,

[u1 : best, 1− u1 : worst]

� [u2 : best, 1− u2 : worst]

Which, by completeness and monotonicity implies
u1 ≥ u2.
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Proof (cont.)

Suppose p = utility([p1 : o1, p2 : o2, . . . , pk : ok ]).

Suppose utility(oi) = ui . We know:

oi ∼ [ui : best, 1− ui : worst]

By substitutability, we can replace each oi by
[ui : best, 1− ui : worst], so

p = utility( [ p1 : [u1 : best, 1− u1 : worst]

. . .

pk : [uk : best, 1− uk : worst]])
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By decomposability, this is equivalent to:

p = utility( [ p1u1 + · · ·+ pkuk

: best,

p1(1− u1) + · · ·+ pk(1− uk)

: worst]])

Thus, by definition of utility,

p = p1 × u1 + · · ·+ pk × uk
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Utility as a function of money

$0 $2,000,000

Utility

0

1

Risk averse

Risk
 neu

tra
l

Risk seeking
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Possible utility as a function of money

Someone who really wants a toy worth $30, but who would
also like one worth $20:

10 20 30 40 50 60 70 80 90 100
0

1

dollars

utility
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Allais Paradox (1953)

What would you prefer:

A: $1m — one million dollars

B: lottery [0.10 : $2.5m, 0.89 : $1m, 0.01 : $0]

What would you prefer:

C: lottery [0.11 : $1m, 0.89 : $0]

D: lottery [0.10 : $2.5m, 0.9 : $0]

It is inconsistent with the axioms of preferences to have
A � B and D � C .

A,C: lottery [0.11 : $1m, 0.89 : X ]

B,D: lottery [0.10 : $2.5m, 0.01 : $0, 0.89 : X ]
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Framing Effects [Tversky and Kahneman]

A disease is expected to kill 600 people. Two alternative
programs have been proposed:

Program A: 200 people will be saved
Program B: probability 1/3: 600 people will be saved

probability 2/3: no one will be saved

Which program would you favor?

A disease is expected to kill 600 people. Two alternative
programs have been proposed:

Program C: 400 people will die
Program D: probability 1/3: no one will die

probability 2/3: 600 will die

Which program would you favor?

Tversky and Kahneman: 72% chose A over B.
22% chose C over D.
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Prospect Theory
psychological valuegood

bad

amount

gainslosses

In mixed gambles, loss aversion causes extreme
risk-averse choices
In bad choices, diminishing responsibility causes risk
seeking.
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Prospect Theory
psychological valuegood

bad

amount

gainslosses

point of reference

In mixed gambles, loss aversion causes extreme
risk-averse choices
In bad choices, diminishing responsibility causes risk
seeking.
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Prospect Theory
psychological valuegood

bad

amount

gainslosses

point of reference

loss avoidance

In mixed gambles, loss aversion causes extreme
risk-averse choices
In bad choices, diminishing responsibility causes risk
seeking.
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Prospect Theory
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Reference Points

Consider Anthony and Betty:

Anthony’s current wealth is $1 million.

Betty’s current wealth is $4 million.

They are both offered the choice between a gamble and a sure
thing:

Gamble: equal chance to end up owning $1 million or $4
million.

Sure Thing: own $2 million

What does expected utility theory predict?

What does prospect theory predict?

[From D. Kahneman, Thinking, Fast and Slow, 2011, pp. 275-276.]
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Framing Effects

What do you think of Alan and Ben:

Alan: intelligent—industrious—impulsive—critical—
stubborn—envious

Ben: envious—stubborn—critical—impulsive—
industrious—intelligent

[From D. Kahneman, Thinking Fast and Slow, 2011, p. 82]
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Framing Effects

Suppose you had bought tickets for the theatre for $50.
When you got to the theatre, you had lost the tickets.
You have your credit card and can buy equivalent tickets
for $50. Do you buy the replacement tickets on your
credit card?

Suppose you had $50 in your pocket to buy tickets.
When you got to the theatre, you had lost the $50. You
have your credit card and can buy equivalent tickets for
$50. Do you buy the tickets on your credit card?

[From R.M. Dawes, Rational Choice in an Uncertain World, 1988.]
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The Ellsberg Paradox

Two bags:

Bag 1 40 white chips, 30 yellow chips, 30 green chips

Bag 2 40 white chips, 60 chips that are yellow or green

What do you prefer:

A: Receive $1m if a white or yellow chip is drawn
from bag 1

B: Receive $1m if a white or yellow chip is drawn
from bag 2

C: Receive $1m if a white or green chip is drawn
from bag 2

What about

D: Lottery [0.5 : B , 0.5 : C ]

However A and D should give same outcome, no matter what
the proportion in Bag 2.
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If humans do not act rationally, should artificial agents do as
well?

No, but ...

... they should be able to take the human deviation
from rationality into consideration.
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Factored Representation of Utility

So far, utility has been described in terms of states.

Usually, too many states have to be distinguished.

Alternatively describing possible outcomes in terms of
features X1, . . . ,Xn.

An additive utility is one that can be decomposed into
set of factors:

u(X1, . . . ,Xn) = f1(X1) + · · ·+ fn(Xn).

This assumes additive independence .

Strong assumption: contribution of each feature doesn’t
depend on other features.

Many ways to represent the same utility:
— a number can be added to one factor as long as it is
subtracted from others.
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Additive Utility

An additive utility has a canonical representation:

u(X1, . . . ,Xn) = w1 × u1(X1) + · · ·+ wn × un(Xn).

If besti is the best value of Xi , ui(Xi=besti) = 1.
If worsti is the worst value of Xi , ui(Xi=worsti) = 0.

wi are weights,
∑

i wi = 1.
The weights reflect the relative importance of features.

We can determine weights by comparing outcomes.

w1 =

u(best1, x2, . . . , xn)− u(worst1, x2, . . . , xn).

for any values x2, . . . , xn of X2, . . . ,Xn.
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Complements and Substitutes

Often additive independence is not a good assumption.

Values x1 of feature X1 and x2 of feature X2 are
complements if having both is better than the sum of

the two.

Values x1 of feature X1 and x2 of feature X2 are
substitutes if having both is worse than the sum of the

two.

Example: on a holiday
I An excursion for 6 hours North on day 3.
I An excursion for 6 hours South on day 3.

Example: on a holiday
I A trip to a location 3 hours North on day 3
I The return trip for the same day.
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Generalized Additive Utility

A generalized additive utility can be written as a sum of
factors:

u(X1, . . . ,Xn) = f1(X1) + · · ·+ fk(Xk)

where Xi ⊆ {X1, . . . ,Xn}.
An intuitive canonical representation is difficult to find.

It can represent complements and substitutes.
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Utility and time

Would you prefer $1000 today or $1000 next year?

What price would you pay now to have an eternity of
happiness?

How can you trade off pleasures today with pleasures in
the future?
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Utility and time

How would you compare the following sequences of
rewards (per week):

A: $1000000, $0, $0, $0, $0, $0,. . .
B: $1000, $1000, $1000, $1000, $1000,. . .
C: $1000, $0, $0, $0, $0,. . .
D: $1, $1, $1, $1, $1,. . .
E: $1, $2, $3, $4, $5,. . .
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Markov decision processes

augmenting a Markov chain with actions

R0 R1 R2

S0 S1 S2 S3

A0 A1 A2

fully or partially observable processes (MDP/POMDP)

stationary models: state transitions and rewards do not
depend on time

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 9.2, Page 83



Markov decision processes

Can the agent go on forever?
I no: indefinite horizon problem
I yes: infinite horizon problem

utility has to be estimated continously, since the agent
might never be able to reach an end state
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Rewards and Values

Suppose the agent receives a sequence of rewards
r1, r2, r3, r4, . . . in time. Three different possibilities to compute
the utility

total reward V =
∞∑
i=1

ri

average reward V = lim
n→∞

(r1 + · · ·+ rn)/n

discounted return V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
γ is the discount factor 0 ≤ γ ≤ 1.
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Properties of the Discounted Rewards

The discounted return for rewards r1, r2, r3, r4, . . . is

V = r1 + γr2 + γ2r3 + γ3r4 + · · ·
=

r1 + γ(r2 + γ(r3 + γ(r4 + . . . )))

If V (t) is the value obtained from time step t

V (t) = rt + γV (t + 1)

How is the infinite future valued compared to immediate
rewards?
1 + γ + γ2 + γ3 + · · · = 1/(1− γ)

Therefore
minimum reward

1− γ
≤ V (t) ≤ maximum reward

1− γ
We can approximate V with the first k terms, with error:

V − (r1 + γr2 + · · ·+ γk−1rk) = γkV (k + 1)
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