Bayesian Models for Sequences

@ the world is dynamic
» old information becomes obsolete
» new information is available
» the decisions an agent takes need to reflect these
changes

@ the dynamics of the world can be captured by means of
state-based models
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Bayesian Models for Sequences

@ changes in the world are modelled as transitions between
subsequent states

@ state transitions can be

> clocked, e.g.
> speech: every 10 ms
> vision: every 40 ms
» stock market trends: every 24 hours

» triggered by external events
> language: every other word
» travel planning: potential transfer points
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Bayesian Models for Sequences

@ main purpose:

» predicting the probability of the next event

» computing the probability of a (sub-)sequence
@ important application areas:

» speech and language processing, genome analysis, time
series predictions (stock market, natural desasters, ...)
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@ Markov chain : special sort of belief network for
sequential observations

*] Thus, P(St+1|50a .. .,St) == P(5t+1|5t)

@ Intuitively S; conveys all of the information about the
history that can affect the future states.

@ “The past is independent of the future given the present.”
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Stationary Markov chain

@ A stationary Markov chain is when for all t > 0, t' > 0,
P(5e41/5¢) = P(Se41]Sv).

@ Under this condition the network consists of two different
kinds of slices

» for the initial state without previous nodes (parents) we
specify P(Sp)
» for all the following states we specify P(S5¢|S¢—1)

@ Simple model, easy to specify
@ Often a highly natural model
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Stationary Markov chain

@ The network can be extended indefinitely:
» it is "rolled out” over the full length of the observation
sequence
@ rolling out the network can be done on demand
(incrementally)

» the length of the observation sequence need not be
known in advance
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Higher-order Markov Models

@ modelling dependencies of various lengths

@ bigrams

@ trigrams

DG —E—)—E)

» three different time slices have to modelled
» for So: P(So)
» for 51: P(51|50)
» for all others: P(S;)|S,-_25,-_1)
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Higher-order Markov Models

@ quadrograms: P(S;|S;-35;-2Si-1)
(5 ——(5)

o four different kinds of time slices required
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Markov Models

(*]

examples of Markov chains for German letter sequences

unigrams:
aiobnin*tarsfneonlpiitdregedcoa*ds*e*dbieastnreleeucdkeaitb*
dnurlarsls*omn*keu**svdleeoieei* . ..

bigrams:
er*agepteprteiningeit*gerelen*re*unk*ves*mterone*hin*d*an*
nzerurbom* . ..

trigrams:
billunten*zugen*die*hin*se*sch*wel*war*gen*man*
nicheleblant*diertunderstim* . ..

quadrograms:

eist*des*nich*in*den*plassen*kann*tragen*was*wiese*
zufahr* ...
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Hidden Markov Model

@ Often the observation does not deterministically depend
on the state of the model

@ This can be captured by a Hidden Markov Model
(HMM)

@ ... even if the state transitions are not directly observable
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Hidden Markov Model

@ A HMM is a belief network where states and observations
are separated

S (5 ) ——(5)——(55) S,

o P(Sy) specifies initial conditions
@ P(5:11|S:) specifies the dynamics
o P(0:|S:;) specifies the sensor model
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Example (1): robot localization

@ Suppose a robot wants to determine its location based on
its actions and its sensor readings: Localization

@ This can be represented by the augmented HMM:

@ Combining two kinds of uncertainty:
» The location depends probabilistically on the robot's
action
» The sensor data are noisy
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Example localization domain

@ Circular corridor, with 16 locations:

1 2 3 4 5

6 7 8 9 m 1 12 13 14 15

0

@ Doors at positions: 2, 4, 7, 11.

@ Robot starts at an unknown location and must determine
where it is.
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Example Sensor Model

@ P(Observe Door | At Door) = 0.8
@ P(Observe Door | Not At Door) = 0.1
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Example Dynamics Model

P(loc; = L|action;_1 = goRight A loc;_1 = L) = 0.1
P(loc; = L + 1|action,_; = goRight A loc;_1 = L) = 0.8
P(loc; = L+2|action, 1 = goRight Aloc,_1 = L) = 0.074

P(loc; = L'|action, 1 = goRight A loc, 1 = L) = 0.002
for any other location L'.

¢ 6 ¢ ¢

» All location arithmetic is modulo 16.
» The action golLeft works the same but to the left.
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Combining sensor information

@ the robot can have many (noisy) sensors for signals from
the environment

@ e.g. a light sensor in addition to the door sensor

@ Sensor Fusion : combining information from different
sources

D, door sensor value at time t
L; light sensor value at time t
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Hidden Markov Models

@ Example (2): medical diagnosis (milk infection test)
(JENSEN AND NIELSEN 2007)

@ the probability of
the test outcome depends on the cow being infected or not

o

@ the probability of the cow being infected depends on the
cow being infected on the previous day
» first order Markov model

G

o6
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Hidden Markov Models

@ the probability of the cow being infected depends on the
cow being infected on the two previous days
» incubation and infection periods of more than one day
» second order Markov model

06

» assumes only random test errors

@ weaker independence assumptions

» more powerful model
» more data required for training
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Hidden Markov Models

@ the probability of the test outcome also depends on the
cow's health and the test outcome on the previous day

» can also capture systematic test errors
» second order Markov model for the infection
» first order Markov model for the test results

D QD CD.

oJe
o
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Hidden Markov Models

@ Example (3): Tagging for Natural Language Processing
@ annotating the word forms in a sentence with

part-of-speech information
Yesterdayrg thept schoolyns wasygp closedygy

topic areas: He did some field work.
ﬁe/dmilitaryr ﬁe/dagriculturer ﬁe/dphysics: ﬁe/dsocialsci.r ﬁeldopthSr
semantic roles

The winnergeneficiar, received the trophytheme at the
town hall; ocation
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Hidden Markov Models

@ sequence labelling problem
» the label depends on the current state and the most
recent history

@ one-to-one correspondence between states, tags, and
word forms
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Hidden Markov Models

@ causal (generative) model of the sentence generation
process
> tags are assigned to states
» the underlying state (tag) sequence produces the
observations (word forms)
@ typical independence assumptions

» trigram probabilities for the state transitions
» word form probabilities depend only on the current state
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Hidden Markov Model

@ weaker independence assumption (stronger model):

» the probability of a word form also depends on the
previous and subsequent state
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Two alternative graphical representations

@ influence diagrams, belief networks, Bayesian networks,
causal networks, graphical models, ...
@ state transition diagrams (probabilistic finite state

machines)

H Bayesian networks \ State transition diagrams

state nodes variables with states
states as values
edges into causal influence possible state transitions
state nodes and their probabilities
# state nodes | # model states length of the observation
sequence

observation variables with observation values
nodes observations as values
edges into conditional probability | conditional probabilities
observ. nodes || tables
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Two alternative graphical representations

o Tagging as a Bayesian network

DD

@ possible state transitions are not directly visible
» indirectly encoded in the conditional probability tables

@ sometimes state transition diagrams are better suited to
illustrate the model topology
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Two alternative graphical representations

@ Tagging as a state transition diagram (possible only for
bigram models)

@ ergodic model: full connectivity between all states
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Hidden Markov Models

@ Example (4): Speech Recognition, Swype gesture
recognition
@ observation subsequences of unknown length are mapped

to one label
— alignment problem

@ full connectivity is not desired
@ a phone/syllable/word realization cannot be reversed
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Hidden Markov Models

@ possible model topologies for phones (only transitions
depicted)

P(1]10)  P(1]1) 0 0
Q Q Q P(210) P(2]1) P(2[2) 0
0 P(3]1) P(3]2) P(3]3)

W‘ 0 0 P(4]2) P(4]3)

[eNeNeNe)
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P(1]1)

P(2]1)
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0

Hidden Markov Models

° possible modeI topologies for phones (only transitions

0

P(3[3)
P(413)

P(3[3)
P(413)
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Hidden Markov Models

@ possible model topologies for phones (only transitions
depicted)

P(1j0)  P(1]1) 0 0 0

Q Q Q P(200) P(2]1) P(2]2) 0 0

0 P(3]1) P(3]2) P(33) O

W‘ 0 0 P(4]2) P(43) o0
P(1j0)  P(1]1) 0 0 0

0 P(2]1) P(22) 0 0

. Q Q Q o 0 P(3]1) P(3]2) P(33) ©
\\\_’/r\/ 0 0 0 P(413) ©
P(1j0)  P(1]1) 0 0 0

0 P(2]1) P(22) 0 0

Q Q Q 0 0 P(32) P(33) ©

° e ¢! e, ® 0 0 0 P(43) ©
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Hidden Markov Models

@ possible model topologies for phones (only transitions
depicted)

P(1|0) P(11) 0 0 0

Q Q Q P(2[0) P(2]1) P(2]2) 0 0

0 P(3|1) P(3]2) P(313) O

W‘ 0 0 P(4]2) P(43) 0
P(110)  P(1]1) 0 0 0

0 P(2]1)  P(2]2) 0 o0

. Q Q Q . 0 P(3]1) P(3)2) P(33) ©
\\\_l/yv 0 0 0 P(413) ©
P(1j0)  P(1]1) 0 0 0

0 P(2]1)  P(2]2) 0 0

Q Q Q 0 0 P(3]2) P(3|3) ©

G G 1% hd 0 0 0 P(4]3) 0

@ the more data available the more sophisticated (and
powerful) models can be trained
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Hidden Markov Models

@ composition of submodels on multiple levels

» phone models have to be concatenated into word models
» word models are concatenated into utterance models

[f] [a] [n]
f a n
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Dynamic Bayesian Networks

@ using complex state descriptions, encoded by means of
features

» model can be in "different states” at the same time

@ more efficient implementation of state transitions
@ modelling of transitions between sub-models
@ factoring out different influences on the outcome
» interplay of several actuators (muscles, motors, ...)
@ modelling partly asynchronized processes

» coordinated movement of different body parts (e.g. sign
language)

» synchronization between speech sounds and lip
movements

» synchronization between speech and gesture
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Dynamic Bayesian Networks

@ problem: state-transition probability tables are sparse
» contain a large number of zero probabilities

@ alternative model structure: separation of state and
transition variables

I M M M) deterministic state
variables

stochastic transition
variables

O O O O O O observation variables

@ causal links can be stochastic or deterministic

» stochastic: conditional probabilities to be estimated
» deterministic: to be specified manually (decision trees)
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Dynamic Bayesian Networks

@ state variables
» distinct values for each state of the corresponding HMM
» value at slice t + 1 is a deterministic function of the
state and the transition of slice t
@ transition variables
» probability distribution
» which arc to take to leave a state of the corresponding
HMM
» number of values is the outdegree of the corresponding
state in an HMM

@ use of transition variables is more efficient than using
stochastic state variables with zero probabilities for the
impossible state transitions
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Dynamic Bayesian Networks

@ composite models: some applications require the model
to be composed out of sub-models
» speech: phones — syllables — words — utterances
» vision: sub-parts — parts — composites
» genomics: nucleotides — amino acids — proteins
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Dynamic Bayesian Networks

@ composite models:

» length of the sub-segments is not kown in advance
» naive concatenation would require to generate all
possible segmentations of the input sequence

acoustic emission evolution of articulation

sub-model for /n/

O O o,|\<>

which sub-model to choose next?
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Dynamic Bayesian Networks

@ additional sub-model variables select the next sub-model
to choose

sub-model index

() () () () A
variables
stochastic transition
variables

7 )i

submodel state
variables

O observation variables

@ sub-model index variables: which submodel to use at each
point in time

@ sub-model index and transition variables model legal
sequences of sub-models (control layer)

@ several control layers can be combined
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Dynamic Bayesian Networks

o factored models (1): factoring out different influences on
the observation
@ e.g. articulation:

» asynchroneous movement of articulators
(lips, tongue, jaw, ...)

) state
() () articulators
) observation

o if the data is drawn from a factored source, full DBNs are
superior to the special case of HMMs
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Dynamic Bayesian Networks

o factored models (2): coupling of different input channels
» e.g. acoustic and visual information in speech processing

@ naive approach (1): data level fusion

state
/]/ mixtures
observation

@ too strong synchronisation constraints
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Dynamic Bayesian Networks

@ naive approach(2): independent input streams

@ no synchronisation at all

acoustic channel

visual channel

) o/i\o
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Dynamic Bayesian Networks

@ product model

state
mixtures
visual channel

acoustic channel

@ state values are taken from the cross product of acoustic
and visual states

@ large probability distributions have to be trained

©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.6, Page 42



Dynamic Bayesian Networks

o factorial model (NEFIAN ET AL. 2002)

factor 1 state

(M
//;\X factor 2 state

mixtures

visual channel
acoustic channel

@ independent (hidden) states
@ indirect influence by means of the "explaining away”

effect

@ loose coupling of input channels
Artificial Intelligence, Lecture 6.6, Page 43
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Dynamic Bayesian Networks

@ inference is extremely expensive
» nodes are connected across slides
» domains are not locally restricted
» cliques become intractably large
@ but: joint distribution usually need not be computed
» only maximum detection required
» finding the optimal path through a lattice
» dynamic programming can be applied (Viterbi algorithm)
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Learning of Bayesian Networks

@ estimating the probabilities for a given structure
» for complete data:

» maximum likelihood estimation
» Bayesian estimation
» for incomplete data
> expectation maximization
» gradient descent methods

@ learning the network structure
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Parameter estimation

@ complete data

» maximum likelihood estimation
» Bayesian estimation

@ incomplete data

» expectation maximization
» (gradient descent techniques)
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Maximum Likelihood Estimation

o likelihood of the model M given the (training) data D

L(M[D) = ] P(d|M)
deD

@ log-likelihood

L(M|D) =) logP(d| M)

deD

@ choose among several possible models for describing the
data according to the principle of maximum likelihood

6 =arg max L(Mg|D) = arg max LL(Ms|D)

@ the models only differ in the set of parameters ©
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Maximum Likelihood Estimation

@ complete data: estimating the parameters by counting

- Zvedom(A) N(A = V)

N(A=a,B=b,C=c)

P(A=alB =b.C=¢) = = p o
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Rare events

@ sparse data results in pessimistic estimations for unseen
events
» if the count for an event in the data base is 0, the event
is considered impossible by the model
» in many applications most events will never be observed,
irrespective of the sample size
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Rare events

@ Bayesian estimation: using an estimate of the prior
probability as starting point for the counting

>

>

>

estimation of maximum a posteriori parameters

no zero counts can occur

if nothing else available use an even distribution as prior
Bayesian estimate in the binary case with an even
distribution

n+1

P(yes) = Timaio

n: counts for yes, m: counts for no
effectively adding virtual counts to the estimate
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Rare events

@ alternative: smoothing as a post processing step
@ remove probability mass from the frequent observations ...

@ ... and distribute it to the not observed ones

» floor method
» discounting

> ...

©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.6, Page 51



Incomplete Data

@ missing at random:
» probability that a value is missing depends only on the
observed value
» e.g. confirmation measurement: values are available only
if the preceding measurement was positive/negative

@ missing completely at random
» probability that a value is missing is also independent of
the value
» e.g. stochastic failures of the measurement equipment
» e.g. hidden/latent variables (mixture coefficients of a
Gaussian mixture distribution)
@ nonignorable:
» neither MAR or MCAR
» probability depends on the unseen values, e.g. exit polls
for extremist parties
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Expectation Maximization

@ estimating the underlying distribution of not directly
observable variables

@ expectation:
» "complete” the data set using the current estimation
h = © to calculate expectations for the missing values
» applies the model to be learned (Bayesian inference)
@ maximization:

» use the "completed” data set to find a new maximum
likelihood estimation h' = ©'
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Expectation Maximization

full data consists of tuples <X,'1, ey Xiky Zi1y oonsy Z,'/>
only x; can be observed

(]

@ training data: X = {x,..., Xn}

@ hidden information: Z = {7, ..., Z,}

@ parameters of the distribution to be estimated: ©

@ Z can be treated as random variable with p(Z) = f(©, X)
o full data: Y ={y |y = x|z}

@ hypothesis: h of ©, needs to be revised into A’
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Expectation Maximization

@ goal of EM: h" = argmax E(log, p(Y|h'))
@ define a function Q(H'|h) = E(log, p(Y|h')|h, X)
@ Estimation (E) step:
Calculate Q(H'|h) using the current hypothesis h and the

observed data X to estimate the probability distribution
over Y

Q(H'|h) < E(log, p(Y|H')|h, X)

@ Maximization (M) step
Replace hypothesis h by A’ that maximizes the function Q

h < arg max Q(H'|h)
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Expectation Maximization

@ expectation step requires applying the model to be
learned

» Bayesian inference
@ gradient ascent search

» converges to the next local optimum
» global optimum is not guaranteed
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Expectation Maximization

Q(H'|h) < E(Inp(Y]|H)|h, X)

T

h Q(H'[h)

\/

h + arg max Q(H'|h)

o If Q is continuous, EM converges to the local maximum
of the likelihood function P(Y'|h’)
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Learning the Network Structure

learning the network structure

(]

space of possible networks is extremely large (> O(2"))

(]

a Bayesian network over a complete graph is always a
possible answer, but not an interesting one (no modelling
of independencies)

(]

(]

problem of overfitting

@ two approaches

» constraint-based learning
» (score-based learning)
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Constraint-based Structure Learning

@ estimate the pairwise degree of independence using
conditional mutual information

@ determine the direction of the arcs between
non-independent nodes
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Estimating Independence

@ conditional mutual information

P(A.BI)
CI\/II A B X P P A, B|X)log,—
| Z Z e 5 A )P(81)

@ two nodes are independent if CMI(A, B|X') =0

@ choose all pairs of nodes as non-independent, where the
significance of a y?-test on the hypothesis
CMI(A, B|X) = 0 is above a certain user-defined
threshold

@ high minimal significance level: more links are established

@ result is a skeleton of possible candidates for causal
influence
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Determining Causal Influence

@ Rule 1 (introduction of v-structures): A— C and B— C
but not A — B introduce a v-structure A — C + B if
there exists a set of nodes X so that A is d-separated
from B given X
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Determining Causal Influence

@ Rule 2 (avoid new v-structures): When Rule 1 has been
exhausted and there is a structure A — C — B but not
A — B then direct C — B

@ Rule 3 (avoid cycles): If A — B introduces a cycle in the
graph do A+ B

@ Rule 4 (choose randomly): If no other rule can be applied
to the graph, choose an undirected link and give it an
arbitrary direction
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Determining Causal Influence

ea'ee e'eee eeg

©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.6, Page 63



Determining Causal Influence

@ independence/non-independence candidates might
contradict each other
o —/(A B),—I(A C),~I(B, C), but I(A,B|C), (A, C|B)
and /(B, C|A)
» remove a link and build a chain out of the remaining
ones

» uncertain region: different heuristics might lead to
different structures
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Determining Causal Influence

o /(A C),I(A D), I(B,D)

» problem might be caused by a hidden variable E — B
E-CA—-BD—C
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Constraint-based Structure Learning

@ useful results can only be expected, if

» the data is complete

» no (unrecognized) hidden variables obscure the induced
influence links

» the observations are a faithful sample of an underlying
Bayesian network

» the distribution of cases in D reflects the distribution
determined by the underlying network

> the estimated probability distribution is very close to the
underlying one

» the underlying distribution is recoverable from the
observations
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Constraint-based Structure Learning

@ example of an unrecoverable distribution:
» two switches: P(A = up) = P(B =up)=0.5
» P(C =on)=1if val(A) = val(B)
» = 1(A,C),I(B,C)

— R

-

A B

@ problem: independence decisions are taken on individual
links (CMI), not on complete link configurations
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