
Bayesian Models for Sequences

the world is dynamic
◮ old information becomes obsolete
◮ new information is available
◮ the decisions an agent takes need to reflect these

changes

the dynamics of the world can be captured by means of
state-based models
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Bayesian Models for Sequences

changes in the world are modelled as transitions between
subsequent states

state transitions can be
◮ clocked, e.g.

◮ speech: every 10 ms
◮ vision: every 40 ms
◮ stock market trends: every 24 hours

◮ triggered by external events
◮ language: every other word
◮ travel planning: potential transfer points
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Bayesian Models for Sequences

main purpose:
◮ predicting the probability of the next event
◮ computing the probability of a (sub-)sequence

important application areas:
◮ speech and language processing, genome analysis, time

series predictions (stock market, natural desasters, ...)
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Markov chain

Markov chain : special sort of belief network for
sequential observations

S0 S1 S2 S3 S4

Thus, P(St+1|S0, . . . , St) = P(St+1|St).

Intuitively St conveys all of the information about the
history that can affect the future states.

“The past is independent of the future given the present.”
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Stationary Markov chain

A stationary Markov chain is when for all t > 0, t ′ > 0,
P(St+1|St) = P(St′+1|St′).

Under this condition the network consists of two different
kinds of slices

◮ for the initial state without previous nodes (parents) we
specify P(S0)

◮ for all the following states we specify P(St |St−1)

Simple model, easy to specify

Often a highly natural model
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Stationary Markov chain

The network can be extended indefinitely:
◮ it is ”rolled out” over the full length of the observation

sequence

rolling out the network can be done on demand
(incrementally)

◮ the length of the observation sequence need not be
known in advance
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Higher-order Markov Models

modelling dependencies of various lengths

bigrams

S0 S1 S2 S3 S4

trigrams

S0 S1 S2 S3 S4

◮ three different time slices have to modelled
◮ for S0: P(S0)
◮ for S1: P(S1|S0)
◮ for all others: P(Si )|Si−2Si−1)
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Higher-order Markov Models

quadrograms: P(Si |Si−3Si−2Si−1)

S0 S1 S2 S3 S4

four different kinds of time slices required
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Markov Models

examples of Markov chains for German letter sequences

unigrams:
aiobnin*tarsfneonlpiitdregedcoa*ds*e*dbieastnreleeucdkeaitb*
dnurlarsls*omn*keu**svdleeoieei* . . .

bigrams:
er*agepteprteiningeit*gerelen*re*unk*ves*mterone*hin*d*an*
nzerurbom* . . .

trigrams:
billunten*zugen*die*hin*se*sch*wel*war*gen*man*
nicheleblant*diertunderstim* . . .

quadrograms:
eist*des*nich*in*den*plassen*kann*tragen*was*wiese*
zufahr* . . .
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Hidden Markov Model

Often the observation does not deterministically depend
on the state of the model

This can be captured by a Hidden Markov Model
(HMM)

... even if the state transitions are not directly observable
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Hidden Markov Model

A HMM is a belief network where states and observations
are separated

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

P(S0) specifies initial conditions

P(St+1|St) specifies the dynamics

P(Ot |St) specifies the sensor model
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Example (1): robot localization

Suppose a robot wants to determine its location based on
its actions and its sensor readings: Localization

This can be represented by the augmented HMM:

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3

Combining two kinds of uncertainty:
◮ The location depends probabilistically on the robot’s

action
◮ The sensor data are noisy
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Example localization domain

Circular corridor, with 16 locations:

Doors at positions: 2, 4, 7, 11.

Robot starts at an unknown location and must determine
where it is.
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Example Sensor Model

P(Observe Door | At Door) = 0.8

P(Observe Door | Not At Door) = 0.1

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.6, Page 14



Example Dynamics Model

P(loct = L|actiont−1 = goRight ∧ loct−1 = L) = 0.1

P(loct = L+ 1|actiont−1 = goRight ∧ loct−1 = L) = 0.8

P(loct = L+2|actiont−1 = goRight∧ loct−1 = L) = 0.074

P(loct = L′|actiont−1 = goRight ∧ loct−1 = L) = 0.002
for any other location L′.

◮ All location arithmetic is modulo 16.
◮ The action goLeft works the same but to the left.
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Combining sensor information

the robot can have many (noisy) sensors for signals from
the environment

e.g. a light sensor in addition to the door sensor

Sensor Fusion : combining information from different
sources

Loc0 Loc1 Loc2 Loc3 Loc4

D0 D1 D2 D3 D4

Act0 Act1 Act2 Act3

L0 L1 L2 L3 L4

Dt door sensor value at time t

Lt light sensor value at time t
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Hidden Markov Models

Example (2): medical diagnosis (milk infection test)
(Jensen and Nielsen 2007)

the probability of
the test outcome depends on the cow being infected or not

Infected?

Test

the probability of the cow being infected depends on the
cow being infected on the previous day

◮ first order Markov model

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5
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Hidden Markov Models

the probability of the cow being infected depends on the
cow being infected on the two previous days

◮ incubation and infection periods of more than one day
◮ second order Markov model

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5

◮ assumes only random test errors

weaker independence assumptions
◮ more powerful model
◮ more data required for training
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Hidden Markov Models

the probability of the test outcome also depends on the
cow’s health and the test outcome on the previous day

◮ can also capture systematic test errors
◮ second order Markov model for the infection
◮ first order Markov model for the test results

Inf1

Test1

Inf2

Test2

Inf3

Test3

Inf4

Test4

Inf5

Test5
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Hidden Markov Models

Example (3): Tagging for Natural Language Processing

annotating the word forms in a sentence with

part-of-speech information
YesterdayRB theDT schoolNNS wasVBD closedVBN

topic areas: He did some field work.
fieldmilitary , fieldagriculture , fieldphysics , fieldsocial sci ., fieldoptics , ...

semantic roles
The winnerBeneficiary received the trophyTheme at the

town hallLocation
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Hidden Markov Models

sequence labelling problem
◮ the label depends on the current state and the most

recent history

one-to-one correspondence between states, tags, and
word forms
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Hidden Markov Models

causal (generative) model of the sentence generation
process

◮ tags are assigned to states
◮ the underlying state (tag) sequence produces the

observations (word forms)

typical independence assumptions
◮ trigram probabilities for the state transitions
◮ word form probabilities depend only on the current state

Tag0 Tag1 Tag2 Tag3 Tag4

Word0 Word1 Word2 Word3 Word4
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Hidden Markov Model

weaker independence assumption (stronger model):
◮ the probability of a word form also depends on the

previous and subsequent state

Tag0 Tag1 Tag2 Tag3 Tag4

Word0 Word1 Word2 Word3 Word4
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Two alternative graphical representations

influence diagrams, belief networks, Bayesian networks,
causal networks, graphical models, ...
state transition diagrams (probabilistic finite state
machines)

Bayesian networks State transition diagrams

state nodes variables with states
states as values

edges into causal influence possible state transitions
state nodes and their probabilities

# state nodes # model states length of the observation
sequence

observation variables with observation values
nodes observations as values

edges into conditional probability conditional probabilities
observ. nodes tables
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Two alternative graphical representations

Tagging as a Bayesian network

Tag0 Tag1 Tag2 Tag3 Tag4

Word0 Word1 Word2 Word3 Word4

possible state transitions are not directly visible
◮ indirectly encoded in the conditional probability tables

sometimes state transition diagrams are better suited to
illustrate the model topology
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Two alternative graphical representations

Tagging as a state transition diagram (possible only for
bigram models)

t1 t2

t3 t4

w1 . . . w3 w1 . . . w3

w1 . . . w3 w1 . . . w3

ergodic model: full connectivity between all states

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.6, Page 26



Hidden Markov Models

Example (4): Speech Recognition, Swype gesture
recognition

observation subsequences of unknown length are mapped
to one label
→ alignment problem

full connectivity is not desired

a phone/syllable/word realization cannot be reversed
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Hidden Markov Models

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
P(2|0) P(2|1) P(2|2) 0 0

0 P(3|1) P(3|2) P(3|3) 0
0 0 P(4|2) P(4|3) 0
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Hidden Markov Models

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
P(2|0) P(2|1) P(2|2) 0 0

0 P(3|1) P(3|2) P(3|3) 0
0 0 P(4|2) P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 P(3|1) P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.6, Page 29



Hidden Markov Models

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
P(2|0) P(2|1) P(2|2) 0 0

0 P(3|1) P(3|2) P(3|3) 0
0 0 P(4|2) P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 P(3|1) P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 0 P(3|2) P(3|3) 0
0 0 0 P(4|3) 0
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Hidden Markov Models

possible model topologies for phones (only transitions
depicted)

P(1|0) P(1|1) 0 0 0
P(2|0) P(2|1) P(2|2) 0 0

0 P(3|1) P(3|2) P(3|3) 0
0 0 P(4|2) P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 P(3|1) P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

P(1|0) P(1|1) 0 0 0
0 P(2|1) P(2|2) 0 0
0 0 P(3|2) P(3|3) 0
0 0 0 P(4|3) 0

the more data available the more sophisticated (and
powerful) models can be trained
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Hidden Markov Models

composition of submodels on multiple levels
◮ phone models have to be concatenated into word models
◮ word models are concatenated into utterance models

[ f ] [ a ] [ n ]

[ f a n ]
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Dynamic Bayesian Networks

using complex state descriptions, encoded by means of
features

◮ model can be in ”different states” at the same time

more efficient implementation of state transitions

modelling of transitions between sub-models

factoring out different influences on the outcome
◮ interplay of several actuators (muscles, motors, ...)

modelling partly asynchronized processes
◮ coordinated movement of different body parts (e.g. sign

language)
◮ synchronization between speech sounds and lip

movements
◮ synchronization between speech and gesture
◮ ...
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Dynamic Bayesian Networks

problem: state-transition probability tables are sparse
◮ contain a large number of zero probabilities

alternative model structure: separation of state and
transition variables

deterministic state
variables

stochastic transition
variables

observation variables

causal links can be stochastic or deterministic
◮ stochastic: conditional probabilities to be estimated
◮ deterministic: to be specified manually (decision trees)
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Dynamic Bayesian Networks

state variables
◮ distinct values for each state of the corresponding HMM
◮ value at slice t + 1 is a deterministic function of the

state and the transition of slice t

transition variables
◮ probability distribution
◮ which arc to take to leave a state of the corresponding

HMM
◮ number of values is the outdegree of the corresponding

state in an HMM

use of transition variables is more efficient than using
stochastic state variables with zero probabilities for the
impossible state transitions
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Dynamic Bayesian Networks

composite models: some applications require the model
to be composed out of sub-models

◮ speech: phones → syllables → words → utterances
◮ vision: sub-parts → parts → composites
◮ genomics: nucleotides → amino acids → proteins
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Dynamic Bayesian Networks

composite models:
◮ length of the sub-segments is not kown in advance
◮ naive concatenation would require to generate all

possible segmentations of the input sequence

︸ ︷︷ ︸
sub-model for /n/

︸ ︷︷ ︸
sub-model for /ow/

evolution of articulationacoustic emission

which sub-model to choose next?
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Dynamic Bayesian Networks

additional sub-model variables select the next sub-model
to choose

sub-model index
variables

stochastic transition
variables

submodel state
variables
observation variables

sub-model index variables: which submodel to use at each
point in time

sub-model index and transition variables model legal
sequences of sub-models (control layer)

several control layers can be combined
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Dynamic Bayesian Networks

factored models (1): factoring out different influences on
the observation

e.g. articulation:
◮ asynchroneous movement of articulators

(lips, tongue, jaw, ...)

state

articulators

observation

if the data is drawn from a factored source, full DBNs are
superior to the special case of HMMs
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Dynamic Bayesian Networks

factored models (2): coupling of different input channels
◮ e.g. acoustic and visual information in speech processing

näıve approach (1): data level fusion

state

mixtures

observation

too strong synchronisation constraints
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Dynamic Bayesian Networks

näıve approach(2): independent input streams

acoustic channel

visual channel

no synchronisation at all
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Dynamic Bayesian Networks

product model

state

mixtures

visual channel

acoustic channel

state values are taken from the cross product of acoustic
and visual states

large probability distributions have to be trained
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Dynamic Bayesian Networks

factorial model (Nefian et al. 2002)

factor 1 state

factor 2 state

mixtures

visual channel

acoustic channel

independent (hidden) states
indirect influence by means of the ”explaining away”
effect
loose coupling of input channels
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Dynamic Bayesian Networks

inference is extremely expensive
◮ nodes are connected across slides
◮ domains are not locally restricted
◮ cliques become intractably large

but: joint distribution usually need not be computed
◮ only maximum detection required
◮ finding the optimal path through a lattice
◮ dynamic programming can be applied (Viterbi algorithm)
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Learning of Bayesian Networks

estimating the probabilities for a given structure
◮ for complete data:

◮ maximum likelihood estimation
◮ Bayesian estimation

◮ for incomplete data
◮ expectation maximization
◮ gradient descent methods

learning the network structure
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Parameter estimation

complete data
◮ maximum likelihood estimation
◮ Bayesian estimation

incomplete data
◮ expectation maximization
◮ (gradient descent techniques)

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.6, Page 46



Maximum Likelihood Estimation

likelihood of the model M given the (training) data D

L(M |D) =
∏

d∈D

P(d |M)

log-likelihood

LL(M |D) =
∑

d∈D

log2P(d |M)

choose among several possible models for describing the
data according to the principle of maximum likelihood

Θ̂ = argmax
Θ

L(MΘ|D) = argmax
Θ

LL(MΘ|D)

the models only differ in the set of parameters Θ
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Maximum Likelihood Estimation

complete data: estimating the parameters by counting

P(A = a) =
N(A = a)∑

v∈dom(A) N(A = v)

P(A = a|B = b,C = c) =
N(A = a,B = b,C = c)

N(B = b,C = c)
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Rare events

sparse data results in pessimistic estimations for unseen
events

◮ if the count for an event in the data base is 0, the event
is considered impossible by the model

◮ in many applications most events will never be observed,
irrespective of the sample size
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Rare events

Bayesian estimation: using an estimate of the prior
probability as starting point for the counting

◮ estimation of maximum a posteriori parameters
◮ no zero counts can occur
◮ if nothing else available use an even distribution as prior
◮ Bayesian estimate in the binary case with an even

distribution

P(yes) =
n + 1

n +m + 2

n: counts for yes, m: counts for no
◮ effectively adding virtual counts to the estimate
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Rare events

alternative: smoothing as a post processing step

remove probability mass from the frequent observations ...

... and distribute it to the not observed ones
◮ floor method
◮ discounting
◮ ...
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Incomplete Data

missing at random:
◮ probability that a value is missing depends only on the

observed value
◮ e.g. confirmation measurement: values are available only

if the preceding measurement was positive/negative

missing completely at random
◮ probability that a value is missing is also independent of

the value
◮ e.g. stochastic failures of the measurement equipment
◮ e.g. hidden/latent variables (mixture coefficients of a

Gaussian mixture distribution)

nonignorable:
◮ neither MAR or MCAR
◮ probability depends on the unseen values, e.g. exit polls

for extremist parties
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Expectation Maximization

estimating the underlying distribution of not directly
observable variables

expectation:
◮ ”complete” the data set using the current estimation

h = Θ to calculate expectations for the missing values
◮ applies the model to be learned (Bayesian inference)

maximization:
◮ use the ”completed” data set to find a new maximum

likelihood estimation h′ = Θ′
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Expectation Maximization

full data consists of tuples 〈xi1, ..., xik , zi1, ..., zil〉
only xi can be observed

training data: X = {~x1, ..., ~xm}

hidden information: Z = {~z1, ...,~zm}

parameters of the distribution to be estimated: Θ

Z can be treated as random variable with p(Z ) = f (Θ,X )

full data: Y = {~y | ~y = ~xi ||~zi}

hypothesis: h of Θ, needs to be revised into h′
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Expectation Maximization

goal of EM: h′ = argmaxE (log2 p(Y |h
′))

define a function Q(h′|h) = E (log2 p(Y |h
′)|h,X )

Estimation (E) step:
Calculate Q(h′|h) using the current hypothesis h and the
observed data X to estimate the probability distribution
over Y

Q(h′|h)← E (log2 p(Y |h
′)|h,X )

Maximization (M) step
Replace hypothesis h by h′ that maximizes the function Q

h← argmax
h′

Q(h′|h)
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Expectation Maximization

expectation step requires applying the model to be
learned

◮ Bayesian inference

gradient ascent search
◮ converges to the next local optimum
◮ global optimum is not guaranteed
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Expectation Maximization

Q(h′|h)h

Q(h′|h)← E (ln p(Y |h′)|h,X )

h← argmax
h′

Q(h′|h)

If Q is continuous, EM converges to the local maximum
of the likelihood function P(Y |h′)
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Learning the Network Structure

learning the network structure

space of possible networks is extremely large (> O(2n))

a Bayesian network over a complete graph is always a
possible answer, but not an interesting one (no modelling
of independencies)

problem of overfitting

two approaches
◮ constraint-based learning
◮ (score-based learning)
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Constraint-based Structure Learning

estimate the pairwise degree of independence using
conditional mutual information

determine the direction of the arcs between
non-independent nodes
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Estimating Independence

conditional mutual information

CMI (A,B |X ) =
∑

X

P̂(X )
∑

A,B

P̂(A,B |X )log2
P̂(A,B |X )

P̂(A|X )P̂(B |X )

two nodes are independent if CMI (A,B |X ) = 0

choose all pairs of nodes as non-independent, where the
significance of a χ2-test on the hypothesis
CMI (A,B |X ) = 0 is above a certain user-defined
threshold

high minimal significance level: more links are established

result is a skeleton of possible candidates for causal
influence
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Determining Causal Influence

Rule 1 (introduction of v-structures): A− C and B − C

but not A− B introduce a v-structure A→ C ← B if
there exists a set of nodes X so that A is d-separated
from B given X

A B

C

A B

C
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Determining Causal Influence

Rule 2 (avoid new v-structures): When Rule 1 has been
exhausted and there is a structure A→ C − B but not
A− B then direct C → B

Rule 3 (avoid cycles): If A→ B introduces a cycle in the
graph do A← B

Rule 4 (choose randomly): If no other rule can be applied
to the graph, choose an undirected link and give it an
arbitrary direction
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Determining Causal Influence

A B

C D E

F G

Rule 1

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 4

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 2

A B

C D E

F G

Rule 4
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Determining Causal Influence

independence/non-independence candidates might
contradict each other

¬I (A,B),¬I (A,C ),¬I (B ,C ), but I (A,B |C ), I (A,C |B)
and I (B ,C |A)

◮ remove a link and build a chain out of the remaining
ones

A B

C

A B

C

◮ uncertain region: different heuristics might lead to
different structures
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Determining Causal Influence

I (A,C ), I (A,D), I (B ,D)

A D

B C

A D

B C

E

◮ problem might be caused by a hidden variable E → B

E → C A→ B D → C
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Constraint-based Structure Learning

useful results can only be expected, if
◮ the data is complete
◮ no (unrecognized) hidden variables obscure the induced

influence links
◮ the observations are a faithful sample of an underlying

Bayesian network
◮ the distribution of cases in D reflects the distribution

determined by the underlying network
◮ the estimated probability distribution is very close to the

underlying one

◮ the underlying distribution is recoverable from the
observations
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Constraint-based Structure Learning

example of an unrecoverable distribution:
◮ two switches: P(A = up) = P(B = up) = 0.5
◮ P(C = on) = 1 if val(A) = val(B)
◮ → I (A,C ), I (B ,C )

A B C

problem: independence decisions are taken on individual
links (CMI), not on complete link configurations

P(C |A,B) =

(
1 0
0 1

)
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