Applications of Bayesian Networks

@ modelling human multimodal perception

» human sensor data fusion
» top down influences in human perception

@ multimodal human-computer interaction
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Human Sensor Data Fusion

@ two general strategies (ERNST AND BULTHOFF, 2004)
» sensory combination: maximize information delivered
from the different sensory modalities
» sensory integration: reduce the variance in the sensory
estimate to increase its reliability
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Sensor Data Fusion

@ sensory integration has to produce a coherent percept

@ Which modality is the dominating one?

» visual capture: e.g. vision dominates haptic perception
» auditory capture: e.g. number of auditory beeps vs.
number of visual flashes

@ modality precision, modality appropriateness, estimate
precision: the most precise modality wins
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Sensor Data Fusion

@ two possible explanations:

» maximum likelihood estimation: weighted sum of the
individual estimates

> all cues contribute to the percept
» cue switching:

» the most precise cue takes over
» the less precise cues have no influence
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Sensor Data Fusion

@ maximum likelihood estimate:

» weighted sum of the individual estimates
» weights are proportional to their inverse variance
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» most reliable unbiased estimate possible (estimate with
minimal variance)

» optimality not really required; good approximation might
be good enough
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Sensor Data Fusion

@ overwhelming evidence for the role of estimate precision
@ weighting within modalities

» visual depth perception: motion + disparity, texture +

disparity

» visual perception of slant

» visual perception of distance

» haptic shape perception: force + position
@ cross modal weighting:

» vision + audition

» vision + haptic

> vision + proprioception
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Sensor Data Fusion

@ no conclusive evidence for the reliability hypothesis so far

@ How to estimate the variance of a stimulus?

» requires an independence assumption
difficult to achieve in a unimodal task
cues within one modality are correlated
— multi-modal experiments
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Sensor Data Fusion

@ Ernst and Banks (2002): vision-haptic integration

» modifying the visual reliability by adding noise to the
visual channel
» two extreme cases:

» vision dominates (little noise)
» haptics dominate (high noise)

— perception requires dynamic adjustment of weights
— nervous system has online access to sensory reliabilities
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Sensor Data Fusion

@ But where do the estimates come from?

@ prior experience vs. on-line estimation during perception
@ on-line is more likely: observing the fluctuations of
responses to a signal
» over some period of time
» across a population of independent neurons (population
codes)
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Top Down Influence

@ perception is modulated by contextual factors, e.g scene
or object properties

@ How to model top-down influences?

>

>

©D. Poole, A.

can be captured by prior probabilities

prior probabilities can be integrated by means of Bayes
rule

— Bayesian reasoning
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Top Down Influence
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Top Down Influence
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Top Down Influence
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Top Down Influence
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Multimodal Human-Computer Interaction

@ Socher, Sagerer, Perona (2000), Wachsmuth, Sagerer
(2002)

» multi-modal human machine
interaction using
> speech
> vision
» (pointing gestures)

@ data fusion from different reference systems
» spatial (vision) vs. temporal (speech)
» language based instruction: fusion on the level of
concepts
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Multimodal Human-Computer Interaction

@ noisy and partial interpretation of the sensory signals
@ dealing with referential uncertainty
@ goal: cross modal synergy

@ sensory data: properties (color) and (spatial)
relationships: degree-of-membership representation
(fuzzyness)

@ combination using Bayesian Networks
@ estimating the probabilities by means of psycholinguistic
experiments

» how do humans categorize objects and verbalize object
descriptions
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Multimodal Human-Computer Interaction
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Multimodal Human-Computer Interaction

@ more sophisticated fusion model (Wachsmuth, Sagerer
2002)
» solution to the correspondence problem using selection
variables

corresponding variables
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Multimodal Human-Computer Interaction

@ results for object identification

correct  noisy  noisy noisy

input  speech vision input
recognition error rates - 15%  20% 15%+20%
identification rates 0.85 0.81 0.79 0.76
decrease of identification rates - 5% 7% 11%

@ synergy between vision and speech

@ higher robustness due to redundancy between modalities
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