Applications of Bayesian Networks

- modelling human multimodal perception
 - human sensor data fusion
 - top down influences in human perception
- multimodal human-computer interaction

- two general strategies (ERNST AND BÜLTHOFF, 2004)
 - sensory combination: maximize information delivered from the different sensory modalities
 - sensory integration: reduce the variance in the sensory estimate to increase its reliability

- sensory integration has to produce a coherent percept
- Which modality is the dominating one?
 - visual capture: e.g. vision dominates haptic perception
 - auditory capture: e.g. number of auditory beeps vs. number of visual flashes
- modality precision, modality appropriateness, estimate precision: the most precise modality wins

- two possible explanations:
 - maximum likelihood estimation: weighted sum of the individual estimates
 - all cues contribute to the percept
 - cue switching:
 - the most precise cue takes over
 - the less precise cues have no influence

Sensor Data Fusion

- maximum likelihood estimate:
 - weighted sum of the individual estimates
 - weights are proportional to their inverse variance

$$\hat{s} = \sum_i w_i \ \hat{s}_i \ ext{with} \ \sum_i w_i = 1$$

$$w_i = \frac{1/\sigma_i^2}{\sum_j 1/\sigma_j^2}$$

- most reliable unbiased estimate possible (estimate with minimal variance)
- optimality not really required; good approximation might be good enough

- overwhelming evidence for the role of estimate precision
- weighting within modalities
 - visual depth perception: motion + disparity, texture + disparity
 - visual perception of slant
 - visual perception of distance
 - haptic shape perception: force + position
- cross modal weighting:
 - vision + audition
 - vision + haptic
 - vision + proprioception

- no conclusive evidence for the reliability hypothesis so far
- How to estimate the variance of a stimulus?
 - requires an independence assumption
 - difficult to achieve in a unimodal task
 - cues within one modality are correlated
 - \blacktriangleright \rightarrow multi-modal experiments

- Ernst and Banks (2002): vision-haptic integration
 - modifying the visual reliability by adding noise to the visual channel
 - two extreme cases:
 - vision dominates (little noise)
 - haptics dominate (high noise)
 - \rightarrow perception requires dynamic adjustment of weights
 - \rightarrow nervous system has online access to sensory reliabilities

- But where do the estimates come from?
- prior experience vs. on-line estimation during perception
- on-line is more likely: observing the fluctuations of responses to a signal
 - over some period of time
 - across a population of independent neurons (population codes)

- perception is modulated by contextual factors, e.g scene or object properties
- How to model top-down influences?
 - can be captured by prior probabilities
 - prior probabilities can be integrated by means of Bayes rule
 - \rightarrow Bayesian reasoning

KERSTEN AND YUILLEY (2003)

< □ →

KERSTEN AND YUILLEY (2003)

(□)

KERSTEN AND YUILLEY (2003)

KERSTEN AND YUILLEY (2003)

- Socher, Sagerer, Perona (2000), Wachsmuth, Sagerer (2002)
 - multi-modal human machine interaction using
 - speech
 - vision
 - (pointing gestures)

- data fusion from different reference systems
 - spatial (vision) vs. temporal (speech)
 - language based instruction: fusion on the level of concepts

- noisy and partial interpretation of the sensory signals
- dealing with referential uncertainty
- goal: cross modal synergy
- sensory data: properties (color) and (spatial) relationships: degree-of-membership representation (fuzzyness)
- combination using Bayesian Networks
- estimating the probabilities by means of psycholinguistic experiments
 - how do humans categorize objects and verbalize object descriptions

©D. Poole, A. Mackworth 2010, W. Menzel 2013

Artificial Intelligence, Lecture 6.5, Page 17

- more sophisticated fusion model (Wachsmuth, Sagerer 2002)
 - solution to the correspondence problem using selection variables

• results for object identification

	correct	noisy	noisy	noisy
	input	speech	vision	input
recognition error rates	-	15%	20%	15%+20%
identification rates	0.85	0.81	0.79	0.76
decrease of identification rates	-	5%	7%	11%

- synergy between vision and speech
- higher robustness due to redundancy between modalities