
Chapter 6:
Reasoning under Uncertainty
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“The mind is a neural computer, fitted by natural
selection with combinatorial algorithms for causal
and probabilistic reasoning about plants, animals,
objects, and people.

“In a universe with any regularities at all,
decisions informed about the past are better than
decisions made at random. That has always been
true, and we would expect organisms, especially
informavores such as humans, to have evolved acute
intuitions about probability. The founders of
probability, like the founders of logic, assumed they
were just formalizing common sense.”

Steven Pinker, How the Mind Works, 1997, pp. 524, 343.
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Learning Objectives

At the end of the class you should be able to:

justify the use and semantics of probability

know how to compute marginals and apply Bayes’
theorem

build a belief network for a domain

predict the inferences for a belief network

explain the predictions of a causal model
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Using Uncertain Knowledge

Agents don’t have complete knowledge about the world.

Agents need to make decisions based on their uncertainty.

It isn’t enough to assume what the world is like.
Example: wearing a seat belt.

An agent needs to reason about its uncertainty.
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Why Probability?

There is lots of uncertainty about the world, but agents
still need to act.

Predictions are needed to decide what to do:
I definitive predictions: you will be run over tomorrow
I point probabilities: probability you will be run over

tomorrow is 0.002
I probability ranges: you will be run over with probability

in range [0.001,0.34]

Acting is gambling: agents who don’t use probabilities
will lose to those who do — Dutch books.

Probabilities can be learned from data.
Bayes’ rule specifies how to combine data and prior
knowledge.
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Probability

Probability is an agent’s measure of belief in some
proposition — subjective probability.

An agent’s belief depends on its prior assumptions and
what the agent observes.
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Numerical Measures of Belief

Belief in proposition, f , can be measured in terms of a
number between 0 and 1 — this is the probability of f .

I The probability f is 0 means that f is believed to be
definitely false.

I The probability f is 1 means that f is believed to be
definitely true.

Using 0 and 1 is purely a convention.

f has a probability between 0 and 1, means the agent is
ignorant of its truth value.

Probability is a measure of an agent’s ignorance.

Probability is not a measure of degree of truth.
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Random Variables

A random variable is a term in a language that can take
one of a number of different values.

The range of a variable X , written range(X ), is the set
of values X can take.

A tuple of random variables 〈X1, . . . ,Xn〉 is a complex
random variable with range range(X1)× · · · × range(Xn).
Often the tuple is written as X1, . . . ,Xn.

Assignment X = x means variable X has value x .

A proposition is a Boolean formula made from
assignments of values to variables.
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Possible World Semantics

A possible world specifies an assignment of one value to
each random variable.

A random variable is a function from possible worlds into
the range of the random variable.

ω |= X = x
means variable X is assigned value x in world ω.

Logical connectives have their standard meaning:

ω |= α ∧ β if ω |= α and ω |= β

ω |= α ∨ β if ω |= α or ω |= β

ω |= ¬α if ω 6|= α

Let Ω be the set of all possible worlds.
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Semantics of Probability

For a finite number of possible worlds:

Define a nonnegative measure µ(ω) to each world ω
so that the measures of the possible worlds sum to 1.

The probability of proposition f is defined by:

P(f ) =
∑
ω|=f

µ(ω).
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Axioms of Probability: finite case

Three axioms define what follows from a set of probabilities:

Axiom 1 0 ≤ P(a) for any proposition a.

Axiom 2 P(true) = 1

Axiom 3 P(a ∨ b) = P(a) + P(b) if a and b cannot both
be true.

These axioms are sound and complete with respect to the
semantics.
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Semantics of Probability: general case

In the general case, probability defines a measure on sets of
possible worlds. We define µ(S) for some sets S ⊆ Ω
satisfying:

µ(S) ≥ 0

µ(Ω) = 1

µ(S1 ∪ S2) = µ(S1) + µ(S2) if S1 ∩ S2 = {}.
Or sometimes σ-additivity:

µ(
⋃
i

Si) =
∑
i

µ(Si) if Si ∩ Sj = {} for i 6= j

Then P(α) = µ({ω|ω |= α}).
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Probability Distributions

A probability distribution on a random variable X is a
function range(X )→ [0, 1] such that

x 7→ P(X = x).

This is written as P(X ).

This also includes the case where we have tuples of
variables. E.g., P(X ,Y ,Z ) means P(〈X ,Y ,Z 〉).

When range(X ) is infinite sometimes we need a
probability density function...
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Conditioning

Probabilistic conditioning specifies how to revise beliefs
based on new information.

An agent builds a probabilistic model taking all
background information into account. This gives the
prior probability.

All other information must be conditioned on.

If evidence e is all the information obtained
subsequently, the conditional probability P(h|e) of h

given e is the posterior probability of h.
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Semantics of Conditional Probability

Evidence e rules out possible worlds incompatible with e.

Evidence e induces a new measure, µe , over possible
worlds

µe(S) =

{
c × µ(S) if ω |= e for all ω ∈ S
0 if ω 6|= e for some ω ∈ S

We can show c =

1
P(e)

.

The conditional probability of formula h given evidence e
is

P(h|e) = µe({ω : ω |= h})

=
P(h ∧ e)

P(e)
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Conditioning

Possible Worlds:

Observe Color = orange:
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Conditioning

Possible Worlds:

Observe Color = orange:
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Exercise

Flu Sneeze Snore µ
true true true 0.064
true true false 0.096
true false true 0.016
true false false 0.024
false true true 0.096
false true false 0.144
false false true 0.224
false false false 0.336

What is:

(a) P(flu ∧ sneeze)

(b) P(flu ∧ ¬sneeze)

(c) P(flu)

(d) P(sneeze | flu)

(e) P(¬flu ∧ sneeze)

(f) P(flu | sneeze)

(g) P(sneeze | flu∧snore)

(h) P(flu | sneeze∧snore)
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Chain Rule

P(f1 ∧ f2 ∧ . . . ∧ fn)

=

P(fn|f1 ∧ · · · ∧ fn−1)×
P(f1 ∧ · · · ∧ fn−1)

= P(fn|f1 ∧ · · · ∧ fn−1)×
P(fn−1|f1 ∧ · · · ∧ fn−2)×
P(f1 ∧ · · · ∧ fn−2)

= P(fn|f1 ∧ · · · ∧ fn−1)×
P(fn−1|f1 ∧ · · · ∧ fn−2)

× · · · × P(f3|f1 ∧ f2)× P(f2|f1)× P(f1)

=
n∏

i=1

P(fi |f1 ∧ · · · ∧ fi−1)
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Bayes’ theorem

The chain rule and commutativity of conjunction (h ∧ e is
equivalent to e ∧ h) gives us:

P(h ∧ e) =

P(h|e)× P(e)

= P(e|h)× P(h).

If P(e) 6= 0, divide the right hand sides by P(e):

P(h|e) =
P(e|h)× P(h)

P(e)
.

This is Bayes’ theorem.
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Why is Bayes’ theorem interesting?

Often you have causal knowledge:
P(symptom | disease)
P(light is off | status of switches and switch positions)
P(alarm | fire)

P(image looks like | a tree is in front of a car)

and want to do evidential reasoning:
P(disease | symptom)
P(status of switches | light is off and switch positions)
P(fire | alarm).

P(a tree is in front of a car | image looks like )
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Conditional independence

Random variable X is independent of random variable Y

given random variable Z if, for all xi ∈ dom(X ),
yj ∈ dom(Y ), yk ∈ dom(Y ) and zm ∈ dom(Z ),

P(X = xi |Y = yj ∧ Z = zm)

= P(X = xi |Y = yk ∧ Z = zm)

= P(X = xi |Z = zm).

That is, knowledge of Y ’s value doesn’t affect your belief in
the value of X , given a value of Z .
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Example domain (diagnostic assistant)

light

two-way
switch

switch

off

on

power
outlet

circuit�
breaker

outside power

�

l1

l2

w1

w0

w2

w4

w3

w6

w5

p2

p1

cb2

cb1
s1

s2
s3
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Examples of conditional independence

The identity of the queen of Canada is independent of
whether light l1 is lit given whether there is outside
power.

Whether there is someone in a room is independent of
whether a light l2 is lit given the position of switch s3.

Whether light l1 is lit is independent of the position of
light switch s2 given whether there is power in wire w0.

Every other variable may be independent of whether light
l1 is lit given whether there is power in wire w0 and the
status of light l1 (if it’s ok , or if not, how it’s broken).
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Idea of belief networks

Whether l1 is lit (L1 lit) de-
pends only on the status of the
light (L1 st) and whether there
is power in wire w0. Thus,
L1 lit is independent of the
other variables given L1 st and
W 0. In a belief network, W 0
and L1 st are parents of L1 lit.

w1 w2

s2_pos

s2_st

w0

l1_lit

l1_st

... ... ......

Similarly, W 0 depends only on whether there is power in w1,
whether there is power in w2, the position of switch s2
(S2 pos), and the status of switch s2 (S2 st).
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Belief networks

Totally order the variables of interest: X1, . . . ,Xn

Theorem of probability theory (chain rule):
P(X1, . . . ,Xn) =

∏n
i=1 P(Xi |X1, . . . ,Xi−1)

The parents parents(Xi) of Xi are those predecessors of
Xi that render Xi independent of the other predecessors.
That is, parents(Xi) ⊆ X1, . . . ,Xi−1 and
P(Xi |parents(Xi)) = P(Xi |X1, . . . ,Xi−1)

So P(X1, . . . ,Xn) =
∏n

i=1 P(Xi |parents(Xi))

A belief network is a graph: the nodes are random
variables; there is an arc from the parents of each node
into that node.
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Components of a belief network

A belief network consists of:

a directed acyclic graph with nodes labeled with random
variables

a domain for each random variable

a set of conditional probability tables for each variable
given its parents (including prior probabilities for nodes
with no parents).
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Example belief network

Outside_power

W3

Cb1_st Cb2_st

W6

W2

W0

W1

W4

S1_st

S2_st

P1
P2

S1_pos

S2_pos

S3_pos

S3_st

L2_st

L2_lit

L1_st

L1_lit
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Example belief network (continued)

The belief network also specifies:

The domain of the variables:
W0, . . . ,W6 have domain {live, dead}
S1 pos, S2 pos, and S3 pos have domain {up, down}
S1 st has {ok , upside down, short, intermittent, broken}.
Conditional probabilities, including:
P(W1 = live|s1 pos = up ∧ S1 st = ok ∧W3 = live)
P(W1 = live|s1 pos = up ∧ S1 st = ok ∧W3 = dead)
P(S1 pos = up)
P(S1 st = upside down)
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Belief network summary

A belief network is automatically acyclic by construction.

A belief network is a directed acyclic graph (DAG) where
nodes are random variables.

The parents of a node n are those variables on which n
directly depends.

A belief network is a graphical representation of
dependence and independence:

I A variable is independent of its non-descendants given
its parents.
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Constructing belief networks

To represent a domain in a belief network, you need to
consider:

What are the relevant variables?
I What will you observe?
I What would you like to find out (query)?
I What other features make the model simpler?

What values should these variables take?

What is the relationship between them? This should be
expressed in terms of local influence.

How does the value of each variable depend on its
parents? This is expressed in terms of the conditional
probabilities.
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Using belief networks

The power network can be used in a number of ways:

Conditioning on the status of the switches and circuit
breakers, whether there is outside power and the position
of the switches, you can simulate the lighting.

Given values for the switches, the outside power, and
whether the lights are lit, you can determine the posterior
probability that each switch or circuit breaker is ok or not.

Given some switch positions and some outputs and some
intermediate values, you can determine the probability of
any other variable in the network.
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Understanding independence: example

B CA D E F

G H

M

I J K L

N

Q

R

O

S

P
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Understanding independence: questions

On which given probabilities does P(N) depend?

If you were to observe a value for B , which variables’
probabilities will change?

If you were to observe a value for N , which variables’
probabilities will change?

Suppose you had observed a value for M ; if you were to
then observe a value for N , which variables’ probabilities
will change?

Suppose you had observed B and Q; which variables’
probabilities will change when you observe N?
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What variables are affected by observing?

If you observe variable Y , the variables whose posterior
probability is different from their prior are:

I The ancestors of Y and
I their descendants.

Intuitively (if you have a causal belief network):
I You do abduction to possible causes and
I prediction from the causes.
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Common descendants

tampering

alarm

fire tampering and fire are
independent

tampering and fire are
dependent given alarm

Intuitively, tampering
can explain away fire
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Common ancestors

smokealarm

fire

alarm and smoke are
dependent

alarm and smoke are
independent given fire

Intuitively, fire can
explain alarm and

smoke; learning one
can affect the other by
changing your belief in
fire.
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Chain

report

alarm

leaving

alarm and report are
dependent

alarm and report are
independent given
leaving

Intuitively, the only
way that the alarm
affects report is by
affecting leaving .
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Pruning Irrelevant Variables

Suppose you want to compute P(X |e1 . . . ek):

Prune any variables that have no observed or queried
descendents.

Connect the parents of any observed variable.

Remove arc directions.

Remove observed variables.

Remove any variables not connected to X in the resulting
(undirected) graph.
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Belief network inference

Four main approaches to determine posterior distributions in
belief networks:

Variable Elimination: exploit the structure of the network
to eliminate (sum out) the non-observed, non-query
variables one at a time.

Search-based approaches: enumerate some of the possible
worlds, and estimate posterior probabilities from the
worlds generated.

Stochastic simulation: random cases are generated
according to the probability distributions.

Variational methods: find the closest tractable
distribution to the (posterior) distribution we are
interested in.
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Factors

A factor is a representation of a function from a tuple of
random variables into a number.
We will write factor f on variables X1, . . . ,Xj as f (X1, . . . ,Xj).
We can assign some or all of the variables of a factor:

f (X1 = v1,X2, . . . ,Xj), where v1 ∈ dom(X1), is a factor
on X2, . . . ,Xj .

f (X1 = v1,X2 = v2, . . . ,Xj = vj) is a number that is the
value of f when each Xi has value vi .

The former is also written as f (X1,X2, . . . ,Xj)X1 = v1 , etc.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.1, Page 49



Example factors

r(X ,Y ,Z ):

X Y Z val
t t t 0.1
t t f 0.9
t f t 0.2
t f f 0.8
f t t 0.4
f t f 0.6
f f t 0.3
f f f 0.7

r(X =t,Y ,Z ):

Y Z val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

r(X =t,Y ,Z =f ):
Y val
t 0.9
f 0.8

r(X =t,Y =f ,Z =f ) = 0.8

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.1, Page 50



Multiplying factors

The product of factor f1(X ,Y ) and f2(Y ,Z ), where Y are

the variables in common, is the factor (f1 × f2)(X ,Y ,Z )
defined by:

(f1 × f2)(X ,Y ,Z ) = f1(X ,Y )f2(Y ,Z ).
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Multiplying factors example

f1:

A B val
t t 0.1
t f 0.9
f t 0.2
f f 0.8

f2:

B C val
t t 0.3
t f 0.7
f t 0.6
f f 0.4

f1 × f2:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32
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Summing out variables

We can sum out a variable, say X1 with domain {v1, . . . , vk},
from factor f (X1, . . . ,Xj), resulting in a factor on X2, . . . ,Xj

defined by:

(
∑
X1

f )(X2, . . . ,Xj)

= f (X1 = v1, . . . ,Xj) + · · ·+ f (X1 = vk , . . . ,Xj)
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Summing out a variable example

f3:

A B C val
t t t 0.03
t t f 0.07
t f t 0.54
t f f 0.36
f t t 0.06
f t f 0.14
f f t 0.48
f f f 0.32

∑
B f3:

A C val
t t 0.57
t f 0.43
f t 0.54
f f 0.46
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Evidence

If we want to compute the posterior probability of Z given
evidence Y1 = v1 ∧ . . . ∧ Yj = vj :

P(Z |Y1 = v1, . . . ,Yj = vj)

=

P(Z ,Y1 = v1, . . . ,Yj = vj)

P(Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)∑
Z P(Z ,Y1 = v1, . . . ,Yj = vj).

So the computation reduces to the probability of
P(Z ,Y1 = v1, . . . ,Yj = vj).
We normalize at the end.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.1, Page 55



Evidence

If we want to compute the posterior probability of Z given
evidence Y1 = v1 ∧ . . . ∧ Yj = vj :

P(Z |Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)

P(Y1 = v1, . . . ,Yj = vj)

=

P(Z ,Y1 = v1, . . . ,Yj = vj)∑
Z P(Z ,Y1 = v1, . . . ,Yj = vj).

So the computation reduces to the probability of
P(Z ,Y1 = v1, . . . ,Yj = vj).
We normalize at the end.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.1, Page 56



Evidence

If we want to compute the posterior probability of Z given
evidence Y1 = v1 ∧ . . . ∧ Yj = vj :

P(Z |Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)

P(Y1 = v1, . . . ,Yj = vj)

=
P(Z ,Y1 = v1, . . . ,Yj = vj)∑
Z P(Z ,Y1 = v1, . . . ,Yj = vj).

So the computation reduces to the probability of
P(Z ,Y1 = v1, . . . ,Yj = vj).
We normalize at the end.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.1, Page 57



Probability of a conjunction

Suppose the variables of the belief network are X1, . . . ,Xn.
To compute P(Z ,Y1 = v1, . . . ,Yj = vj), we sum out the other
variables, Z1, . . . ,Zk = {X1, . . . ,Xn} − {Z} − {Y1, . . . ,Yj}.
We order the Zi into an elimination ordering.

P(Z ,Y1 = v1, . . . ,Yj = vj)

=

∑
Zk

· · ·
∑
Z1

P(X1, . . . ,Xn)Y1 = v1,...,Yj = vj .

=
∑
Zk

· · ·
∑
Z1

n∏
i=1

P(Xi |parents(Xi))Y1 = v1,...,Yj = vj .
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Computing sums of products

Computation in belief networks reduces to computing the
sums of products.

How can we compute ab + ac efficiently?

Distribute out the a giving a(b + c)

How can we compute
∑

Z1

∏n
i=1 P(Xi |parents(Xi))

efficiently?

Distribute out those factors that don’t involve Z1.
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Variable elimination algorithm

To compute P(Z |Y1 = v1 ∧ . . . ∧ Yj = vj):

Construct a factor for each conditional probability.

Set the observed variables to their observed values.

Sum out each of the other variables (the {Z1, . . . ,Zk})
according to some elimination ordering.

Multiply the remaining factors. Normalize by dividing the
resulting factor f (Z ) by

∑
Z f (Z ).
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Summing out a variable

To sum out a variable Zj from a product f1, . . . , fk of factors:

Partition the factors into
I those that don’t contain Zj , say f1, . . . , fi ,
I those that contain Zj , say fi+1, . . . , fk

We know:

∑
Zj

f1× · · ·×fk = f1× · · ·×fi×

∑
Zj

fi+1× · · ·×fk

 .

Explicitly construct a representation of the rightmost
factor. Replace the factors fi+1, . . . , fk by the new factor.

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.1, Page 66



Variable elimination example

A

B
C

D

E

F

G

H I

P(A)
P(B |A)

}
elim A−→ f1(B)

P(C )
P(D|BC )
P(E |C )

 elim C−→ f2(BDE )

P(F |D)
P(G |FE )

P(H |G )
} obs H−→ f3(G )

P(I |G )
} elim I−→ f4(G )

P(D, h) = ...(
∑

A P(A)P(B |A))(
∑

I P(I |G ))
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Variable Elimination example

A B C D E F

G H

Query: P(G |f ); elimination ordering: A,H ,E ,D,B ,C

P(G |f ) ∝

∑
C

∑
B

∑
D

∑
E

∑
H

∑
A

P(A)P(B |A)P(C |B)

P(D|C )P(E |D)P(f |E )P(G |C )P(H |E )

=
∑
C

(∑
B

(∑
A

P(A)P(B |A)

)
P(C |B)

)
P(G |C )(∑

D

P(D|C )

(∑
E

P(E |D)P(f |E )
∑
H

P(H |E )

))
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Stochastic Simulation

Idea: probabilities ↔ samples

Get probabilities from samples:

X count

x1 n1
...

...
xk nk

total m

↔

X probability

x1 n1/m
...

...
xk nk/m

If we could sample from a variable’s (posterior)
probability, we could estimate its (posterior) probability.
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Generating samples from a distribution

For a variable X with a discrete domain or a (one-dimensional)
real domain:

Totally order the values of the domain of X .

Generate the cumulative probability distribution:
f (x) = P(X ≤ x).

Select a value y uniformly in the range [0, 1].

Select the x such that f (x) = y .
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Cumulative Distribution

0

1

v1 v2 v3 v4 v1 v2 v3 v4

P(X)

f(X)

0

1
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Forward sampling in a belief network

Sample the variables one at a time; sample parents of X
before sampling X .

Given values for the parents of X , sample from the
probability of X given its parents.
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Rejection Sampling

To estimate a posterior probability given evidence
Y1 = v1 ∧ . . . ∧ Yj = vj :

Reject any sample that assigns Yi to a value other than
vi .

The non-rejected samples are distributed according to the
posterior probability:

P(α|evidence) ≈
∑

sample|=α 1∑
sample 1

where we consider only samples consistent with evidence.
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Rejection Sampling Example: P(ta|sm, re)

Ta Fi

SmAl

Le

Re

Observe Sm = true,Re = true

Ta Fi Al Sm Le Re
s1 false true false true false false

8

s2 false true true true true true 4

s3 true false true false — — 8

s4 true true true true true true 4

. . .
s1000 false false false false — — 8

P(sm) = 0.02
P(re|sm) = 0.32
How many samples are rejected?
How many samples are used?
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Importance Sampling

Samples have weights: a real number associated with
each sample that takes the evidence into account.

Probability of a proposition is weighted average of
samples:

P(α|evidence) ≈
∑

sample|=α weight(sample)∑
sample weight(sample)

Mix exact inference with sampling: don’t sample all of
the variables, but weight each sample according to
P(evidence|sample).
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Markov chain

A Markov chain is a special sort of belief network for
sequential observations:

S0 S1 S2 S3 S4

Thus, P(St+1|S0, . . . , St) = P(St+1|St).

Often St represents the state at time t. Intuitively St

conveys all of the information about the history that can
affect the future states.

“The past is independent of the future given the present.”
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Stationary Markov chain

A stationary Markov chain is when for all t > 0, t ′ > 0,
P(St+1|St) = P(St′+1|St′).

We specify P(S0) and P(St+1|St).
I Simple model, easy to specify
I Often the natural model
I The network can extend indefinitely
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Markov Models

modelling dependencies of various lengths
I bigrams: P(Si |Si−1)
I trigrams: P(Si |Si−2Si−1)
I quadrograms: P(Si |Si−3Si−2Si−1)
I ...

e.g. to predict the probability of the next event

speech and language processing, genome analysis, time
series predictions (stock market, natural desasters, ...)
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Markov Models

examples of Markov chains for German letter sequences

unigrams:
aiobnin*tarsfneonlpiitdregedcoa*ds*e*dbieastnreleeucdkeaitb*
dnurlarsls*omn*keu**svdleeoieei* . . .

bigrams:
er*agepteprteiningeit*gerelen*re*unk*ves*mterone*hin*d*an*
nzerurbom* . . .

trigrams:
billunten*zugen*die*hin*se*sch*wel*war*gen*man*
nicheleblant*diertunderstim* . . .

quadrograms:
eist*des*nich*in*den*plassen*kann*tragen*was*wiese*
zufahr* . . .
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Hidden Markov Model

A Hidden Markov Model (HMM) is a belief network:

S0 S1 S2 S3 S4

O0 O1 O2 O3 O4

P(S0) specifies initial conditions

P(St+1|St) specifies the dynamics

P(Ot |St) specifies the sensor model

c©D. Poole, A. Mackworth 2010, W. Menzel 2013 Artificial Intelligence, Lecture 6.1, Page 87



Filtering

Filtering:

P(Si |o1, . . . , oi)

What is the current belief state based on the observation
history?

P(Si |o1, . . . , oi) ∝ P(oi |Sio1, . . . , oi−1)P(Si |o1, . . . , oi−1)

=???
∑
Si−1

P(SiSi−1|o1, . . . , oi−1)

=???
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Example: localization

Suppose a robot wants to determine its location based on
its actions and its sensor readings: Localization

This can be represented by the augmented HMM:

Loc0 Loc1 Loc2 Loc3 Loc4

Obs0 Obs1 Obs2 Obs3 Obs4

Act0 Act1 Act2 Act3
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Example localization domain

Circular corridor, with 16 locations:

0 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

Doors at positions: 2, 4, 7, 11.

Noisy Sensors

Stochastic Dynamics

Robot starts at an unknown location and must determine
where it is.
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Example Sensor Model

P(Observe Door | At Door) = 0.8

P(Observe Door | Not At Door) = 0.1
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Example Dynamics Model

P(loct+1 = L|actiont = goRight ∧ loct = L) = 0.1

P(loct+1 = L + 1|actiont = goRight ∧ loct = L) = 0.8

P(loct+1 = L + 2|actiont = goRight ∧ loct = L) = 0.074

P(loct+1 = L′|actiont = goRight ∧ loct = L) = 0.002 for
any other location L′.

I All location arithmetic is modulo 16.
I The action goLeft works the same but to the left.
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Combining sensor information

Example: we can combine information from a light

sensor and the door sensor Sensor Fusion

Loc0 Loc1 Loc2 Loc3 Loc4

D0 D1 D2 D3 D4

Act0 Act1 Act2 Act3

L0 L1 L2 L3 L4

St robot location at time t
Dt door sensor value at time t
Lt light sensor value at time t
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