Database and Information Systems

- 11. Deductive Databases
- 12. Data Warehouses and OLAP
- 13. Data Mining
- 14. Index Structures for Similarity Queries
- 15. Semi-Structured Data
- 16. Document Retrieval
- 17. Web Mining
- 18. Content Extraction
- 19. Multimedia Data

- Data-Mining: The Task
- Data-Mining as a Process
- Data Preprocessing
- Data Mining Tasks

Data Mining Tasks

- Classification
- Prediction
- Clustering
- Dependency Modelling
- Summarization
- Change and Deviation Detection
- Visualization

- well understood
 - decision theory
 - many heuristic solutions
- many problems can be mapped to a classification task
- applications in
 - customer relationship management: tailored marketing
 - banking: credit authorization
 - document management: e-mail routing

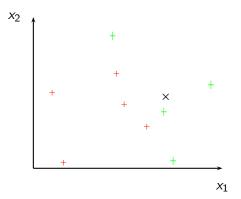
- given
 - a data base $D = \{t_1, t_2, ..., t_n\}$
 - of tupels $t_i = \vec{x}$ and
 - a set of classes $C = \{c_1, c_2, ..., c_m\}$,
- find a mapping $f: D \to C$
 - such that f partitions D.

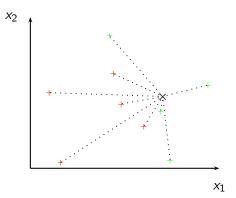
- classes are predefined: supervised learning, learning with a teacher
- notation
 - $c_t(t_i)$: class assignment in the training data
 - $c(t_i)$: class assignment by the classifier
- usually: $|D| \gg |C|$
- class is a set of tuples: $c_j = \{t_i | f(t_i) = c_j\}$
- no tuple belongs to several classes

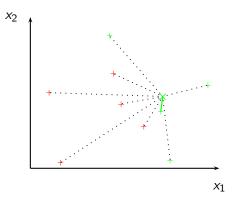
- Nearest-Neighbor Classifier
- Threshold-based Classifiers
- Decision Trees
- Random Forests
- Neural Networks
- Stochastic Classification
- Evaluation

- direct approach: training data $T = \{(\vec{x_i}, k)\}$ are
 - · directly stored in the classifier and
 - used for classification
- nearest neighbor

$$c(\vec{x}) = \arg_{c_k}(\vec{x_j}, k), \ j = \arg\min_i d(\vec{x}, \vec{x_i})$$



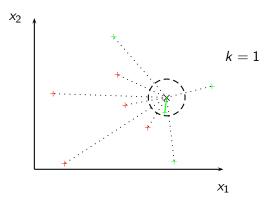


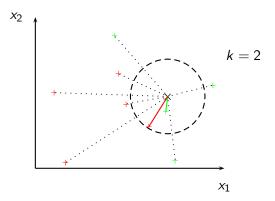


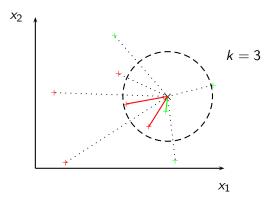
- k-nearest neighbors
 - determine the set N of the k nearest neighbors of \vec{x} in T
 - choose the class with the maximum number of data points in N

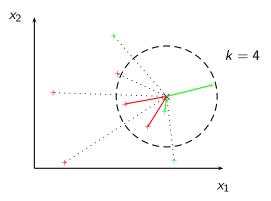
$$c(\vec{x}) = \arg \max_{c_k} |\{c_k | c_k \in N\}|$$

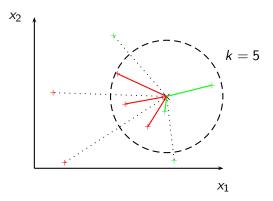
- more robust against singular data points
- but more expensive











- NN-classifier is instance-based
 - model size and classification effort grow linearly with amount of training data
 - no generalization of the available training data
- generalizing models required
 - use class representatives as data points
 - e.g. mean of class or class-dependent clusters

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Random Forests
- Neural Networks
- Stochastic Classification
- Evaluation

- simple generalizing model
- a threshold divides the data space into two subspaces

$$c(\vec{x_i}) = \begin{cases} 1 & x_j > \theta_j \\ 2 & else \end{cases}$$

• analogue separation criteria for non-numeric data

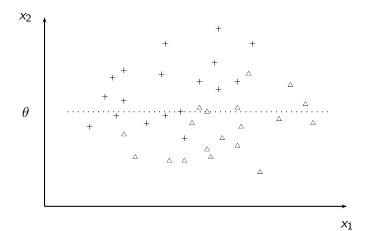
- choice of the optimal threshold:
 - minimizing the classification error on the training data

$$\theta = \arg\min_{\theta} |\{t_i | c(t_i) \neq c_t(t_i)\}|$$

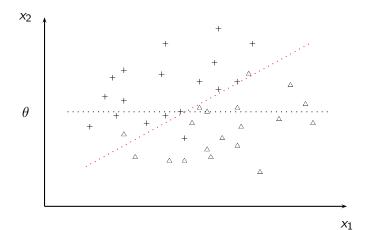
• for numeric data approximated by minimizing the distance of misclassified samples to the threshold

$$heta = \arg\min_{ heta} \sum_{t_i, c(t_i)
eq c_t(t_i)} |x_j - heta_k|$$

· insufficient to separate more difficult distributions



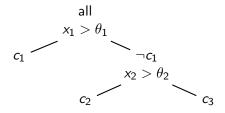
• better class separation



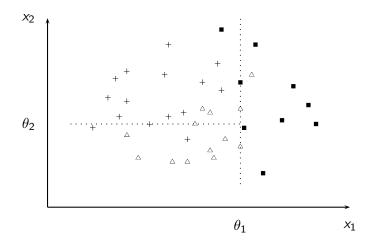
- algorithm for finding an optimal threshold
 - 1. sort the values $[v_1, ..., v_m]$
 - 2. extract m-1 potential thresholds by either
 - computing the mean of all neighboring values or
 - · choosing the smaller one of two neighboring values
 - 3. evaluate all potential thresholds and select the one with the maximum gain

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Random Forests
- Neural Networks
- Stochastic Classification
- Evaluation

- extension of threshold-based classifiers to multiple classes:
 - multi-branch splits
 - · decomposition into a sequence of sub-decisions



finding the optimal decision tree is NP complete
 → deterministic (non-backtracking), greedy algorithms



- ID3: split along a dimension as to maximise information gain
- entropy of a set S partitioned into k classes

$$E(S) = -\sum_{i=1}^{k} p(c_i) \cdot \log p(c_i)$$

 entropy of a test set T partitioned into n subsets by an attribute test X with n possible outcomes

$$E_X(T) = -\sum_{i=1}^n \frac{|T_i|}{|T|} \cdot E(T_i)$$

• information gain of the attribute test

$$G(X) = E(T) - E_X(T)$$

- C4.5: extension of ID3 to numerical data
 - split along a dimension so that the resulting subsets have lowest class entropy
 - i.e. contain data points of as few classes as possible
- problem of overfitting
 - splitting until no data point is misclassified usually means to adapt the classifier too much to the training data
 - "learning off by heart"
 - degrading performance on held out test data
 - cut-off criterion required, or post-pruning

29

- decision rules can be extracted from a decision tree
 - IF part: combine all tests on the path from the root node to the leaf node
 - THEN part: the final classification

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees

- Neural Networks
- Stochastic Classification
- Evaluation

- ensemble based method
- goal: reducing the effect of "almost" random split decisions
- forcing the training to consider alternative splits
- given: N training instances with M variables
- T random samples (with replacement) with a sample size $S \approx 0.66N$; the remaining instances are used for estimating the prediction error (out-of-bag evaluation)
- for each node of the tree $m \ll M$ variables are selected randomly to take the decision at that node
- no pruning is applied
- classification: (weighted) majority vote among the results of the individual trees

- highly accurate classifiers without much prior knowledge
- fast training
- highly parallel classification
- can deal with very large problems (training data, number of variables, number of classes)
- estimates the importance of the different variables
- build-in evaluation; no separate test data required

- prone to overfitting, in particular for noisy data sets
- does not handle large amounts of irrelevant features
- sensitive to correlations between trials: "small heterogeneous is better than large homogeneous" (GASHLER ET AL. 2008)
 - growing too many trees might reduce the accuracy

Comparison of classifiers

	Nearest	Decision	(Linear)	Stochastic
	Neighbor	Trees	Discriminance	Models
model	sample	ranking	class	probabilistic
	set	of tests	boundaries	generation
generalization	no	forced	yes	yes
robust against				
incons. data	no	no	yes	yes
outliers	only k-NN	low	yes	yes
perspicuity	high	high	low	low
scalability	very low	low	good	very good
additional	metrics	no	architecture	(architecture)
assumptions			learning rule	distribution

- Nearest-Neighbor Classifier
- Threshold-Based Classifiers
- Decision Trees
- Random Forests
- Neural Networks
- Stochastic Classification
- Evaluation

Evaluation

- goal: predicting future model performance
 - estimation of an error rate on a sample of test cases
- testing on the training data is too optimistic
 - error rate is significantly lower compared to a real application scenario
 - \rightarrow evaluation only on separate data: test set
- but: available test set data is usually limited
 - manual data cleansing
 - manual class assignment
- using data for training and testing: resampling

Resampling Methods

- held out data
 - 30% ... 50% of the data are reserved for testing
 - training and test data are independent
 - error estimation is pessimistic and depends on the partitioning \rightarrow repeat the measurement with different partitionings and average
- leave one out
 - use n-1 samples for training and evaluate on the n-th one
 - repeat with all *n* samples
 - extremely expensive

Resampling Methods

- n-fold cross validation
 - combines hold-out and leave-one-out
 - divide data set into p partions
 - use p-1 partitions for training; evaluate on the remaning one
- bootstrapping
 - generate artificial training data by replacing data items
 - obtain bootstrap estimations of the error rates on these data sets
 - useful if few data are available

• error rate

$$e = \frac{|M|}{|S|}$$

- S: test set, $M \subseteq S$: misclassified data
- accuracy

$$a=1-e=\frac{|S|-|M|}{|S|}$$

• only for atomic data!

- contrastive analysis:
 - absolute improvement/degradation: comparison with a baseline case

$$\Delta_{abs}a = a_n - a_{n-1}$$

 $\Delta_{abs}e = e_n - e_{n-1}$

• relative improvement/degradation

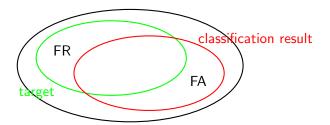
$$\Delta_{rel}a = rac{a_n - a_{n-1}}{a_n}$$
 $\Delta_{rel}e = rac{e_n - e_{n-1}}{e_n}$

- special case: 2 classes (true/false) \rightarrow 2 error cases
- false positives/acceptance: false acception rate (sensitivity)

$$FAR = \frac{|\{x|c(x) = \mathsf{true} \neq c_t(x)\}|}{|\{x|c(x) = \mathsf{true}\}|}$$

• false negatives/rejection: false rejection rate (specificity)

$$FRR = \frac{|\{x|c(x) = \mathsf{false} \neq c_t(x)\}|}{|\{x|c(x) = \mathsf{false}\}|}$$

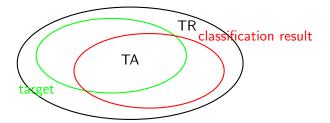


• true positives/acceptance: true acception rate

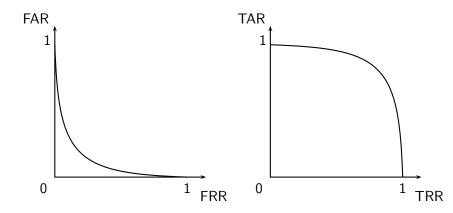
$$TAR = \frac{|\{x|c(x) = true = c_t(x)\}|}{|\{x|c(x) = true\}|}$$

• true negatives/rejection: true rejection rate

$$TRR = \frac{|\{x|c(x) = \mathsf{false} = c_t(x)\}|}{|\{x|c(x) = \mathsf{false}\}|}$$



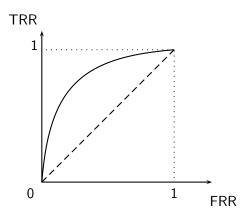
• trade-off between FAR and FRR / TAR and TRR



• trivial classifier: upper threshold for the error rate

$$e_{max} = \min(p(true), p(false))$$

• receiver operating characteristic (ROC): TRR vs. FRR



• quality: area under the ROC-curve

- in general $k^2 k$ (k: number of classes) error types
- description of the error type distribution as a confusion matrix
- biased error consequences: weighted error measures
 - error types eij are associated with costs cij

$$e_w = \frac{\sum_{i=1}^m \sum_{j=1}^m e_{ij} \cdot c_{ij}}{|S|}$$