
Database and Information Systems

11. Deductive Databases

12. Data Warehouses and OLAP

13. Data Mining

14. Index Structures for Similarity Queries

15. Semi-Structured Data

16. Document Retrieval

17. Web Mining

18. Content Extraction

19. Multimedia Data

1

Indexing Structures for High-Dimensional Data

Readings:

Schmitt, I.: Ähnlichkeitssuche in Multimedia-Datenbanken.
Retrieval, Suchalgorithmen und Anfragebehandlung. Oldenbourg,
München 2006.

2

Indexing Structures for High-Dimensional Data

• Queries in High-Dimensional Databases

• Boundary-Based Indexes

• Dimensionality Reduction

3

Queries in High-Dimensional Databases

• range queries: find all objects whose attribute values fall within
certain given ranges

• rectangular hyper-window (window query)

• similarity range queries: find all objects which are within a given
distance from an object

• hyper-sphere query
• distance is defined based on an application specific metrics

• nearest neighbor query: find the object which is closest to a given
object

• reverse nearest neighbor query: find all objects for which a given
object would be a nearest neighbor

• nn-relation is not symmetric
• e.g. finding an optimal location for a meeting

4

Queries in High-Dimensional Databases

• k-nearest neighbor (KNN) queries: find the k-most similar objects
which are closest in distance to a given object

• high dimensional data have low contrast in distance
• if more similar objects than required exist → random choice

• similarity join: find all pairs of objects which are similar enough

• distance is smaller than a predefined threshold

• similarity queries can be emulated by range queries using a
filter-and-refine approach

• filter: find the candidates with a sufficiently large bounding box
• refine: check the similarity criterion for each of them

5

Queries in High-Dimensional Databases

• requirements for index structures

• soundness and completeness
• suitability for high-dimensional problem spaces
• suitability for spatially extended objects
• retrieval efficiency
• efficient update operations (insertion, deletion, update)
• support for several distance metrics
• minimal space requirements

• no one-fits-all solution → compromise needs to be found

6

Queries in High-Dimensional Databases

• curse of high dimensionality

• a high-dimensional data space is sparse
• distance between data points increases
• data contrast is low

• distance between the nearest and the farthest data point is
reduced

• high number of almost equally similar data points

• notion of similarity vanishes
• approximate (probabilistic) methods suffice

7

Boundary-Based Indexes

• range queries: R-Trees

• multi-dimensional extension of B+-trees
• preserves height balance
• insertion: node splitting
• deletion: node merging

• leaf nodes

• object identifier
• bounding box: Minimum Bounding Rectangle (MBR)

• non-leaf nodes

• child-pointer
• bounding box for the whole sub-tree

8



Boundary-Based Indexes

p1

p2

p3

p4

p5

p6

p7

p8

p9

p10

p11

p12

p13

p14

p15

p16

p17

p18

p19

p20

R0

R1
R2

R3

R4

R5

R6

R7

R8

9

Boundary-Based Indexes

R0

R1 R2

R1 R2

R3 R4 R5 R6 R7 R8

R3 R4 R5 R6 R7 R8

p12 p1 p4 p16 p17 p5 p18 p6 p7 p13 p14 p2 p3 p15 p11 p20 p19 p8 p9 p10

10

Boundary-Based Indexes

• range queries: recursive tree traversal

• find all leaf nodes where the bounding box overlaps the query
range

• non-deterministic search: all non-leaf nodes with intersecting
bounding boxes have to be considered

• nn-queries: objects in a node can be ordered

• min-distance:
minimal distance between a query point and a point in an MBR
optimistic expectation for the distance to the nearest neighbor

• minmax-distance:
maximal distance a query point can have to a nearest neighbor
in an MBR
pessimistic expectation for the distance to the nearest neighbor

11

Boundary-Based Indexes

Q

MBR1

MBR2

minmax minmax
min

min

12

Boundary-Based Indexes

• search maintains an upper limit for the best result found so far

• mindist(Q,MBR1) > minmaxdist(Q,MBR2)

• MBR1 need not be considered

• upper limit > minmaxdist(Q,MBR1)

• MBR1 contains a closer neighbor
• upper limit can be updated to minmaxdist(Q,MBE1)

• upper limit < mindist(Q,MBR1)

• MBR1 need not be considered

• can be extended to deal with knn-queries

• maintaining the candidates in a priority queue of length k
• upper limit refers to the last entry in the priority queue

13

Boundary-Based Indexes

• node insertion

• least coverage criterion: choose the branch which requires
minimal enlargement to also accomodate the new object

• in case of a tie: choose the smallest box
• all traversed and splitted nodes are readjusted to a minimum

bounding box

• node splitting: like in a B-tree

• node deletion:

• changes the bounding box in ancestor nodes
→ adaptation needed

• in case of underflow: delete the node and reinsert its remaining
childs from the root

• might cause further node deletions

14

Boundary-Based Indexes

• problems:

• the overlap of bounding boxes increases as the dimensionality
grows

→ not well suited for multi-dimensional problems
→ for a large number of dimensions (d > 10) a sequential

scan can be shown to be more efficient

• overlap is sensitive to the order of insertion → reorganisation
can give an advantage (e.g. node re-insertion from the root)

• not well suited for KNN queries
• only for vector spaces with a Euclidean distance

15

Boundary-Based Indexes

• variants

• R+-Tree: no overlaps allowed → too many splits
• R∗-Tree: optimizes the margin of the bounding boxes

squarish boxes are preferred
• X-tree: avoiding splits if they result in highly overlapping nodes
→ supernodes

• A-Trees: using virtual bounding boxes to approximate the
minimal ones

16



Boundary-Based Indexes

• alternative: using bounding spheres instead of bounding boxes
(SS-Tree)

• centroid: mean vector
• radius: distance from the centroid to the farthest data point

• generalized version: metric tree (M-Tree)

• data are clustered first
• cluster are mapped to nodes in the tree
• centroids are used as routing objects
• triangle inequation is used to exclude to exclude subtrees from

being searched
• tree is balanced

17

Boundary-Based Indexes

• advantages

• works with arbitraty metrics
• lower dimensionality: d + 1 instead of 2d
• radius of the bounding sphere is determined by the distance
→ insensitive to the dimensionality while diagonal in a box
increases with dimensionality

• but: boxes can be better adapted to different value ranges
along different dimensions

• well suited for similarity search

18

Boundary-Based Indexes

• distance between a centroid and the query can be used to prune the
search space

Sj

Sj−1 Q

• there must be a subcluster in the closer hemisphere

• the true distance to the subcluster cannot be larger than the
distance to the centroid it belongs to

19

Boundary-Based Indexes

• kd-Tree: binary search tree

• splitting on different levels of the tree can be done along different
dimensions of the feature space

• partitions the feature space completely (no overlaps)

• tree is unbalanced (by definition)

• hyper-rectangles are usually larger than necessary but queried more
often
→ worse performance

20

Boundary-Based Indexes

• no tree-based index is efficient for truly high-dimensional problems

• common assumption:

• data points can be clustered
• certain clusters can be excluded from search

• assumption is fundamentally wrong for similarity search in a space
with many uncorrelated features

21

Dimensionality Reduction

• dimensionality reduction techniques are always lossy

• indexing based on important attributes: TV-Tree (Telescopic-Vector
Tree)

• similar to an R-Tree, but nodes higher up in the tree use fewer
features

• features have to be selected according to some predefined
ranking

• Principal Component Analysis

• decorrelation of features
• transforms the whole feature space
• preserves similarity properties
• using only a subset of the transformed feature space for

indexing
• efficient if data dimensions are globally correlated
• but degree of correlation might change for dynamic data sets

22

Dimensionality Reduction

• alternative: Local Dimensionality Reduction (LDR)

• detect local clusters in the data set
• perform a LDR for the individual clusters
• build a local, low dimensional index using the transformed

feature space
• build a global index for the clusters
• data points which do not belong to any cluster are treated as

outliers and cannot be indexed at all
• user can determine the amount of information loss, which

affects the query precision and the query costs

• general problems:

• degree of correlation might change for dynamic data sets
• approach is also based on the idea of clustering

23

The Curse of Dimensionality (Revisited)

• for high dimensional problems in a Euclidean space the

• expected value for the distance between two data points grows
• but the standard deviation is constant

distance

d = 10 d = 100

• many data points have a similar distance

• any kind of clustering becomes impossible

24



The Curse of Dimensionality (Revisited)

• approximation error:

• average distance between

• a point query and the nearest data point of a cluster and
• the point query and the cluster itself

• approximation error grows linearly with the expected value of the
distance and

• eventually exeeds the greatest data point distance!

• → there is no method that reliably justifies to exclude a cluster from
being considered in a high-dimensional data space

25

Signature-based Access

• vector approximation techniques (VA file)

• assumption: space can be partitioned into a finite set of discrete
cells

• partition the data space

• number of cells per dimension is given
• boundaries are chosen in a way that the number of data

points in each intervall is evenly distributed

• store the cell boundaries
• represent each cell by a signature

• i.e. concatenation of a binary representation for the cell
number in each dimension

• store the signature together with the full vector for each data
point

• use the signature as a filter to eliminate the data points that
are not in the answer set

26

Signature-based Access

• search:

• determine the relevant cells by a sequential scan
• fetch the data points within the cells from the data base
• check the search conditions for the fetched items

• but number of bits needs careful tuning

• drawback: fixed number of bits to describe a data point

27

Signature-based Access

• modification: active vertice file (AV file)

• partition the data space into a hierarchy of cells with different
granualarity

c1

c0

c3

c2

0
0

1

1

c0

c1 c2

c3

00 11

1000

• a data point is assigned to a cell if it is closer than a given radius r

from its centroid

• choice of r determines the efficiency

28

Space-filling Curves

• special case of vector approximation

• locality preserving total ordering of points in a k-dimensional
space

• e.g. Hilbert-curve
• special enumeration scheme for the cells, e.g. for a

2-dimensional space:

29

Space-filling Curves

• segment the space into 4 (2k) cells

• order the cells according to a basic curve

• recursively call the algorithm on all the cells until a detailed enough
segmentation has been reached

30

Space-filling Curves

• enumerate the cells along the path

0

1 2

3 4 5

67

8 9

101112

1314

15

16 17

1819

20

21 22

23 24

25 26

27

2829

30 31 32 33

3435

36

37 38

39 40

41 42

43

4445

46 47

48

4950

515253

54 55

5657

58 59 60

61 62

63

31

Space-filling Curves

• not all regions in the original space can be represented as contiguous
regions in the new one

• → decomposition into several regions necessary

0 1

23

4

5 6

7 8

9 10

11

1213

14 15 0 1

23

4

5 6

7 8

9 10

11

1213

14 15

32


